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INVITED ARTICLES 
Robust Confidence Intervals for Effect Size in the Two-Group Case 

 

 
H. J. Keselman 

University of Manitoba 

 
James Algina 

   University of Florida 

 
Katherine Fradette 

  University of Manitoba 
 

 
The probability coverage of intervals involving robust estimates of effect size based on seven procedures 
was compared for asymmetrically trimming data in an independent two-groups design, and a method that 
symmetrically trims the data. Four conditions were varied: (a) percentage of trimming, (b) type of 
nonnormal population distribution, (c) population effect size, and (d) sample size. Results indicated that 
coverage probabilities were generally well controlled under the conditions of nonnormality. The 
symmetric trimming method provided excellent probability coverage. Recommendations are provided. 
 
Key words: Robust Intervals, effect size statistics, symmetric and asymmetric trimmed means, 
nonnormality 
 
 

Introduction 
 
Journal editorial policies in medicine and 
psychology encourage researchers to supplement 
significance testing by reporting confidence 
intervals (CIs) as well as effect size (ES) 
statistics. As Fidler, Thomason, Cumming, 
Finch, and Leeman (2004) note, this movement 
started in medicine as early as the 1980s (see 
Rothman 1975, 1978a, 1978b). In psychology, 
in the past 15 years or so, there has been 
renewed emphasis on reporting ESs because of 
editorial policies requiring ESs (e.g., Murphy, 
1997; Thompson, 1994) and official support for 
the practice. According to The Publication 
Manual of the American Psychological 
Association    (2001),    “it    is    almost   always  
 
 
H. J. Keselman is Professor of Psychology. 
Email: kesel@ms.umanitoba.ca. James Algina is 
Professor of Educational Psychology. Email 
algina@ufl.edu. Katherine H. Fradette is a 
doctoral student in the Department of 
Psychology. Email: umfradet@cc.umanitoba.ca. 

necessary to include some index of ES or 
strength of relationship in your Results section.” 
(p. 25). The practice of reporting ESs has also 
received support from the APA Task Force on 
Statistical Inference (Wilkinson and the Task 
Force on Statistical Inference, 1999). An interest 
in reporting CIs for ESs has accompanied the 
emphasis on ESs. Cumming and Finch (2001), 
for example, presented a primer of CIs for ESs. 
The purpose of this article is to bring to the 
attention of researchers in medicine and 
psychology, and other interested researchers, 
who set CIs around an ES parameter, a better 
approach than currently adopted methods. 

 Algina and Keselman (2003) and Algina, 
Keselman and Penfield (2005) investigated two 
two-group ES statistics, looking, in particular, at 
the confidence coefficient of two intervals 
associated with each. One of the ES statistics 
was Cohen’s (1965) standardized mean 
difference statistic 

 

2 1Y Y
d

S
−= , 
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where jY  is the mean for the jth level ( j 1, 2= ) 

of a treatment factor and S is the square root of 
the pooled variance. The second was  
 

t2 t1
R

W

Y Y
d .643

S

⎛ ⎞−
= ⎜ ⎟

⎝ ⎠
, 

 
where tjY  denotes the jth 20% trimmed mean, 

WS  is the square root of the pooled 20% 

Winsorized variance and .643 is the population 
20% Winsorized standard deviation for a 
standard normal distribution. These authors 
included .643 in the definition of their robust 
effect so that the population values of Rd  R( )δ  

and d (δ ) would be equal when data are drawn 
from normal distributions with equal variances. 

However, these authors also pointed out that 
it is not obligatory to include the .643 multiplier 
in the definition of Rd  and Rδ . Accordingly, the 

multiplier is excluded in this article. Using each 
ES statistic, CIs were constructed by using 
critical values obtained from theory or through a 
bootstrap method. Algina and Keselman (2003) 
found that probability coverage for intervals of 
the usual statistic based on least squares 
estimators was inaccurate whether or not the 
interval’s critical values were obtained from a 
theoretical or bootstrap distribution. They also 
reported that probability coverage was 
inaccurate when the interval was set around a 
robust parameter of ES and the critical values 
for the interval were obtained from a theoretical 
probability distribution. However, probability 
coverage was by in large accurate (e.g., .940-
.971 for a .95 confidence coefficient) when the 
interval for the robust parameter of ES was 
based on critical values obtained through a 
bootstrap method (see Algina et al., 2005). 

Keselman, Wilcox, Lix, Algina and Fradette 
(in press) found that tests of treatment group 
equality based on robust estimators performed 
very well, with respect to Type I error control 
and power to detect effects in nonnormal 
heteroscedastic distributions, when adopting 
robust estimators based on asymmetric trimming 
of the data. That is, rather than trim a 
predetermined fixed amount of data from each 

tail of the empirical distribution, as frequently is 
recommended in the literature (e.g., 20% from 
each tail; see Wilcox, 1997; Wilcox & 
Keselman, 2003), Keselman et al. used nine 
adaptive procedures that empirically determined 
the amounts of data that should be trimmed in 
the right and left tails of each of the nonnormal 
distributions that they examined in their Monte 
Carlo investigation. The rationale behind 
asymmetric trimming is to remove more of the 
offending data (i.e., data that does not represent 
the bulk of the observations, that is, the typical 
score) from the tail containing more of the 
outlying values. 

Based on the two aforementioned studies, it 
is believed that more accurate confidence 
coefficients for Algina and Keselman’s (2003) 
and Algina et al.’s (2005) robust parameter of 
ES could be obtained by adopting the 
asymmetric trimming procedures enumerated in 
Keselman et al. (in press). Accordingly, this 
issue will be investigated in this article. 

 
Theoretical Background 

 
ES Statistics and Accompanying CIs 

In the two independent-groups paradigm, 
Cohen’s (1965) standardized mean difference 
statistic, d, is a popular choice for estimating ES. 
His ES statistic is defined as  
 

2 1Y Y
d

S
−= . 

 
Cohen’s d estimates  
 

2 1µ µδ
σ
−= , 

 
where jµ  is the jth population mean and σ  is 

the population standard deviation, assumed to be 
equal for both groups. 

When the scores are independently 
distributed and are drawn from normal 
distributions having equal variances, an exact CI 
for the population ES (i.e., δ ) can be 
constructed by using the noncentral t distribution 
(see, e.g., Cumming & Finch, 2001 or Steiger & 
Fouladi, 1997). The noncentral t distribution is 
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the sampling distribution of the t statistic when 
δ  is not equal to zero; it has two parameters. 
The first is the degrees of freedom and equals 
N 2−  in the two independent-groups set-up 
([ 1 2N n n= + ] and the number of observations 

in a level is denoted by jn ). The second 

parameter is the noncentrality parameter  
 

1 2 2 1 1 2

1 2 1 2

n n n n
n n n n

µ µλ δ
σ
−⎛ ⎞= =⎜ ⎟+ +⎝ ⎠

. 

 
The noncentrality parameter controls the 
location of the noncentral t distribution. The 
mean of the noncentral t distribution is λ≈  
(Hedges, 1981); the accuracy of the 
approximation improves as N increases.  

To find a 95% (for example) CI for δ , one 
would first use the noncentral t distribution to 
find a 95% CI for λ . A CI for δ  can then be 
obtained by multiplying the limits of the interval 

for λ  by ( )1 2 1 2n n n n+ . The lower limit of 

the CI for λ  is the noncentrality parameter for 
the noncentral t distribution in which the 
calculated t statistic  

 

1 2 2 1

1 2

n n Y Y
t

n n S

⎛ ⎞−
= ⎜ ⎟+ ⎝ ⎠

 

 
is the .975 quantile. The upper limit of the 
interval for λ  is the noncentrality parameter for 
the noncentral t distribution in which the 
calculated t statistic is the .025 quantile of the 
distribution (see Steiger & Fouladi, 1997). 

The use of the noncentral t distribution is 
based on the assumption that the data are drawn 
from normal distributions. If this assumption is 
not true, there is no guarantee that the actual 
probability coverage for the interval will match 
the nominal probability coverage, as was 
demonstrated by Algina and Keselman (2003). 
In addition, as noted by Wilcox and Keselman 
(2003), when data are not normal, the usual 
population ES can be misleading because the 
(least squares) means and standard deviations 
can be affected by skewed data and by outliers. 
A better strategy, they maintain, is to replace the 

least squares values by robust estimates, such as 
trimmed means and Winsorized variances, and, 
accordingly, estimate a robust population ES. 

As an alternative to d, Algina and Keselman 
(2003) and Algina et al. (2005) (hereafter 
referred to as A&K) proposed  

 

t2 t1
R

W

Y Y
d

S

⎛ ⎞−
= ⎜ ⎟

⎝ ⎠
. 

 
(Remember, the .643 multiplier is not used.) 

The robust population ES is  
 

t2 t1
R

W

µ µδ
σ

⎛ ⎞−
= ⎜ ⎟

⎝ ⎠
, 

 
where tjµ  is the jth population 20% trimmed 

mean and Wσ  is the population analogue of 

WS . (See appendix 1.)  

As Algina and Keselman (2003) and Algina 
et al. (2005) indicated, an approximately correct 
CI for Rδ  can also be constructed by using the 

noncentral t distribution. However, as previously 
noted, this approach to forming intervals did not 
provide satisfactory probability coverage when 
data were obtained from nonnormal 
distributions. However, Algina et al. did find 
that probability coverage, under conditions of 
nonnormality, was generally reasonably good 
when critical values were obtained through a 
percentile bootstrap empirical sampling 
distribution, not from the noncentral t 
distribution.  

 
Adaptive Trimming Methods 

The theoretical background to the 
asymmetric trimming methods investigated by 
Keselman et al. (in press) is now discussed. 
Based on the work of Hogg (1974, 1982) and 
others, Reed and Stark (1996) defined seven 
adaptive location estimators based on measures 
of tail-length and skewness for a set of n 
observations. To define these estimators the 
measures of tail-length and skewness must first 
be defined. By adopting the notation of Hogg 
(1974, 1982) and Reed and Stark (1996), based 
on the ordered values, we let Lα =  the mean of 
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the smallest [ nα ] observations, where [ nα ] 
denote the greatest integer less than nα  and 

Uα = the mean of the largest [ ]nα  observations. 

When .05α = , and, therefore, ( ).05L  is the 

mean of the smallest [.05n] observations, B =  
the mean of the next largest .15n observations, 
C =  the mean of the next largest .30n 
observations, D =  the mean of the next largest 
.30n observations, and E =  the mean of the next 
largest .15n observations.  

Tail-length measures. Hogg (1974) defined 
two measures of tail-length, Q and 1Q , where 

 

( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )
.05 .05 .5 .5

1 .2 .2 .5 .5

Q U L U L  and 

Q U L U L .

= − −

= − −
 

 
Q and 1Q  can be used to classify symmetric 

distributions as light-tailed, medium-tailed or 
heavy-tailed. Q and 1Q  are location free 

statistics and, moreover, are uncorrelated with 
location statistics such as trimmed means (Reed 
& Stark, 1996, p. 12). According to Hogg and 
Reed and Stark, values of Q 2<  imply a light-
tailed distribution, ≤ ≤2.0 Q 2.6  a medium-
tailed distribution, 2.6 Q 3.2< ≤  a heavy-
tailed distribution and Q 3.2>  a very heavy-
tailed distribution. The cutoffs for 1Q  are: 

1Q 1.81<  (light-tailed), 11.81 Q 1.87≤ ≤  

(medium-tailed) and 1Q 1.87>  (heavy-tailed). 

Hogg (1982) introduced another measure of 
tail-length: 

 

( ) ( )( ) ( )3 .05 .05H U L E B= − − . 

 
With this measure, values of 3H 1.26<  

suggest that the tails of the distribution are 
similar to a uniform distribution, values of 1.26 
through 1.76 suggest a normal distribution and 
values greater than 1.76 suggest the tails are 
similar to those of a double exponential 
distribution. 
 
 

Measures of skewnesss 
Reed and Stark (1996) defined four 

measures of skewness as:  

( ) ( )( ) ( ) ( )( )
( )( ) ( )( )

( )( ) ( )( )
( )( ) ( )( )

2 .05 .25 .25 .05

1 .05 .05

2 1 n

5 1 n

Q U T T L ,

H U D C L ,

SK Y YMD YMD Y  and 

SK Y YM YM Y ,

= − −

= − −

= − −

= − −

 

where YMD is the median, YM is the arithmetic 
mean, (.25)T  is the .25- trimmed mean ( Tα ) 

given below and ( )1Y  and ( )nY  are, respectively 

the first and last ordered observations. 
According to Reed (1998), the α -trimmed 
mean is defined as 
 

( ) ( ) ( )
n k

i k n k 1
i k 1

1
T Y k n Y Y

n 1 2α α
α

−

− +
= +

⎡ ⎤= + − +⎢ ⎥− ⎣ ⎦
∑ . 

 
(In this definition a proportion, α , has been 
trimmed from each tail) and the accompanying 

Winsorized variance 2S  is defined as 
 

( )( )

( ) ( ) ( )α α α

α
−

− +
= +

=
− −

⎡ ⎤− + − + −⎢ ⎥
⎣ ⎦
∑

2
2

n k
2 2 2

i k n k 1
i k 1

1
S

n 1 1 2

Y T k Y T k Y T

 
where k [ n] 1α= + . 

Based on the former definitions of tail-
length and skewness, Reed and Stark (1996, p. 
13) proposed a set of adaptive linear estimators 
“that have the capability of asymmetric 
trimming.” These authors defined a general 
scheme for their approach as follows: 
1.  Set the value for the total amount of trimming 
from the sample, α . 
1) Determine the proportion to be trimmed 

from the lower end of the sample ( lα ) by 

the following proportion: 

( )l X X XUW UW LWα α ⎡ ⎤= +⎣ ⎦ , where 

XUW  and XLW  are the numerator and 
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denominator portions of the previously 
defined selector statistics (i.e., tail-length 
and skewness). 

2) The upper trimming proportion is then given 
by u lα α α= − . 

Based on this general schema, Reed and 
Stark (1996) defined seven hinge estimators, 
which are trimmed means: 

( )
( )
( )
( )

( )
( )
( )

1 1 1

3 3 3

2 2 2

1 1 1

2 2 2

5 5 5

l Q Q Q

1 l Q Q Q

3 l H H H

2 l Q Q Q

1 l H H H

2 l SK SK SK

5 l SK SK SK

1. HQ UW UW LW ,

2. HQ UW UW LW ,

3. HH UW UW LW ,

4. HQ UW UW LW ,

5. HH UW UW LW ,

6. HSK UW UW LW , and

7. HSK UW UW LW .

α α

α α

α α

α α

α α

α α

α α

⎡ ⎤= +⎣ ⎦

⎡ ⎤= +
⎣ ⎦

⎡ ⎤= +⎣ ⎦

⎡ ⎤= +⎣ ⎦

⎡ ⎤= +⎣ ⎦

⎡ ⎤= +
⎣ ⎦

⎡ ⎤= +
⎣ ⎦

 

 
Keselman et al. (in press), investigating 

Type I error rates and power of procedures for 
testing equality of two trimmed means when 
variances are not assumed to be equal, examined 
the Reed and Stark (1996) procedure with 
various values for α  because the literature 
varies on the amount of recommended 
(symmetric) trimming. Rosenberger and Gasko 
(1983) recommended 25% when sample sizes 
are small, though they thought generally 20% 
suffices. Wilcox (1997) also recommended 20%, 
and Mudholkar, Mudholkar and Srivastava 
(1991) suggested 15%. Ten percent has been 
considered by Hill and Dixon (1982), Huber 
(1977), Stigler (1977) and Staudte and Sheather 
(1990); results reported by Keselman, Wilcox, 
Othman and Fradette (2002) also support 10% 
trimming. 

Reed and Stark (1996) found, based on a 
simulation study, that .10T , .15T , 2HSK  and 

5HSK  were the most efficient estimators when 

the distribution was symmetric. When the 
distribution was asymmetric, they found that 
“HQ, 1HQ , 2HQ , 1HH , 2HSK  and 5HSK  

[were] consistently among the top four 

estimators, with 1HQ  and 2HQ  in the top 

three” (p. 661). 
According to Keselman et al. (in press), one 

can modify Reed and Stark’s (1996) tail-length 
and skewness measures for the multi-group 
problem and then apply the modified multi-
group measures to the hinge estimators. In 
particular, they indicated that each of the 
measures can be modified by taking weighted 
averages (in a manner analogous to the 
modifications of tail-length and symmetry 
measures suggested by Babu, Padmanaban and 
Puri, 1999) of each numerator and denominator 
term. For example, for the multi-group problem, 
where jn  represents the number of observations 

in each group, 1Q  and 2Q  can be defined as  

 

( ) ( )( ) ( ) ( )( )

( )( ) ( )( )

⎡ ⎤ ⎡ ⎤
= − −⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤
= − −⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

1 j j j j.2 .2 .5 .5
j j j j

2 j (.25) j j (.25) j.05 .05
j j j j

Q n U L n n U L n ,

 and

Q n U T n n T L n .

 
The other measures would be similarly modified 
and these multi-group measures of tail-length 
and skewness are the measures that are applied 
to the general scheme proposed by Reed and 
Stark (1996). 

Based on these multi-group tail-length and 
skewness measures, and their application to the 
hinge estimators, Keselman et al. (in press) 
reported that over the 288 empirical values they 
collected for each method investigated, in which 
they varied the total percent of data trimmed, 
sample size, degree of variance heterogeneity, 
pairing of variances and group sizes and 
population shape, five methods resulted in 
exceptionally good control of Type I error rates 
(HH3, HQ2, HH1, HSK2 and HSK5). With 
regard to the power to detect nonnull treatment 
effects, they found that HH3 was uniformly 
more powerful than the remaining ones. 
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Robust Estimation 
In this study, the methods for constructing 

CIs for a robust ES, defined by using robust 
measures of central tendency and variability are 
investigated. It is important to note that α -
trimmed means and Winsorized variances can be 
defined in a number of different ways (Hogg, 
1974; Reed, 1998; Keselman et al., in press; 
Wilcox, 2003). Suppose jn  independent random 

observations 
j1j 2 j n jY , Y , ,Y…  are sampled from 

population j ( j 1, 2= ). Let 

( ) ( ) ( )j1 j 2 j n j
Y Y Y≤ ≤ ≤�  represent the ordered 

observations associated with the jth group. The 
approach taken by Reed (1998) is based on the 
work of Hogg (1974).  For Hogg, the α -
trimmed mean is 
 

( ) ( ) ( )

jn g

i
i g 1

m 1 h Yα
−

= +
= ∑ , 

 

where α  is usually selected so that jg n α⎡ ⎤= ⎣ ⎦  

and j j jh n 2g n 2[n ]α= − = − . The standard 

error of ( )m α  that Hogg suggests is based on 

the work of Tukey and McLaughlin (1963) and 
Huber (1970) and, according to these authors, is 
estimated by 
 

( ) ( ) ( )mS SS h h 1α α= − , 

 

where ( )SS α  is the Winsorized sum of 

squares, defined as 
 

( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( )

α

α

α α

+

+

− − −

⎡ ⎤+ −
⎣ ⎦

⎡ ⎤+ − +
⎣ ⎦

⎡ ⎤ ⎡ ⎤+ − + + −
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

…

j j

2

g 1

2

g 2

2 2

n g 1 n g

g 1 Y m

Y m

Y m g 1 Y m .

 

 
When allowing for different amounts of 
trimming in each tail of the distribution, Hogg 
(1974) defines the trimmed mean as 
 

( ) ( ) ( )

j 2

1

n g

1 1 i
i g 1

m , 1 h Yα α
−

= +

= ∑ , 

 

where 1 j 1g n α⎡ ⎤= ⎣ ⎦  and 2 j 2g nα⎡ ⎤= ⎣ ⎦  and 

j 1 2h n g g= − − . Hogg suggests that the 

standard deviation of ( )1 2m ,α α  can be 

estimated as 
 

( ) ( ) ( )
1 2 1 2m ,S SS , h h 1α α α α= − , 

 

where ( )1 2SS ,α α  can be calculated as  

 

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

+

+

− −

−

+

−

⎡ ⎤+ −
⎣ ⎦

⎡ ⎤+ − +
⎣ ⎦

⎡ ⎤+ − +
⎢ ⎥⎣ ⎦

⎡ ⎤+ −
⎢ ⎥⎣ ⎦

⎧ ⎫⎡ ⎤− +
⎣ ⎦⎪ ⎪

⎨ ⎬
⎡ ⎤−⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭−

…

1

1

j 2

j 2

1

j 2

2

1 1 2g 1

2

1 2g 2

2

1 2n g 1

2

2 1 2n g

2

1 1 2g 1

2 1 2n g

j

g 1 Y m ,

Y m ,

Y m ,

g 1 Y m ,

g Y m ,

g Y m ,

n

α α

α α

α α

α α

α α

α α

 

Based on the preceding, our robust estimate 
of ES for asymmetrically trimmed data is 
defined as  

 

( ) ( )
( ) ( )

1 1 2 2 1 2
R

1 1 2 2 1 2

m , m ,
d

SS , SS ,

N 2

α α α α
α α α α

−
=

+
−

, 

 
 

where ( )j 1 2m ,α α  and ( )j 1 2SS ,α α  are the jth 

asymmetrically trimmed mean and sum of 
squares, respectively. (See Appendix 2.)  
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Methodology 
 

Probability coverage for seven ES statistics 
(based on seven hinge estimators: HQ, HQ1, 
HH3, HQ2, HH1, HSK2, and HSK5) was 
estimated for all combinations of the following 
four factors: (a) four values of total trimming, 
namely 10%, 15%, 20% and 25%, (b) 
population distribution (four cases from the 
family of g and h distributions), (c) sample size: 

1 2n n 20,  40,  60,  80,  and 100= = , and 

(d) population ES ( RPES δ= ) of 0, .2, .5, .8, 

1.1, and 1.2. The A&K statistic was also 
included, where the values of symmetric 
trimming investigated were 5%, 10%, 15% and 
20%.  

The data were generated from the family of 
g and h distributions (Hoaglin, 1985). 
Specifically, it was chosen to investigate four g 
and h distributions: 
 
(a) g h 0= = , the standard normal distribution 

( 1 2 0γ γ= = ), 

(b) g 0 and h .225= = , a long-tailed 

distribution ( 1 20, 154.84γ γ= = ), 

(c) g .76 and h .098= = − , a distribution 
with skew and kurtosis equal to that for an 
exponential distribution ( 1 22, 6γ γ= = ), and 

(d) g .225 and h .225= = , a long-tailed 

skewed distribution ( 1 24.90, 4673.80γ γ= = ). 

To generate data from a g and h distribution, 
standard unit normal variables ijZ  were 

converted to g and h distributed random 
variables via  

 

( ) 2
ij ij

ij

exp gZ 1 hZ
Y exp

g 2

− ⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
 

 
when both g and h were non-zero. When g was 

zero,
2
ij

ij ij

hZ
Y Z exp

2

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
. The ijZ  scores were 

generated by using RANNOR from SAS (1999). 
In particular, the following method to generate 
our data was used: 

1. The original ijY  data (for both groups) 

were generated from a desired 
population distribution (e.g., 
g .225 and h .225= = ). (NOTE: 

The original i2Y  data are not yet 

transformed) 

2. A bootstrap sample ( *
ijY ) was obtained 

from the original sample by sampling 

1n  observations with replacement from 

i1Y  and 2n  observations with 

replacement from i2Y . 

3. With the bootstrap data, we determined 

1α  and 2α  for the desired total 

trimming percentage (e.g., 15%) for 
each of the seven hinge estimators. 

4. The bootstrapped data for group 2 ( *
i2Y ) 

were then transformed according to 
*
i2 W RY σ δ+ × , where Wσ  depended on 

the hinge estimator, the total % of 
trimming, and the population distribution 
under investigation. For a particular 
population distribution and total % of 

trimming, Wσ  was determined prior to 

conducting the study. That is, 
1,000,000 observations were first 
generated from the population 
distribution in question and then the 
population trimming strategy was 
determined for each of the hinge 
estimators under the desired total % of 
trimming. The Wσ  values for the seven 

different hinge estimators were then 
determined by computing the 
Winsorized standard deviation of the 
1,000,000 observations, using the 
trimming strategies of each of the 
estimators.  

5. The transformed bootstrap data was 
then used to compute the trimmed 

means ( t1Y∗  and t2Y∗ ) and the pooled 

Winsorized standard deviation ( WS∗ ) 

for each of the 7 different hinge 
estimator methods, based on the 
trimming strategies previously 
determined.  
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6. For each estimator, the following was 

computed * t2 t1
R

W

Y Y
d

S

∗ ∗

∗

−
= . 

7. Steps 1 through 6 were repeated 600 
times. 

8. For each hinge estimator, the 600 

bootstrap ES estimates ( *
Rd ) were 

ranked and the upper and lower limits 
of the CIs were determined in the 
following manner. Letting l .025B,=  
rounded to the nearest integer, and 
u B l= − , an estimate of the .025 and 
.975 quantiles of the distribution of  Rd  

is 
( l 1)

*
Rd

+
and 

(u)

*
Rd .  

9. Finally, steps 1 through 8 were repeated 
5000 times. 

The nominal confidence level for all intervals 
was .95.  

 
Results 

 
Table 1 contains average probability coverage 
rates for the seven hinge estimator methods as 
well as A&K for setting intervals around the 
PES for the effects investigated. Bradley’s 
(1978) liberal criterion will be used to judge the 
robustness of the methods. 

Coverage probabilities within the interval 
.925-.975 are deemed well controlled, while 
those outside this range are regarded as 
substantially affected by an investigated 
effect(s). Values outside the interval will be 
demarcated with boldface type in the tables. The 
grand mean coverage probabilities were 
obtained over 480 conditions and most apparent 
is that the empirical values are not only 
contained in Bradley’s interval, but, moreover, 
are actually quite close to the nominal .95 value, 
with the largest deviation between nominal and 
empirical values equaling .004. Indeed, the 
range of empirical values extends from .946 to 
.949. Similarly, none of the remaining Table 1 
values fell outside the Bradley liberal criterion. 

Thus, by this standard of robustness, all 
hinge estimator methods for setting intervals 
around the robust PES can be regarded as not 
adversely affected by the effects of percentage 
of trimming, sample size, PES, and shape of 

distribution. Indeed, the number of times each of 
the methods’ empirical values fell outside the 
liberal interval were tabulated and it was found 
that, over the 3840 estimates (480 conditions X 
8 procedures), only 56 were not contained in the 
interval (less than 1.5% of the values!). 

Not surprisingly, 51 of these values occurred 
when n 20= ; the remaining five values 
occurred when n 40.=  From this tabulation it 
was also found that, of the hinge estimator 
procedures, only HSK2 and HSK5 never had a 
value outside the Bradley interval. However, if  
the n 20=  results are excluded, then HQ, HQ1, 
and HH3 can be added to this list of procedures 
that never had a value over the 480 conditions 
outside the Bradley interval. Also noteworthy is 
that all 480 of the A&K values were in the 
Bradley interval. 

Nonetheless, one can observe from the 
tabled values that there are variations in 
coverage probabilities due to the investigated 
effects. That is, it appears that coverage 
probabilities were closer to .95 when the: (a) 
percentage of total trimming was at least 20% 
(for A&K the empirical estimates were equal 
across percentages of symmetric trimming), (b) 
sample size was at least 80 per group, and (c) 
nonnormal distribution was not 
g .76 and h .098= = − . 

Accordingly, exemplars of these empirical 
coverage probabilities are presented in Tables 2-
5, where the four tables are for the four 
distributions investigated. When PES 0= , all 
empirical coverage probabilities (not tabled) 
were contained within Bradley’s (1978) interval 
across all sample size and population 
distributions investigated. In Tables 2-5, 28 of 
the 1152 empirical values ( 2.4%)�  were not 
contained in the .925-.975 interval. Twenty-five 
of the affected values occurred when data were 
obtained from the g .76 and h .098= = −  

distribution and when n 20=  (Table 4). 
The remaining three liberal values also 

occurred when n 20=  but in these instances 
the data were g .225 and h .225= =  
distributed. One should also notice that 
empirical values for the A&K procedure were 
always  in  Bradley’s  (1978) interval  across  the  
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Table 1. Summary Data for Estimated Coverage Probabilities for Nominal 95% Bootstrap 
Intervals 
 
Condition A&K HQ HQ1 HH3 HQ2 HH1 HSK2 HSK5 
Grand Mean  .949 .947 .948 .947 .947 .946 .948 .948 
% Trimming         
10  .943 .945 .944 .944 .942 .948 .948 
15  .946 .949 .946 .947 .946 .949 .948 
20  .949 .949 .948 .948 .947 .948 .948 
25  .949 .949 .948 .949 .948 .947 .948 
5 (Symmetric) .949        
10 (Symmetric) .949        
15 (Symmetric) .949        
20 (Symmetric) .949        
Sample Size         
20 .950 .939 .943 .937 .938 .936 .948 .949 
40 .951 .948 .950 .948 .948 .946 .949 .949 
60 .946 .949 .949 .949 .949 .948 .947 .947 
80 .950 .950 .950 .949 .950 .950 .948 .948 
100 .948 .950 .949 .950 .950 .950 .947 .947 
PES         
0 .946 .945 .945 .945 .947 .946 .946 .946 
0.2 .947 .946 .947 .946 .948 .947 .948 .948 
0.5 .949 .946 .947 .946 .947 .946 .947 .947 
0.8 .949 .948 .949 .947 .947 .946 .948 .948 
1.1 .951 .949 .950 .948 .948 .946 .949 .949 
1.4 .953 .948 .949 .947 .947 .944 .949 .948 
Distribution         
g=0/h=0 .947 .946 .946 .946 .947 .947 .946 .947 
g=0/h=.225 .951 .944 .946 .944 .941 .936 .946 .944 
g=.76/h=-.098 .947 .950 .950 .949 .950 .950 .950 .951 
g=.225/h=.225 .951 .949 .950 .948 .951 .951 .950 .950 

Notes: Based on definitions of tail-length and skewness, Reed and Stark (1996, p. 13) defined 
seven hinge estimators that have the capability of asymmetric trimming: HQ, HQ1, HH3, HQ2, 
HH1, HSK2, HSK5; Sample Size ( 1 2n n= ); PES-Population Effect Size; g X /h Y= =  

specifies a particular g and h distribution with specific values of skewness and kurtosis. 
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Table 2. Estimated Coverage Probabilities for Nominal 95% Bootstrap Intervals 
( g 0 & h 0= = ). 
 

Test 
PES n Trimming 

A&K HQ HQ1 HH3 HQ2 HH1 HSK2 HSK5 
0.2 20 5% .942        

  10% .943 .935 .935 .935 .938 .937 .939 .940 
  15% .944 .940 .941 .939 .942 .942 .941 .942 
  20% .945 .942 .943 .941 .944 .944 .942 .942 
  25%  .942 .942 .942 .944 .944 .942 .942 
 60 5% .940        
  10% .939 .945 .944 .945 .945 .945 .944 .944 
  15% .940 .946 .945 .945 .945 .945 .945 .945 
  20% .938 .946 .945 .946 .946 .946 .944 .945 
  25%  .945 .946 .945 .946 .946 .945 .946 
 100 5% .948        
  10% .949 .945 .944 .946 .946 .946 .945 .945 
  15% .948 .947 .946 .947 .947 .947 .946 .945 
  20% .947 .946 .945 .945 .947 .947 .946 .946 
  25%  .945 .945 .945 .946 .946 .946 .946 

0.8 20 5% .946        
  10% .950 .939 .939 .939 .940 .940 .943 .944 
  15% .951 .946 .947 .943 .946 .946 .946 .946 
  20% .953 .951 .951 .950 .950 .949 .949 .951 
  25%  .949 .950 .948 .952 .952 .950 .952 
 60 5% .943        
  10% .943 .947 .949 .949 .950 .950 .949 .949 
  15% .943 .949 .950 .950 .949 .949 .947 .947 
  20% .947 .951 .951 .950 .951 .951 .950 .951 
  25%  .950 .949 .950 .953 .953 .951 .952 
 100 5% .944        
  10% .944 .949 .949 .949 .949 .949 .949 .949 
  15% .945 .949 .949 .948 .948 .948 .947 .947 
  20% .945 .950 .950 .949 .949 .950 .949 .949 
  25%  .949 .948 .948 .948 .948 .947 .948 

1.4 20 5% .943        
  10% .951 .939 .939 .939 .940 .940 .942 .943 
  15% .952 .946 .950 .944 .947 .947 .949 .949 
  20% .954 .951 .948 .952 .952 .951 .954 .953 
  25%  .950 .951 .950 .954 .953 .953 .955 
 60 5% .945        
  10% .946 .947 .948 .947 .950 .951 .948 .947 
  15% .946 .948 .947 .948 .949 .949 .948 .947 
  20% .945 .951 .950 .949 .948 .948 .948 .948 
  25%  .950 .950 .949 .950 .950 .950 .950 
 100 5% .946        
  10% .949 .948 .949 .949 .949 .949 .948 .948 
  15% .949 .950 .950 .950 .949 .949 .948 .949 
  20% .950 .949 .951 .950 .950 .950 .947 .948 
  25%  .949 .949 .949 .949 .948 .950 .950  
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Table 3. Estimated Coverage Probabilities for Nominal 95% Bootstrap Intervals 
( g 0 & h .225= = ). 
 

Test 
PES N Trimming 

A&K HQ HQ1 HH3 HQ2 HH1 HSK2 HSK5 
0.2 20 5% .944        

  10% .950 .936 .937 .937 .934 .933 .942 .942 
  15% .949 .935 .946 .933 .943 .942 .946 .947 
  20% .946 .944 .947 .943 .946 .945 .946 .947 
  25%  .947 .947 .944 .948 .947 .945 .948 
 60 5% .942        
  10% .943 .948 .948 .948 .953 .952 .948 .948 
  15% .941 .950 .950 .950 .950 .951 .950 .949 
  20% .940 .948 .949 .948 .949 .948 .946 .946 
  25%  .949 .949 .948 .950 .950 .945 .947 
 100 5% .950        
  10% .951 .951 .950 .950 .949 .950 .946 .947 
  15% .950 .949 .948 .949 .948 .948 .948 .948 
  20% .950 .949 .948 .947 .949 .950 .949 .949 
  25%  .948 .947 .947 .949 .948 .949 .946 

0.8 20 5% .949        
  10% .959 .937 .937 .937 .935 .934 .946 .948 
  15% .958 .943 .953 .940 .944 .943 .952 .951 
  20% .958 .952 .953 .949 .950 .950 .955 .955 
  25%  .953 .953 .952 .954 .953 .955 .957 
 60 5% .953        
  10% .948 .949 .949 .947 .952 .952 .951 .951 
  15% .946 .951 .956 .951 .950 .952 .953 .952 
  20% .948 .957 .952 .955 .953 .953 .950 .950 
  25%  .954 .951 .954 .953 .953 .950 .952 
 100 5% .950        
  10% .946 .954 .955 .955 .958 .959 .953 .954 
  15% .944 .955 .954 .956 .953 .955 .953 .953 
  20% .947 .953 .950 .953 .953 .953 .951 .950 
  25%  .952 .951 .952 .951 .951 .943 .951 

1.4 20 5% .952        
  10% .965 .934 .933 .933 .929 .928 .948 .947 
  15% .963 .941 .958 .938 .939 .937 .954 .952 
  20% .963 .954 .946 .946 .943 .942 .957 .957 
  25%  .950 .948 .946 .949 .948 .962 .958 
 60 5% .960        
  10% .955 .950 .947 .945 .954 .951 .956 .957 
  15% .951 .949 .959 .948 .950 .951 .954 .954 
  20% .949 .960 .953 .957 .954 .953 .952 .953 
  25%  .959 .953 .955 .954 .954 .950 .953 
 100 5% .956        
  10% .955 .957 .956 .956 .959 .959 .954 .954 
  15% .953 .954 .951 .953 .957 .957 .951 .952 
  20% .950 .956 .952 .952 .954 .954 .953 .953 
  25%  .954 .954 .954 .954 .955 .935 .951  
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Table 4. Estimated Coverage Probabilities for Nominal 95% Bootstrap Intervals 
( g .76 & h .098= = − ). 
 

Test 
PES N Trimming 

A&K HQ HQ1 HH3 HQ2 HH1 HSK2 HSK5 
0.2 20 5% .940        

  10% .946 .927 .927 .927 .926 .926 .943 .943 
  15% .947 .932 .941 .932 .930 .929 .946 .946 
  20% .947 .941 .942 .939 .935 .932 .945 .946 
  25%  .943 .944 .942 .940 .935 .945 .945 
 60 5% .936        
  10% .938 .944 .948 .944 .944 .938 .947 .948 
  15% .938 .948 .947 .949 .945 .944 .946 .947 
  20% .938 .948 .949 .949 .949 .946 .948 .947 
  25%  .947 .949 .949 .948 .947 .949 .949 
 100 5% .948        
  10% .944 .950 .949 .950 .947 .946 .949 .948 
  15% .948 .949 .950 .950 .949 .948 .949 .949 
  20% .949 .950 .949 .948 .951 .949 .948 .947 
  25%  .950 .948 .948 .950 .949 .947 .948 

0.8 20 5% .934        
  10% .948 .909 .914 .909 .905 .895 .940 .941 
  15% .948 .921 .934 .922 .912 .906 .948 .949 
  20% .950 .934 .939 .935 .921 .909 .948 .949 
  25%  .939 .942 .941 .926 .917 .951 .948 
 60 5% .949        
  10% .949 .946 .947 .946 .941 .933 .948 .948 
  15% .944 .948 .947 .951 .946 .941 .947 .947 
  20% .944 .950 .950 .951 .949 .943 .945 .941 
  25%  .951 .951 .951 .947 .947 .945 .941 
 100 5% .946        
  10% .948 .952 .950 .951 .954 .948 .946 .947 
  15% .945 .949 .949 .950 .951 .952 .946 .944 
  20% .946 .948 .947 .947 .947 .949 .944 .936 
  25%  .947 .948 .946 .949 .949 .941 .937 

1.4 20 5% .929        
  10% .957 .903 .907 .903 .892 .878 .942 .943 
  15% .953 .912 .932 .913 .905 .894 .955 .954 
  20% .956 .931 .939 .931 .917 .898 .956 .952 
  25%  .938 .945 .938 .924 .911 .948 .942 
 60 5% .955        
  10% .953 .943 .951 .942 .939 .921 .944 .946 
  15% .950 .952 .951 .953 .944 .938 .948 .943 
  20% .949 .953 .952 .953 .948 .940 .944 .933 
  25%  .951 .954 .952 .950 .946 .939 .932 
 100 5% .953        
  10% .952 .951 .951 .949 .946 .935 .953 .953 
  15% .952 .950 .950 .951 .949 .945 .952 .945 
  20% .951 .950 .951 .953 .952 .944 .948 .932 
  25%  .947 .953 .950 .947 .948 .936 .931  
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Table 5. Estimated Coverage Probabilities for Nominal 95% Bootstrap Intervals 
( g .225 & h .225= = ). 
 

Test 
PES N Trimming 

A&K HQ HQ1 HH3 HQ2 HH1 HSK2 HSK5 
0.2 20 5% .946        

  10% .951 .929 .930 .930 .932 .931 .943 .944 
  15% .950 .931 .944 .930 .941 .940 .946 .947 
  20% .949 .941 .946 .938 .946 .944 .948 .949 
  25%  .947 .947 .945 .949 .948 .946 .947 
 60 5% .944        
  10% .942 .946 .946 .945 .948 .948 .948 .948 
  15% .942 .947 .948 .949 .951 .951 .947 .948 
  20% .939 .949 .950 .950 .953 .953 .947 .947 
  25%  .950 .950 .950 .952 .952 .946 .946 
 100 5% .948        
  10% .950 .950 .951 .952 .952 .953 .947 .948 
  15% .949 .951 .948 .950 .952 .952 .948 .948 
  20% .950 .950 .949 .949 .950 .951 .950 .950 
  25%  .950 .947 .948 .948 .948 .950 .950 

0.8 20 5% .950        
  10% .957 .926 .928 .928 .932 .931 .943 .944 
  15% .956 .934 .950 .934 .944 .943 .949 .951 
  20% .956 .947 .951 .942 .949 .947 .953 .953 
  25%  .948 .948 .946 .954 .952 .955 .955 
 60 5% .955        
  10% .949 .949 .949 .947 .950 .950 .951 .951 
  15% .947 .950 .955 .952 .955 .957 .948 .948 
  20% .945 .957 .953 .957 .954 .957 .952 .952 
  25%  .956 .953 .955 .956 .954 .953 .952 
 100 5% .949        
  10% .949 .954 .956 .956 .956 .955 .951 .951 
  15% .946 .956 .952 .954 .954 .956 .950 .951 
  20% .948 .954 .951 .953 .951 .954 .950 .951 
  25%  .951 .950 .949 .951 .951 .950 .950 

1.4 20 5% .950        
  10% .965 .924 .926 .926 .924 .923 .946 .947 
  15% .964 .930 .955 .927 .939 .940 .954 .952 
  20% .963 .950 .948 .939 .946 .944 .958 .955 
  25%  .953 .945 .943 .953 .950 .957 .959 
 60 5% .961        
  10% .955 .949 .948 .944 .951 .949 .953 .953 
  15% .952 .951 .961 .949 .956 .958 .952 .952 
  20% .951 .960 .958 .961 .955 .958 .951 .949 
  25%  .963 .956 .956 .957 .958 .953 .951 
 100 5% .958        
  10% .957 .957 .957 .955 .957 .958 .954 .954 
  15% .952 .957 .955 .957 .956 .958 .952 .953 
  20% .952 .956 .955 .956 .953 .956 .953 .952 
  25%  .954 .954 .956 .956 .956 .951 .952  
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Table 6. Ranks 
 

N Test PES=0 PES=.2 PES=.5 PES=.8 PES=1.1 PES=1.4 Total 
20 HQ 1  2 5 6 3 6 23 
  HQ1 5 5 9 8  7 9 43 
  HH3 0 0 3 3 4 3  13 
  HQ2 6 4 8 7 4 5  34 
  HH1 4 3 7 6 6  5 31 
  HSK2 7  8 12  10 10 8 55 
  HSK5 12 9 13 10 10 7 61 
  Total 35 31 57 50 44 43 260 
                  

40 HQ 5  11 10 7 7 8  48 
  HQ1 9 15 12 10 11 13 70 
  HH3 7  13 13 5 10 10 58 
  HQ2 8 5  7 9 8 11 48 
  HH1 9 6  6 5 9 8 43 
  HSK2 6  12 15 10 13 11 67 
  HSK5 7 12  15 9 9 8 60 
  Total 51 74 78 55 67 69 394 
                  

60 HQ 14 14 8 12 8 10 66 
  HQ1 13 15 12 14 10 11  75 
  HH3 13 15 9 10 8 6 61 
  HQ2 12 14 10 10 9 10 65 
  HH1 10 13 8 9 11 8  59 
  HSK2 9 10 3 14  7 9 52 
  HSK5 11 13 4  13  9 8 58 
  Total 82 94 54 82 62 62 436 
                  

80 HQ 7 12 13 9  10 9 60 
  HQ1 3 16  12  11  13  10  65 
  HH3 8 16 15 11 8  11 69 
  HQ2 14 9 8 10 12  14  67 
  HH1 11 8  6 10 9 9 53 
  HSK2 2 16 16  8 12 13  67 
  HSK5 4 14 14 9 11 12 64 
  Total 49 91 84 68 75 78 445 
                  

100 HQ 12 16 12 14 9  9 72 
  HQ1 12 14  11 15 13  14 79 
  HH3 13 14  13 12 10 11 73 
  HQ2 16 15 11 12 10 9 73 
  HH1 16 14 10 11 9 7 67 
  HSK2 14 11  1 11 12 11 60 
  HSK5 13 11  1 12 13 12  62 
  Total 96 95 59 87 76 73 486 
                  
  GT 313 385 332 342 324 325 2021  
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three tables. (This is expected given the findings 
we previously enumerated.) One additional point 
important to mention is that the HSK2 and 
HSK5 hinge estimators methods as well as the 
A&K method resulted in well controlled 
coverage probabilities for the conditions where 
the affected procedures did not; that is, their 
coverage probabilities were not affected even 
though sample size was small ( 1 2n n 20= = ) 

and data were g .76 and h .098= = −  
distributed, for any percentage of total trimming. 

Based on the preceding descriptions of our 
results, it would be difficult to try to pick out the 
‘best’ one, two, or three methods for CIs around 
the robust PES. Indeed, Table 1 summary results 
indicate that all empirical values for all 
procedures were contained in the .925-.975 
interval and accordingly, based on these results 
and the generally robust findings reported in 
Tables 2-5 (and those not tabled), specific 
recommendations would be challenging, and 
perhaps somewhat arbitrary, to make. 
Nonetheless, applied researchers usually like 
guidance from quantitative researchers regarding 
our recommendation of ‘best’ choice of 
procedure for their analyses. Accordingly, an 
even finer examination of our data was made. 

In our second phase of analyses, the three 
hinge estimator methods for setting intervals 
having coverage probabilities closest to .95 were 
located; this was done for each combination of 
sample size, population distribution, total 
percentage of trimming and PES. Hinge 
estimator methods having identical empirical 
coverage probabilities received the same rank 
(either 1-closest, 2-next closest, or 3-third 
closest). Preferred ranks were given to 
deviations that were above .95 as opposed to 
below .95. Thus, if procedure ‘A’ resulted in a 
.951 coverage probability while procedure ‘B’  

 
 

 
 

had coverage probability of .949, procedure A 
received the better rank -- the preference was for  
conservative rather than liberal values. Finally, 
any value that did not fall into a stringent 
criterion [( 12  for 1 .95ασ α−± − = ) i.e., .945-

.955] was excluded from ranking.  
Accordingly, in Table 6 the total number of 

top three rankings as a function of sample size 
and PES for the seven hinge estimator ES 
intervals are presented. What one can also see 
from Table 6 is that: (a) the total number of top 
three rankings, not surprisingly, increased with 
the size of sample; for 

1 2n n 20,  40,  60, 80,  and 100= = , the 

total number of top three rankings was 260, 394, 
436, 445, and 486, respectively; (b) the 
procedures were most disparate (range=48) from 
one another in terms of accuracy (i.e., number of 
top three rankings) when 

1 2n n 20 and 40 = = and were much more 

similar to one another when 

1 2n n 60, 80, and 100= = ; and (c) the 

number of top three rankings increased with PES 
up until PES .2=  and then remained almost 
the same for PES .5-1.4=  Finally, the 
numbers presented in Table 6 and summarized 
in Table 7 indicate that HQ1 had the greatest 
number (332) of top three rankings while HSK2 
and HSK5 had the second and third most top 
three rankings (301 and 305, respectively). 

 
Discussion 

 
Algina and Keselman (2003) and Algina et al. 
(2005) compared two estimates of ES and 
associated CIs in an independent two-groups 
design, in which either least squares or robust 
estimators were used and where the critical 
values  used   in  computing   the   interval  were  
 
 

Table 7. Total Number of Top Three Rankings for Each Test 
 

HQ HQ1 HH3 HQ2 HH1 HSK2 HSK5 
269 332 274 287 253 301 305  
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based on either a theoretical or bootstrap 
distribution. The procedures were compared 
under different conditions of nonnormality and 
for various sample sizes and magnitudes of PES. 
It was found that probability coverage for the CI 
was only controlled when the interval used 
robust estimators (i.e., trimmed means and 
Winsorized variances) and the critical values of 
the interval were obtained via a bootstrap 
empirical distribution. The authors used a priori 
2 100α× % symmetric trimming to remove the 
biasing effects of skewed data and/or outlying 
values and only investigated .20α = . 

In an unrelated study, Keselman et al. (in 
press) found that tests for treatment group 
equality based on asymmetrically obtained 
trimmed means and Winsorized variances, 
resulted in exceptionally good Type I error 
control and power to detect effects in nonnormal 
heterogeneous one-way models. Consequently, 
it is believed that it would be possible to obtain 
more accurate probability coverage for intervals 
of ES in nonnormal models if the ES statistic 
was based on asymmetrically trimmed data. 
Accordingly, a Monte Carlo investigation was 
conducted to probe this hypothesis, varying 
population shape, magnitude of PES, sample 
size, and total percentage of trimming.  

The results from the investigation clearly 
suggest that coverage probabilities for robust ES 
intervals were very well controlled under the 
conditions of nonnormality that were 
investigated. That is, only 56 of the 3840 
empirical coverage probabilities (less than 1.5% 
of the values) did not fall within Bradley’s 
(1978) criterion of .925-.975. And, these liberal 
values (i.e., intervals were too narrow), almost 
exclusively occurred when sample size was at 
the minimum value ( 1 2n n 20= = ) 

investigated. However, coverage probabilities, 
with the exception of two cases, were always 
within the Bradley interval once sample size 
reached our medium sample size condition 
( 1 2n n 60= = ). Thus, based on these findings, 

any of the hinge estimators for setting a CI 
around a robust parameter of ES are 
recommended. 

Nonetheless, in the interest of trying to 
separate the procedures in order to provide a 
more specific recommendation for researchers 

intending to set an interval around an ES statistic 
in a two-groups paradigm, a comparison of the 
hinge estimator ES intervals with a more 
stringent criterion was made, a criterion where a 
procedure would be judged robust if the 
empirical estimate did not fall outside a .944-
.956 interval ( 12  for 1 .95ασ α−± − = ). Based 

on this more stringent criterion, the three hinge 
estimator methods were located having 
empirical coverage probabilities closest to .95. 
Specifically, it was found that HQ1, HSK2, and 
HSK5 had, respectively, the highest number of 
top three rankings: 332, 301, and 305. 
Accordingly, from the set of seven hinge 
estimator ES interval estimation procedures, any 
one of these three methods are recommended. 
Keselman et al. (in press) also recommended 
these three procedures for comparing treatment 
group trimmed means. Furthermore, the results 
suggest that, in general, one needs to have group 
sizes larger than 20 and that one can obtain good 
coverage with as little as 15% total trimming. 
The reader should remember however, that the 
differences between the empirical probabilities 
among these methods generally occurred in the 
third decimal place, and therefore, as stated, any 
of the seven hinge estimator approaches to 
setting an interval around the PES would be 
satisfactory, and in particular, much better than 
the usual approach of setting an interval around 
the nonrobust PES.  

It was also found that a priori symmetric 
trimming provided very accurate probability 
coverage. All empirical coverage probabilities 
were within the Bradley (1978) liberal interval. 
Based on the summary values presented in Table 
1, one can also note that the average 
probabilities are very tightly bunched around the 
target value of .95. Additionally, it is worth 
noting that, on average, researchers can obtain a 
very precise interval when adopting 5% 
symmetric trimming. Accordingly, the choice 
between a priori fixed trimming and asymmetric 
trimming methods might rest on ones comfort 
quotient for fixing the trimming rate prior to an 
examination of the data versus letting the data 
determine whether data should be trimmed in 
each tail of the data distribution and by what 
amount. 
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The comments provided by Keselman et al. 
(in press) regarding the choice of a best method 
of analysis are echoed. First, it needs to be 
repeated that no one method will be universally 
best. It could be that, at times, probability 
coverage for the classical method (i.e., Cohen’s 
ES statistic) could provide a reasonable CI for 
ES. And as Wilcox and Keselman (2003) had 
noted, there is no way of knowing a priori 
which approach will be best. As they 
recommend, one could compute both 
approaches, that is, the classical approach and 
one of the robust methods enumerated in this 
paper. When the conclusions are the same, one 
can be comfortable with this common finding, 
otherwise, a robust approach to setting a CI for 
ES is recommended. 

Keselman et al. noted that researchers 
should always carefully examine graphs of their 
data before proceeding with a particular method 
of analysis. Indeed, as many others have 
previously noted, a careful examination of 
outlying values can provide researchers with 
insights into the phenomenon under 
investigation. 
 It is reiterated that the parameterδ has a 
serious shortcoming because it is defined by 
using the usual population mean and standard 
deviation. These least squares parameters are not 
robust.  While there are several criteria for 
assessing robustness of a parameter: qualitative 
robustness, quantitative robustness, and 
infinitesimal robustness (see Wilcox, 2005, 
Section 2.1 for a description of these criteria), 
the general notion is that a parameter is not 
robust if a small change in the population 
distribution can strongly affect the parameter. It 
can be shown that the least squares mean and 
variance are not robust (see, for example, 
Staudte and Sheather, 1990) when judged by any 
one of these three criteria. Accordingly, many 
authors, including us, subscribe to the position 
that inferences pertaining to robust parameters 
are more valid than inferences pertaining to the 
usual least squares parameters when dealing 
with populations that are nonnormal (e.g., 
Hampel, Ronchetti, Rousseeuw & Stahel, 1986; 
Huber, 1981; Staudte & Sheather, 1990; Wilcox 
& Keselman, 2003).  

 By itself, Cohen’s δ , or any other ES 
(i.e.,δR ) for that matter, has little value in 

assessing whether or not a mean difference is 
large or small. What is required is experience in 
applying the ES. For example, as part of a 
review of the power of studies in abnormal and 
social psychology, Cohen (1962) suggested 
0.25, 0.50, and 1.00 as small, medium, and large 

s,δ  respectively. In defense of these values, 
Cohen argued that the values “were chosen to 
seem reasonable.” (p. 146) and cited three 
research studies on group differences in IQ 
research as justification for these guidelines. 
Cohen was clearly aware of the provisional 
nature of these guidelines and subsequently 
(Cohen, 1969) modified the guidelines to 0.20, 
0.5, and 0.80, as small, medium, and large s,δ  
respectively, and again emphasized that he 
regarded these to be reasonable based on his 
experience with research in the behavioral 
sciences.  Cohen’s guidelines, and his 
justification for them, illustrate an important 
point: Understanding of an ES measure will 
increase through experience with that measure. 
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Appendix 1 
 

One question that might be asked about Rδ  is 

whether it is necessary to multiply 
 

t2 t1
R

µ µδ
σ
−=
W

 

 
 
 
 
 
 
 
 

by .643 to obtain a robust parameter. The answer 
is, of course, no. When the multiplier is not 
used, the difference between the trimmed means 
is divided by the Winsorized standard deviation. 
By contrast, when using the multiplier, the 
difference between the trimmed means is 
divided by a rescaled Winsorized standard 

deviation ( )Wi.e., .643σ . 

 The same multiplier would be applied to the 
sample ES and, as a result, regardless of 
whether the multiplier is used, coverage 
probability is the same. Therefore, our results 
have relevance to researchers who prefer to 
include the multiplier and researchers who 
prefer to exclude the multiplier. Incorporating 
the multiplier requires a different value for 
different levels of trimming. The multipliers for 
10%, 15%, and 25% trimming would be 

1 .824 , 1 .734,  1 .537 , respectively. 
 

Appendix 2 
 

Huber (1972) and Hogg (1974) noted that the 
best way of conceptualizing the unknown 

parameter ( )1 1,θ α α  is that it is the population 

counterpart of ( )1 1m ,α α . Hogg (1974, p. 920) 

indicated that in the one-sample case the statistic 

1 21 2 1 2 m( , )[ ( , ) ( , )] / s α αα α θ α α−m  has an 

approximate t-distribution with h -1 degrees of 
freedom if trimming is reasonably symmetric 
about the mode of a unimodal skewed 
distribution. Moreover, he noted that, even for 
fairly skewed situations, the distribution of this 
statistic will “probably be closer to this 
approximating distribution than the ratio 

m( )[ ( ) ] / s αα θ−m , which is the statistic based 

on a symmetrically trimmed mean. (p. 920)”. 
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A Single, Powerful, Nonparametric Statistic for  

Continuous-data Telecommunications Parity Testing 
 

                                                                                                                 
 
                                       
Since the enactment of the Telecommunications Act of 1996, extensive expert testimony has justified use of 
the modified t statistic (Brownie et al., 1990) for performing two-sample hypothesis tests comparing Bell 
companies’ CLEC and ILEC performance measurement data (known as parity testing). However, Opdyke 
(Telecommunications Policy, 2004) demonstrated this statistic to be potentially manipulable and to have 
literally zero power to detect inferior CLEC service provision under a wide range of relevant data conditions. 
This article develops a single, nonparametric statistic that is easily implemented (i.e., not computationally 
intensive) and typically provides dramatic power gains over the modified t while simultaneously providing 
much better Type I error control. The statistic should be useful in a wide range of quality control settings. 
 
Key words: Telecommunications Act, ILEC, CLEC, Location-scale, Mean-variance, Maximum test 
 

 
Introduction 

 
The major goal of the Telecommunications 

Act of 1996, the most sweeping communications-
related public policy to be enacted by Congress in 
over half a century (since the Telecom Act of 1934 
– see http://www.fcc.gov/telecom.html) has been 
to deregulate local telephone service in the United 
States, making it a fully competitive economic 
market. To accomplish this, the Act takes a carrot-
stick approach: it allows the Bell companies (the 
incumbent local exchange carriers, or ILECs, now 
only   BellSouth,    Qwest,  SBC,  and Verizon)  to  
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enter into the previously deregulated long distance 
market, something they had been prohibited from 
doing because of their status as government 
regulated monopolies. This provides ILECs with 
the potentially lucrative opportunity to provide 
one-stop shopping telephone service to their 
customers, bundling all of their clients’ 
telecommunications needs into a single package 
from a single service provider.  

In return for this carrot, the Act’s stick 
requires that the ILECs first must do two things: 
(a) allow their competitors (competitive local 
exchange carriers, or CLECs, the large long 
distance telephone companies like Sprint, as well 
as numerous smaller companies) access to and use 
of their networks, in some cases to resell services 
at discounted wholesale rates, and (b) provide the 
CLECs’ customers with service “at least equal in 
quality to” the service they provide to their own 
customers (Telecommunications Act of 1996, Pub. 
LA. No. 104-104, 110 Stat. 56 (1996), at §251 (c) 
(2) (C); and see §251 (c) (2) (B) for the 14 point 
“COMPETITIVE CHECKLIST” of conditions 
that ILECs must satisfy to meet the at-least-equal 

J.D. Opdyke 
DataMineIt 
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service provision standard). This at-least-equal 
service provision is the necessary enforcement 
mechanism for ensuring that network access (a) 
occurs in a meaningful way that truly promotes the 
goal of market competition.  

To explain by way of example, if it takes a 
week on average for a CLEC customer to have a 
line installed or repaired by the ILEC, but only a 
day on average for an ILEC customer to receive 
the same service, no customers would ever switch 
from the ILEC to any of the CLECs, and markets 
could never become competitive. The mechanism 
for properly enforcing the at-least-equal service 
provision depends on the appropriate utilization of 
the extensive operations support services (OSS) 
performance measurement data that ILECs record 
when providing service to both CLEC and ILEC 
customers (e.g., how fast is a phone line installed; 
how fast is a line repaired; how often are repairs 
made within a certain number of days or by a 
preset due date, etc.). This utilization has taken the 
form of monthly statistical parity testing – 
applying statistical tests to the monthly CLEC and 
ILEC service data to compare the two groups and 
make sure that service is, in fact, at least equal for 
CLEC customers (i.e., in parity). 

The specific statistical tests used in OSS parity 
testing depend on a number of factors, and 
foremost among these are the hypotheses being 
tested. The appropriate null and alternate 
hypotheses for OSS parity testing are listed below 
(1), in terms of both average service (the mean) 
and the variability of the service provided (the 
variance) (see Opdyke, 2004, p. 3-4, for a detailed 
explanation of why precisely these hypotheses are 
required in this setting). 
 
                Ho: C Iµ µ≤  AND 2 2

C Iσ σ≤     
                                   vs.                                   (1) 
                 Ha: C Iµ µ>  OR 2 2

C Iσ σ>  
 

A statistical test of this pair of joint 
hypotheses will determine, with a specified level 
of certainty, whether service to CLEC customers 
takes no longer on average than service to ILEC 
customers (i.e., C Iµ µ≤ ), and whether the 
variability of this service is no larger than that 
characterizing the service provided to ILEC 
customers (i.e., 2 2

C Iσ σ≤ ) (see the FCC’s Notice of 

Proposed Rulemaking, 04/16/98, APPENDIX B, 
p.B2, for some of the early impetus for testing 
both means and variances). If the statistical test 
determines, with a specified level of certainty, that 
both of these conditions hold, service is deemed to 
be at least equal, or in parity. If either condition is 
determined, with a specified level of certainty, to 
be violated, then service is considered out of 
parity, or in disparity.  

Findings of disparity carry consequences for 
the ILEC(s) in the form of fines paid to the 
CLECs, and sometimes to the relevant state(s). 
These fines, or remedies, can be large (US$ 
millions), and extensive and/or prolonged findings 
of disparity can lead to revocation of an ILEC’s 
approval to provide long distance service. 
Therefore the choice of appropriate, if not the best 
statistics for OSS parity testing is very important, 
not only for the individual firms involved, but also 
for the entire industry. And of course, the best 
statistics simply are those that, under a classical 
Neyman-Pearson hypothesis-testing paradigm, are 
most powerful under the widest range of relevant 
data conditions, given robust and reasonable Type 
I error control. 

In addition to the hypotheses being tested, the 
type of data being compared determines which 
statistical tests can and should be used. 
Telecommunications OSS performance metrics 
contain three types of data, and each is listed 
below with an example of a corresponding 
performance metric: 

 
• binary data – the percentage of repairs 

completed on time, or within a certain number 
of days 

• count data – the number of troubles on a 
telephone line within a specified time period 

• continuous data – the average time it takes to 
install a phone line 

 
For continuous data metrics, the modified t 
(Brownie et al., 1990) has been supported in 
extensive expert testimony proffered by both 
CLECs and ILECs, as well as in Opinions and 
Rulings by various regulatory bodies, as an 
appropriate statistic to test the relevant joint 
hypotheses above (see Opdyke, 2004, for 
extensive citations; all but one of the four major 
ILEC performance and remedy plans nationwide 
utilizes the modified t as a primary test statistic).  
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and degrees of freedom (df) = nI – 1. 
 However, Opdyke (2004) demonstrated, via an 
extensive simulation study and an analytic 
derivation, that because the modified t follows 
neither the standard normal nor the student’s t 
distribution as previously surmised in seven years’ 
of expert testimony (see Opdyke, 2004, for 
extensive citations), it potentially remains 
vulnerable to what has been termed gaming – 
intentional manipulation of its score to effectively 
mask disparity. But far more importantly, the 
modified t also was shown to be virtually 
powerless to detect inferior CLEC service 
provision under a wide range of relevant data 
conditions (i.e., larger CLEC variability under 
equal or better average service).  

Instead, Opdyke (2004) proposed the 
collective use of several other easily-implemented 
statistical procedures that typically provide 
dramatic power gains over the modified t. 
Selection of a specific statistic among those 
proposed depends on the relative sizes of the two 
samples being compared, and on whether the 
particular performance metric being tested is long-
tailed or short-tailed (this is the distributional 
characteristic known as kurtosis). Years of OSS 
data now exist since the Act was passed to 
establish such distributional characteristics as 
population parameters, not as unknowns requiring 
an additional statistical test. However, even though 
the FCC itself identified “data distribution, sample 
size and other characteristics inherent in the data” 
(FCC NPRM, 11/08/01, p. 37) as factors relevant 
to the choice of the statistical tests used in parity 
testing, one expressed concern regarding Opdyke’s 
(2004) approach is that the potential use of 
different statistics for different performance 
metrics (and sample sizes) is somehow too 
complex for implementation in parity testing.  

This article addresses this concern by building 
on the results and recommendations of Opdyke 
(2004) to develop a single, nonparametric, and 

generally powerful statistic for use with all 
continuous–data performance metrics. As shown 
below, the proposed statistic 1) maintains 
reasonable Type I error control; 2) is always either 
nearly as powerful as Opdyke’s (2004) multiple 
procedures, or almost as often, even more 
powerful; 3) typically provides dramatic power 
gains over the modified t; 4) is easily implemented 
and not computationally intensive; and 5) should 
be widely applicable and useful in other quality 
control settings as well. 
 

Methodology 
 
Previously Developed Alternatives to the  
modified t 
Under the data conditions relevant to OSS parity 
testing, Opdyke (2004) found that conditional 
statistical procedures combining either O’Brien’s 
(1988) generalized t test (OBt) or his generalized 
rank sum test (OBG) with either of two 
straightforward tests of variances (Shoemaker’s, 
2003, F1 test, or the modified Levene test of 
Brown and Forsythe, 1974) were by far the most 
powerful procedures of the over twenty statistics 
that were studied. Their combined use is 
conditioned on the relative sizes of the two sample 
means, as shown below: 

 
Table 1. Conditional Statistical Procedures, 
Opdyke (2004)  

Conditional 
statistical 
procedure 

if C IX X> , 
use… 

If C IX X≤  or OB fails 
to reject Ho:, use… 

OBtShoe         OBt Shoemaker’s F1 

OBtLev         OBt modified Levene 

OBGShoe         OBG Shoemaker’s F1 

OBGLev         OBG modified Levene 

(Note: see Appendix for the calculation of these 
statistics) 

Conditioning on the sample means as shown 
in Table 1 inflates the size of these tests, so an ad 
hoc p-value adjustment of p-value = (5/3 * p-
value) was used to maintain Type I error control 
(see Opdyke, 2004, for details). Even after such an 
adjustment, these tests maintain reasonable, if not 
impressive power under normal and short-tailed 
(uniform) data, and somewhat less power under 
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long-tailed (double exponential) data, although 
still far more power than the modified t under 
most of these conditions (Opdyke, 2004, p. 20-26).  

The conditions under which each of these four 
tests is most powerful and should be used are 
summarized in Table 2 below. Notably skewed 
data, however, first should be transformed, as 
required by one of the largest state PUCs and 
strongly endorsed by another of the largest state 
PUCs (CPUC Interim Opinion, 2001, Appendix J; 
CPUC Opinion (2002), Appendix J, Exhibit 3 p.2-
3; Before the Texas PUC – SBC Testimony, 
Dysart & Jarosz, 2004; and for optional use with 
some metrics, SBC Comments, 2002, p.48, 56). 

Unfortunately, all of the statistics examined 
for or used in OSS parity testing suffer from 
sometimes severe erosions in power under 
skewness (see Opdyke, 2004, for relevant 
simulation results; The California Public Utilities 
Commission also addresses this issue – CPUC 
Interim Opinion, 2001, p. 112-115, 136, 142, 145, 
& Appendix J, and CPUC Opinion, 2002, p. 74, 
84, & Appendix J). Because these metrics are 
widely cited as being lognormal (which is 
typically highly skewed – see CPUC Interim 
Opinion, 2001, Appendix J, and MCI Worldcom’s 
Performance Assurance Plan: The SiMPL Plan, by 
George S. Ford, Ph.D., p.5), a logarithmic 
transformation toward symmetry should provide at 
least some needed power to detect disparity 
without, in all practicality, causing distortions in 
the comparison of CLEC and ILEC service 
provision. 

Table 2. Conditional Statistical Procedures, 
Opdyke (2004) 

Sample 
sizes 

 
Normal 
& Short-

tailed 

Long-
tailed 

Skewed 

  OBt OBG  

Bal. Shoe OBtShoe OBGShoe Transform 

Unbal. Lev OBtLev OBGLev Transform 

Once transformed (if necessary), the 
performance metric is tested with one of the four 
combined procedures listed in Table 2. This is 
clear-cut if the sample sizes and distributional 
characteristics of the metrics being tested 
unambiguously fall neatly into these four cells (for 
example, if a metric is at least as short-tailed as the 

normal distribution, kurtosis = 3, and has very 
unbalanced sample sizes, use OBtLev).  

However, further simulations that parallel 
those of Opdyke (2004) are required to determine 
the tipping points defining exactly when to use 
each of these four statistics. Although these 
tipping point simulations would be straightforward 
to perform, one expressed concern about the use of 
Table 2 is that, the FCC’s advisory comment 
notwithstanding, having to (potentially) use 
different tests under different sample size and data 
conditions is somehow too complex for the 
implementation of parity testing. Although 
implementing Table 2 is far less complicated than 
at least one of the four major OSS performance 
and remedy plans (the BellSouth ‘truncated Z’ 
plan, which one FCC economist only half-jokingly 
refers to as “the balanced averaged disaggregated 
truncated adjusted modified Z plan”, Shiman, 
2002, p.283), it unarguably would be preferable if, 
all else equal (or close), one statistic could 
accomplish what the conditional use of the 
multiple statistics in Table 2 does. This is the 
motivation for this paper, and the development of 
the statistic presented below. 

A Single Statistic for Continuous-data Parity 
Testing 
 Maximum tests – statistics whose scores (p-
values) are the maximum (minimum) of two or 
more other statistics – have been devised and 
studied in a number of settings in the statistics 
literature with very favorable results. Neuhäuser et 
al. (2004) favorably compares a maximum test for 
the non-parametric two-sample location problem 
to multiple adaptive tests, finding the former to be 
most powerful under the widest range of data 
conditions. 
 Blair (2002) constructed a maximum test of 
location that is shown to be only slightly less 
powerful than each of its constituent tests under 
their respective ideal data conditions, but notably 
more powerful than each under their respective 
non-ideal data conditions (for additional studies 
using maximum tests, see Fleming & Harrington, 
1991, Freidlin & Gastwirth, 2000a, 2000b, 
Freidlin et al., 2002, Lee, 1996, Ryan et al., 1999, 
Tarone, 1981, Weichert & Hothorn, 2002, Willan, 
1988, & Yang et al., 2005). These findings 
demonstrate the general purpose of maximum tests 
– to trade-off minor power losses under ideal data 
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conditions for a more robust statistic with larger 
power gains across a wider range of possible (and 
usually unknown) data distributions. 

Although the relevant characteristic of the 
distributions of continuous-data OSS performance 
metrics is, for all intents and purposes, known 
because so many years of data now exist to 
establish the kurtosis as a population parameter 
and not a statistical estimate based on samples, a 
maximum test still could be useful here for several 
reasons: 1) using only one statistical test 
unarguably would be more straightforward to 
implement than (potentially) relying on the four 
statistics in Table 2 and choosing between them 
based on a matrix of sample sizes and performance 
metric kurtoses; 2) the expected power losses 
compared to Opdyke’s (2004) individual tests may 
be small or negligible; and 3) under some 
conditions, depending on the constituent tests 
used, the maximum statistic may be even more 
powerful than those tests recommended in Opdyke 
(2004) and shown in Table 2. 

To construct a maximum test here, it must be 
recognized that maximum tests are conditional 
statistical procedures, and the additional variance 
introduced by such conditioning will inflate the 
test’s size over that of its constituent statistics (and 
if left unadjusted, probably over the nominal level 
of the test as shown in Blair, 2002). But the 
constituent statistics in Table 2 are already 
conditional statistical procedures. Consequently, 
the ad hoc p-value adjustment used below for the 
purpose of maintaining validity must be large 
enough to take this double conditioning into 
account (this actually is triple conditioning 
because O’Brien’s tests themselves are conditional 
statistical procedures). The adjustment is simply a 
multiplication of the p-values by constant factors 
(β’s). The p-value of the maximum test – OBMax 
– is defined in (2): 
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where 

  2.8,β β β β= = = =OBtShoe OBtLev OBGShoe OBGLev  
 

and 1.8β =tsv , and tsvp  is the p-value 
corresponding to the separate-variance t test with 
Satterthwaite’s (1946) degrees of freedom (see 
Appendix for corresponding formulae). Under the 
relevant data conditions, the behavior of OBMax is 
compared to that of its constituent tests and the 
modified t test in the simulation study described 
below. It is also compared with two other maximum 
tests – OBMax3 and TVMax – as defined in (2) and 
(3) below (TVMax for t test, Variance tests, and 
Maximum test). 
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where 1 3.0,  and 1.6modLev ShoeF tsvβ β β= = =               
 
Although preferable to ad hoc adjustments based 
on simulations, analytic derivation of the 
asymptotic distribution of OBMax, and maximum 
tests in general, is non-trivial, as Yang et al. 
(2005) show under even stronger distributional 
assumptions than can be made with respect to the 
Table 1 statistics. Derivation of the asymptotic 
distribution of OBMax is the topic of continuing 
research (Opdyke, 2005). 
 
Level and Power Simulation Study 
 The level and power simulations in this article 
parallel those conducted in Opdyke (2004). Eleven 
tests were studied: each of the four conditional 
statistical procedures listed in Table 1 – OBtShoe, 
OBtLev, OBGShoe, and OBGLev; the separate-
variance t test (with Satterthwaite’s, 1946, degrees 
of freedom – df) (tsv); the modified t test (with df 
= nI – 1, as in Brownie et al., 1990, Comments of 
SBC, 2002, p.57, and CPUC Opinion, 2001, 
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Appendix C, p. 2.) (tmod); OBMax as defined 
above in (1); OBMax3 and TVMax as defined 
above in (2) and (3), respectively; and two tests of 
stochastic dominance described below. All of the 
conditional statistics using O’Brien’s (1988) tests 
are referenced to the F distribution, rather than 
Blair’s (1991) critical values, even though doing 
so would normally violate the nominal level of the 
test under some conditions, because the p-value 
adjustment used here explicitly takes this size 
inflation into account (see Opdyke, 2004, 2005, 
for further details).  

The data was generated from the normal, 
uniform, double exponential, and lognormal 
distributions for four different pairs of sample 
sizes (nC = nI = 30; nC = 30 & nI = 300; nC = 30 & 
nI = 3000; and nC = nI = 300), seven different 
variance ratios ( 2 2/C Iσ σ =  0.50, 0.75, 1.00, 1.25, 
1.50, 1.75, 2.00), and seven different location 
shifts 

 

2 ,  ,  0.5 ,  ,  0.5 ,

        ,  2
C I I I I I I I I I

I I I I

µ µ σ µ σ µ σ µ µ σ
µ σ µ σ

= − − − +⎛ ⎞
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, 

making 784 scenarios. N = 20,000 simulations 
were run for each scenario, except for scenarios 
with nC = 30 & nI = 3000, which used N = 5,000.  

The normal distribution was chosen as a 
universal basis for comparison; the uniform and 
double exponential distributions were chosen as 
examples of short-tailed and long-tailed 
distributions, respectively, to examine the possible 
effects of kurtosis on the tests; and the lognormal 
distribution was chosen to examine the possible 
effects of skewness on the tests, and because 
continuous data OSS performance metrics have 
been cited widely as often being approximately 
lognormal. nC = nI = 30 was chosen because many 
performance and remedy plans require or allow for 
the use of permutation tests if at least one of the 
two samples has less than 30 observations (see 
The Qwest Performance Assurance Plan, Revised 
11/22/2000, p.4-5; SBC Comments, 2002, p. 55, 
and 13 state Performance Remedy Plans – 
Attachment 17, p.4-5; and Performance Assurance 
Plan – Verizon New York Inc., Redlined Version 
January 2003, Appendix D, p.3-4.), and nC = nI = 
300 was chosen to examine rates of convergence 
under equal sample sizes (Pesarin’s, 2000, 
combined permutation test, however, appears to 
have greater power for the relevant joint 
hypotheses here than the naïve Monte Carlo 

permutation test currently implemented by these 
performance and remedy plans, and at least two 
companies produce preprogrammed software that 
automatically performs this test – DataMineIt, 
http://www.DataMineIt.com, and Methodologica, 
http://www.methodologica.it/npctest.html).  

The extremely unbalanced sample size pairs of 
nC = 30 & nI = 300 and nC = 30 & nI = 3000 were 
chosen because such large sample size ratios 
actually are not uncommon in OSS performance 
metric data. Also, the number of ILEC phone lines 
and customers typically dwarf those corresponding 
to most individual CLECs. Thus, it is important to 
test the behavior of these statistics under these 
extreme conditions, even though most simulation 
studies would focus on smaller and/or more 
balanced sample sizes. nC is very rarely, if ever, 
larger than nI and thus, only cases involving (nI / 
nC) ≥ 1.0 were examined in this study (Opdyke, 
2005, examines nI < nC also). Two nominal levels 
were used for all the simulations: α = 0.05 and α = 
0.10, bringing the total number of scenarios to 
1,568. These two levels bracket the vast majority 
of the levels used in OSS parity testing. (SBC 
Comments, 2002, p.49-52; CPUC Opinion, 2002, 
Appendix J, Exhibit 3, p.4; and Performance 
Assurance Plan – Verizon New York Inc., 
Redlined Version January 2003, Appendix D, p.1). 

Two other tests also were included in the 
simulations: Rosenbaum’s (1954) test, which 
counts the number of observations in one sample 
beyond the maximum of the other as a test of Ho: 
F(x) ≡ G(x) against the alternative of stochastic 
dominance; and the (one-sided) Kolmogorov-
Smirnov statistic (using Goodman’s, 1954, Chi-
square approximation – see Siegel & Castellan, 
1988, p.148), for a non-parametric test of Ho: F(x) 
≡ G(x) against general (one-sided) alternatives. 
Although neither is designed specifically to test 
the joint hypotheses relevant to the OSS parity 
testing setting, and thus may have less power, they 
are included for several reasons: (1) as a basis for 
comparison to the other tests; (2) because 
researchers often turn to these types of tests when 
confronted with the joint hypotheses relevant to 
the parity testing context and examined in this 
simulation study; and (3) because the 
Kolmogorov-Smirnov statistic has been described 
as being “able to detect not only differences in 
average but differences in dispersion between the 
two samples as well.” (Matlack, 1980, p. 359). 
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Results 
 
This simulation study generated 11 x 1,568 = 
17,248 level and power results, all of which are 
available from the author upon request in a 
Microsoft Excel® workbook (along with a 
SAS/GRAPH® program for convenient 
visualization). The key results are summarized in 
the tables and selected graphs below. 

Under symmetry, the p-value adjustments 
used in OBMax as defined in (3) provide 
reasonable Type I error control for the relevant 
range of test levels; as shown in Table 3, 
violations of the nominal level are modest in size 
and infrequent (14 of 288 symmetric-data null 
hypothesis scenarios; violations occur if the 
observed level is equal to or greater than the one-
tailed 95% critical value of the simulation, based 
on the common Wald approximation of the 
binomial distribution to the normal distribution, 
which is very accurate for such large numbers of 
simulations and α ≥ 0.05 – see Evans et al., 1993, 
p. 39, and Cochran, 1977, p. 58).  

Even better level control is possible by 
increasing the adjustment factors – say, by 
increasing the OB β’s from 2.8 to 3.0 – but the 
price paid for this is a loss of power. The 
adjustment factors used – 2.8 for the OB tests and 
1.8 for the separate-variance t test – are reasonable 
as they produce relatively minor level violations, 
and relatively minor power losses when OBMax is 
compared to its constituent tests. However, nearly 
as often as not, OBMax actually provides power 
gains over the conditional use of the Table 2 
statistics (graphs of these comparisons are 
available from the author upon request). OBMax’s 
largest power loss is only slightly over 0.10, and 
these minor power losses typically occur under 
simultaneously small CLEC samples, large CLEC 
variance increases, and decreases in the CLEC 
mean (relative to the ILEC mean). 

Its largest power gain, however, exceeds 0.2, 
and these power gains occur under simultaneously 
small CLEC samples, typically equal or smaller 
CLEC variances, and small increases in the CLEC 
mean. The reason for this increased sensitivity to 
detect small location shifts is the inclusion of the 
separate-variance t test among the constituent tests 
of OBMax. Including this test mitigates power 
losses in the one fairly narrow range of conditions 
where the modified t test has a relatively slight, 

but still noticeable power advantage over the 
Table 2 constituent tests: for normal and short-
tailed data, under simultaneously small CLEC 
samples, typically equal or smaller CLEC 
variances, and small increases in the CLEC mean. 
Including the separate-variance t test as a 
constituent test of OBMax shrinks this loss of 
power relative to the modified t (under only these 
fairly narrow conditions) typically by a factor of 
one half, so that the largest power loss remains 
less than 0.1 (Figure 3). 

Far more important to note, however, is that 
under all other data conditions the power of 
OBMax is never less than that of the modified t, 
and typically dramatically larger (sometimes a 
gain of 1.0! - see Figures 3, 4, and 6). The power 
differences between OBMax and the modified t 
that are shown in Figure 3 are summarized in 
Table 4 below, although the Figures more 
accurately and thoroughly convey the story. 
Figures 5 and 6 show how dramatically OBMax 
dominates the modified t as sample sizes increase. 
This demonstration of the reasonable power of 
OBMax, under all symmetric alternatives, should 
dispel a) expressed concerns in this setting 
regarding the lack of power of composite tests of 
location and scale (Mallows, 2002, p. 260); b) 
admittedly premature conclusions in this setting 
about the lack of power of relevant rank-based 
tests (Mallows, 2002, p. 260), which is what the 
OBG tests are; and c) findings of less (and 
concerns of too little) power in this setting under 
unbalanced sample sizes (Gastwirth & Miao, 
2002, p. 273). 
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Table 3. Symmetric Data Level Violations of OBMax 

2
Cσ  Cµ  Sample sizes Distribution 

Nominal level 
of test (α)  

Actual size 

2
Iσ  Iµ  nC = nI = 30 Normal 0.05 0.0578 
2
Iσ  Iµ  nC = 30,  nI = 3000 Normal 0.05 0.0532 
2
Iσ  Iµ  nC = nI = 300 Normal 0.05 0.0561 
2
Iσ  Iµ  nC = 300,  nI = 300 Uniform 0.05 0.0546 
2
Iσ  Iµ  nC = nI = 30 Double exponential 0.05 0.0574 
2
Iσ  Iµ  nC = 30,  nI = 300 Double exponential 0.05 0.0538 
2
Iσ  Iµ  nC = 30,  nI = 3000 Double exponential 0.05 0.0556 
2
Iσ  Iµ  nC = nI = 300 Double exponential 0.05 0.0596 
2
Iσ  Iµ  nC = nI = 30 Normal 0.10 0.1115 
2
Iσ  Iµ  nC = nI = 300 Normal 0.10 0.1073 
2
Iσ  Iµ  nC = nI = 30 Uniform 0.10 0.1048 
2
Iσ  Iµ  nC = nI = 300 Uniform 0.10 0.1044 
2
Iσ  Iµ  nC = nI = 30 Double exponential 0.10 0.1116 
2
Iσ  Iµ  nC = nI = 300 Double exponential 0.10 0.1095 

 

 
 
Not surprisingly, OBMax is very similar to 

OBMax3 and TVMax in terms of both Type I 
error control and power, except that, under small 
CLEC and large ILEC samples, OBMax has 
greater power than TVMax to detect slight CLEC 
location shifts, especially under leptokurtotic data 
(the largest power advantages are about 0.08, 0.10, 
and 0.14 for uniform, normal, and double 
exponential data, respectively). OBMax3 is more 
powerful than TVMax, exhibiting the same slight 
power loss compared to OBMax only under 
leptokurtotic data (where the largest loss is only 
about 0.08). Because OBMax is unambiguously 
more powerful, it is recommended over the other 
two tests under symmetry. Under asymmetry, 
however, OBMax violates the nominal level of the 
test under a specific combination of conditions, for 
which the OBG rank tests perform poorly (a. large 
and equal sample sizes; b. equal means; and c. a 
much smaller CLEC variance). Therefore if 
skewed data is not or cannot be reliably 
transformed toward symmetry for some reason,  

 
 
 

 
OBMax3 is one good alternative to OBMax. 
OBMax3 has slightly less power, but it always 
maintains validity, even under skewed data. In 
fact, it maintains validity far better than does the 
modified t under skewed data. 

However, an even better alternative appears to 
be OBMax2, as presented in the preliminary 
results of Opdyke (2005). OBMax2 = OBMax3 if 

a) 2 2≤C Is s , b) ( )0.5≤ +c I IX X s , and c) the null 

hypothesis of symmetry is rejected by the test of 
D’Agostino et al. (1990) at α = 0.01; otherwise, 
OBMax2 = OBMax. OBMax2 maintains most of 
the power gains of OBMax over OBMax3, while 
also maintaining validity very well under skewed 
data – again, far better than does the modified t, as 
shown in Table 5 below (note that when nC > nI, 
which rarely if ever occurs with OSS data, all β’s 
for OBMax2 utilize an additional adjustment: 

( )2.7min 2.5,  logβ β ⎡ ⎤= + ⎣ ⎦X X C In n  – see Opdyke, 

2005, for further details). 
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Figure 1. OBMax rejection rate: Empirical Level and Power (α = 0.05) 
 

0.0

0.2

0.4

0.6

0.8

1.0

               0.0

0.2

0.4

0.6

0.8

1.0

               0.0

0.2

0.4

0.6

0.8

1.0

 

0.0

0.2

0.4

0.6

0.8

1.0

               0.0

0.2

0.4

0.6

0.8

1.0

               0.0

0.2

0.4

0.6

0.8

1.0

 

0.0

0.2

0.4

0.6

0.8

1.0

               0.0

0.2

0.4

0.6

0.8

1.0

               0.0

0.2

0.4

0.6

0.8

1.0

 

0.0

0.2

0.4

0.6

0.8

1.0

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0                
0.0

0.2

0.4

0.6

0.8

1.0

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0                
0.0

0.2

0.4

0.6

0.8

1.0

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0  
 
 
 
 
 

Figure 2. modified t  rejection rate: Empirical Level and Power (α = 0.05) 
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Figure 3. OBMax Power minus modified t  Power (α = 0.05) 
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Figure 4. All Alternate Hypothesis Simulations with a Power Difference (309 of 444): 
     OBMax Power minus modified t  Power (α = 0.05) 
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Figure 5. Alternate Hypothesis Simulations of nC = nI = 30 with a Power Difference (90 of 111): OBMax 
Power minus modified t  Power (α=0.05) 
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Figure 6. Alternate Hypothesis Simulations of nC = nI = 300 with a Power Difference (52 of 111): OBMax 
Power minus modified t  Power (α=0.05) 
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Table 4. modified t  vs. OBMax: Dominant Test, and Corresponding Power Gains Under Symmetry (α = 
0.05) by Magnitude of Mean Difference and Variance Difference 

C Iµ µ>  (small difference) 2 /σ µ  
Small  nC  ( = 30) Large  nC 

C Iµ µ>   
(large difference) C Iµ µ≤  

2 2
C Iσ σ>  

Usually OBMax 
  Max = 0.223 
  Mean = 0.038 
  Median = 0.028 

EQUAL EQUAL 

Always OBMax 
  Max = 1.000 
  Mean = 0.431 
  Median = 0.361 

2 2
C Iσ σ≤  

Usually tmod 
  Max = 0.051 
  Mean = 0.015 
  Median = 0.006 

EQUAL EQUAL Ho: 

 
 
OBMax vs. the modified t: Where does it matter in 
terms of remedies? 

As shown in Figures 3-6 above, OBMax often 
provides dramatic power gains over the modified t, 
making it much more effective at identifying 
disparity when it truly exists. A very important 
point to note here is that the narrow conditions 
under which the modified t has a slight power 
advantage – small sample sizes and small location 
shifts (and a typically smaller or equal CLEC 
variance) – are exactly those that are the least 
important in terms of the size of the resulting 
remedies. Under most performance and remedy 
plans, the formulae for calculating remedies are 
proportionate functions of the number of lines or 
customers affected, as well as the magnitude of the 
degree to which service is out of parity (i.e., how 
much worse CLEC service is relative to ILEC 
service). Small sample sizes, and small deviations 
from parity, together imply the smallest remedies. 
Small power losses under these conditions (always 
less than 0.1 under symmetry, and no more than 
0.2 under asymmetry when using OBMax2) will 
result in missed remedies that should be quite 
small, and perhaps even negligible, relative to 
overall remedies.  

In contrast, under all other conditions of 
disparity, where both sample sizes and deviations 
from parity are much larger, the typically dramatic  
 

power gains of OBMax over the modified t will 
translate into much larger remedies that the 
modified t will fail to identify. The relative (if not 
absolute) size of these remedies missed by the 
modified t will dwarf any missed by OBMax when 
both sample sizes and location shifts are small. 
Thus, not only are the power gains of OBMax over 
the modified t much larger and more common than 
the losses, but also much more important in terms 
of the magnitude of the remedies that should be 
identified by the statistical test used. 
Consequently, from both a statistical and remedy-
impact perspective, OBMax is dramatically better 
than the modified t at identifying disparate service 
provision to CLEC customers, and thus, is far 
more effectively used in parity testing to enforce 
the at-least-equal service provision of the Act. 
This makes OBMax is a better tool for achieving 
the Act’s major objective: moving local telephone 
service from regulation to full competition and, 
once achieved, preventing backsliding to disparity 
into the future. 

In other quality control settings, too, OBMax 
should be useful and widely applicable as 
discussed below, but the questions of how, and 
how much, the use of OBMax matters in OSS 
parity testing are examined next. 
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Table 5. Worst Level Violations of modified t vs OBMax2 Under Asymmetry (Opdyke, 2005) 

Statistic 2
Cσ  Cµ  nC nI Distribution α Actual Size Violation 

OBMax2 2
Iσ  µ σ−I I  300 30 Exponential 0.05 0.0553 0.0053 

OBMax2 2
Iσ  2µ σ−I I  300 30 Exponential 0.05 0.0566 0.0066 

OBMax2 2
Iσ  Iµ  300 30 Exponential 0.05 0.0665 0.0165 

OBMax2 0.75 2
Iσ  Iµ  300 30 Lognormal 0.05 0.0581 0.0081 

OBMax2 2
Iσ  Iµ  300 30 Lognormal 0.05 0.0623 0.0123 

OBMax2 2
Iσ  Iµ  300 30 Exponential 0.10 0.1053 0.0053 

OBMax2 2
Iσ  Iµ  300 30 Lognormal 0.10 0.1073 0.0073 

modt 2
Iσ  Iµ  30 30 Lognormal 0.05 0.0992 0.0492 

modt 2
Iσ  Iµ  300 30 Exponential 0.05 0.1003 0.0503 

modt 0.50 2
Iσ  Iµ  300 30 Lognormal 0.05 0.1034 0.0534 

modt 2
Iσ  Iµ  300 30 Lognormal 0.05 0.1082 0.0582 

modt 0.75 2
Iσ  Iµ  300 30 Lognormal 0.05 0.1089 0.0589 

modt 2
Iσ  Iµ  30 30 Lognormal 0.10 0.1451 0.0451 

modt 2
Iσ  Iµ  300 30 Exponential 0.10 0.1477 0.0477 

modt 0.50 2
Iσ  Iµ  300 30 Lognormal 0.10 0.1544 0.0544 

modt 0.75 2
Iσ  Iµ  300 30 Lognormal 0.10 0.1630 0.0630 

modt 2
Iσ  Iµ  300 30 Lognormal 0.10 0.1649 0.0649 

 
 
OBMax vs. the modified t: How Does It Matter, 
and How to Decide? 

The Act was designed so that, with respect to 
enforcing the central requirement of at-least-equal 
service provision to CLEC customers, everything 
hinges on the performance metric data, and the 
inferences made about it based on statistical tests. 
The consequences of OSS parity testing results 
that indicate disparity undeniably can be large, in 
terms of both remedies paid by ILECs to CLECs 
and, in the case of backsliding or prolonged and 
extensive disparity, the possible revocation of an 
ILEC’s long-distance approval (which carries even 
larger, long-term financial consequences for both 
ILECs and CLECs). 

Although not all performance metrics have 
statistical tests applied to them (a minority are 
comparisons of CLEC service against a fixed 
benchmark), and continuous data metrics are only 
a subset of all those subject to statistical parity 
testing, they still include some of the biggest 
metrics – i.e., those containing the most data 
reflecting the largest numbers of customers and 

phone lines (e.g., average time-to-install). 
Therefore, a statistic used to test these metrics that 
fails to identify actual disparity under a wide range 
of conditions not only distorts the simple and 
crucial incentive structure clearly and explicitly 
intended by the Act, but also misses sizeable 
remedies that would have been identified by a 
more powerful statistic – in this case, OBMax (or 
OBMax2). 

Therefore, given the results of this study 
comparing OBMax to the modified t, one might 
ask when using actual OSS data, what is the 
magnitude of this distortion caused by the 
modified t?  How much does it matter in terms of 
remedies, which is the bottom line in this setting?  
Although it is possible to approximately answer 
this question empirically, and the answer could 
very well be a sizeable amount, it is actually the 
wrong question to ask here for several reasons. 
First, it can never be known absolutely whether 
service provision to CLEC customers is truly 
inferior because only monthly samples are being 
considered, not entire populations. It could be, due 
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to random variation, that CLEC service is not 
really inferior, but that the given samples make it 
appear so (in statistical parlance, this is a Type I 
error). The reverse also can occur (a Type II 
error). What statistical tests provides is a scientific 
basis for making an inference, based on the 
samples that merely represent the true underlying 
service levels, with a specified degree of certainty 
(for example, if α = 0.05, one can be [1 – α] = 95% 
certain that an inference of parity is correct). 

This guess or hypothesis about whether 
service is or is not in parity is the best that can be 
done, so a researcher can never evaluate the 
statistical properties of competing tests based 
(solely) on real data samples. The researcher must 
know the true answer in the data ahead of time, 
which is only possible with simulated data (as 
used in this study), and then see which statistic 
gets it right most often under the widest range of 
relevant data conditions. Then it will be known 
that, if applied to actual data samples that are 
based on truly disparate service levels, a statistic 
that is proven to be more powerful under well-
constructed simulations will be more powerful 
under actual data and correctly detect the disparity 
more often. 

That said, a general idea may be obtained as to 
how much remedies will be affected when using 
OBMax vs. the modified t by applying each to, 
say, six months of actual data and comparing the 
resulting remedies (such a comparison obviously 
would need to be based on identical remedy 
formulae, with distance-beyond-parity directly or 
indirectly based on p-values and α; if Z-scores are 
familiar or in current use, then the inverse standard 
normal function can be used, e.g., Φ(p-value) – 
Φ(α) = distance beyond parity). If there are much 
larger remedies resulting from the use of OBMax, 
then it will be known that its greater power is 
driving this result. 

However, even if no appreciable difference in 
remedies is observed (which would be surprising), 
the question ‘How much are remedies actually 
affected?’ is not the key question that needs to be 
answered because it ignores the important issue of 
a deterrent effect. If no appreciable difference in 
remedies is observed, that just means that 
scenarios under which OBMax is more powerful 
are not exhibited in the data being examined. But 
there is no telling that these types of inferior 
service scenarios will not crop up in the future (or 

have not cropped up at different times in the past). 
Because the modified t will definitely miss them if 
they do crop up, why would it ever be used over 
the more powerful statistic, OBMax? The answer 
is, it should not, and under a scientifically 
responsible implementation of applied statistics, it 
would not. 

Thus, in evaluating which statistic to use for 
OSS parity testing and considering the remedy-
impact of using OBMax instead of the modified t, 
the driving question is not, How much will actual 
remedies differ under OBMax vs. the modified t? 
(although the answer to this probably is 
noticeably, if not a great deal.); instead, the 
relevant question is, Under conditions that we 
know to be disparate, which statistic has greater 
power to correctly identify the disparity?  This 
question cannot be answered by using actual data 
and comparing the remedies resulting from the use 
of each of these two statistics (although this 
comparison may be interesting), but rather, by the 
simulation study conducted in this paper. And the 
answer this study provides is that OBMax does 
have more power under a wider range of relevant 
data conditions, and these power gains are often 
dramatic. The general applicability of OBMax in 
other settings is discussed briefly below. 
 
General Utility of OBMax (OBMax2) 

OBMax, and OBMax2, are useful in any 
context where one-sided tests of the first two 
moments are the primary or exclusive concern, 
and the researcher needs to test for effects in either 
or both moments (in other words, when the 
researcher needs to test (1) above). For these joint 
hypotheses, just as shown in Opdyke (2004) for 
OBMax’s constituent tests, OBMax outperforms a 
test of stochastic dominance and a widely-used 
nonparametric distributional test against general 
alternatives. The Rosenbaum (1954) statistic 
maintains validity, but generally has much less 
power than OBMax, especially if the CLEC mean 
is smaller than the ILEC mean, when it often has 
absolutely no power to detect a larger CLEC 
variance (which is consistent with its design). The 
latter finding also holds for the one-sided 
Kolmogorov-Smirnov statistic which, although 
occasionally more powerful than OBMax, often 
severely violates the nominal level when means 
are identical but the CLEC variance is smaller 
(which is consistent with its design, if not the 
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relevant joint hypotheses examined here). Thus, 
OBMax is far superior to statistical tests that many 
researchers commonly turn to, at least initially, 
when faced with testing the joint hypotheses of (1) 
above. Among the settings in which these 
hypotheses are central is, of course, OSS parity 
testing; possibly the network access rules aimed at 
similar telecom deregulation efforts in other 
countries (Ure, 2003, p. 42-43); possibly the open 
access energy transmission regulations established 
by the Federal Energy Regulatory Commission 
(Gastwirth & Miao, 2002, p. 278); and numerous 
industrial settings with the need to address the 
quality control issues of accuracy and/or precision 
in manufacturing and other processes (Opdyke, 
2005). Some important issues warranting further 
inquiry are listed below.  
 
Further Research 

Most of the points below are listed in Opdyke 
(2004) and remain important issues for further 
inquiry in this setting. 

• In regulatory telecommunications, almost 
always nCLEC << nILEC, so scenarios of 
 nCLEC > nILEC were not studied in this paper. 
However, they are addressed in the further 
development of OBMax2 in Opdyke (2005). 

• Although typically much more powerful than 
the modified t, even under skewed data, 
OBMax2 still has low power under asymmetry, 
and exploring ways to increase it is worthy of 
further study (Opdyke, 2005). 

• Although the nominal test levels examined in 
this study (α = 0.05 and α = 0.10) bracket the 
vast majority of the test levels used in 
telecommunications OSS parity testing, (SBC 
Comments, 2002, p.49-52; CPUC Opinion, 
2002, Appendix J, Exhibit 3, p.4; and 
Performance Assurance Plan – Verizon New 
York Inc., Redlined Version January 2003, 
Appendix D, p.1) other settings may require 
very different nominal levels (e.g., α = 0.20 or 
α = 0.01). Generalizing from the findings of 
this study to such conditions would not be 
advisable without further simulation. 

• The one major exception to the above point 
regarding nominal test levels is the BellSouth 
performance and remedy plan. As previously 
mentioned, instead of solely using the modified 

t for continuous data performance metrics, this 
plan relies primarily on a statistic dubbed the 
truncated Z for which a balancing critical value 
is used as the nominal level of the hypothesis 
test. This critical value purports to balance or 
equalize the probability of Type I and Type II 
error (i.e., incorrect inferences of disparity and 
parity, respectively). This statistic, however, 
may remain insensitive to, i.e., have little 
power to detect, larger CLEC variance for two 
reasons:  first, the formula used to determine 
the balancing critical value is admittedly 
essentially unaffected by differences in 
variances (BellSouth Comments, 2002, 
Attachment 2 (Part 4), Exhibit No. EJM-1, 
Appendix C, p.C-9); second, the statistical test 
scores that are truncated and combined to 
obtain the truncated Z score are simply scores 
of modified t tests adjusted for skewness 
(BellSouth Comments, 2002, Attachment 2 
(Part 3), Exhibit No. EJM-1, Appendix A, p.A-
5, with correction from Attachment 2 (Part 2), 
Appendix D – Technical Description, p. 37). It 
is not at all clear that a combined statistic based 
on such truncated t-scores has much or any 
power to detect differences in variances, and a 
thorough simulation study like the one 
completed in this paper would be useful to 
allay or confirm these suspicions. 

• Although not the focus of this study, some 
performance and remedy plans use the general 
form of the modified t statistic as the basis for 
modifications to statistical tests designed for 
binary data, like that based on the common 
Wald approximation to the normal distribution 
(Comments of SBC, 2002, p. 59). In light of 
Opdyke’s (2004) findings, and all of the 
problems inherent in using the modified t 
statistic with continuous data performance 
metrics, such modifications should be viewed 
with skepticism until subjected to careful 
analytic scrutiny and empirical simulation. No 
objections to using the modified t for 
continuous data OSS parity testing were raised. 
Mulrow (2002) raised no objection to using the 
modified t for continuous data OSS parity 
testing, although concern was expressed about 
making modified t–like changes to the Wald 
approximation test for binary data: “This does 
not seem right to me” (p.280). Instead of this 
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test, Mulrow (2002) advocated the use of 
Fisher’s exact test. It is a viable and easily 
implemented alternative already in wide usage 
in OSS parity testing, although sometimes only 
for small(er) samples (SBC Performance 
Remedy Plan – Attachment 17, p. 3). Yet, it 
can be used for large samples as well because, 
even as a conditional exact test, it can be 
implemented very quickly with modern 
statistical software packages (e.g., SAS®). 
Agresti and Caffo (2000) provided a simple and 
effective, although not exact test for both small 
and large samples, and even better (more 
powerful), if slightly more complex 
alternatives, are the unconditional exact tests of 
Berger and Boos (1994) (available at 
http://www4.stat.ncsu.edu/~berger/tables.html) 
and Skipka et al. (2004) (Berger, 1996; Kopit 
& Berger, 1998). These all are carefully studied 
and well designed tests for binary data: there is 
no need to turn to unverified methods of 
questionable utility in this setting. 

• Although not the focus of this study, some 
performance and remedy plans rely on a normal 
approximation Z-test for comparing CLEC and 
ILEC sample rates from count data 
performance metrics, even when those rates are 
very small (e.g., trouble report rate) and almost 
certainly highly non-normal (SBC Performance 
Remedy Plan – Attachment 17, p.3-4; 
Ameritech Michigan – Performance Remedy 
Plan – Attachment A, p. 2; and SBC 
Performance Remedy Plan – Version 3.0 
SBC/SNET FCC 20 Business Rules – 
Attachment A-3, p.A-88). Yet, powerful and 
easily-implemented tests for comparing two 
Poisson means have been developed, and may 
be far superior statistically for such 
comparisons (Krishnamoorthy & Thomson, 
2004). Examination of these metrics’ 
distributions, and a straightforward simulation 
study, would adequately address this question. 

 
Unheeded Warnings 

As mentioned in Opdyke (2004), it is 
important to note that not everyone has supported 
the use of the modified t in this (and other) 
settings, although dissension has been 
conspicuously rare in the OSS parity testing arena. 
O’Brien (1993), in his discussion of Blair & 

Sawilowsky’s (1993) empirical study unfavorably 
comparing the modified t to O’Brien’s (1988) OBt 
and OBG statistics, points out that the Type I error 
rates of the modified t statistic will severely 
violate the nominal level of the test under a variety 
of conditions. Within the parity testing arena, over 
five years ago GTE voiced a lone, cautionary, and 
seemingly prescient dissent, given the findings of 
this current study, regarding use of the modified t 
in OSS parity testing:  

The modified Z-test [t test] should not be used 
since it follows no standard formulation of the 
test statistic. In the absence of a rigorous 
derivation, its sampling properties and 
maintained hypotheses are unknown. It has been 
asserted that the modified Z-test [t test] is a joint 
test of the equality of the means and variances of 
the two distributions; however no rigorous 
derivation has been provided. … It would 
clearly be foolish to accept a new and unknown 
test statistic without further documentation and 
consideration. (COMMENTS OF GTE, Before 
the Michigan Public Service Comm., 11/20/98, 
Attachment B, p.15-16) 

(Opdyke, 2004, has since provided an analytic 
derivation of the asymptotic distribution of the 
modified t: as stated previously, it is not standard 
normal or student’s t distributed, although it has 
been described as such in the expert testimony of 
Dysart & Jarosz, 2004 which, on pages 27-29, 
egregiously misquotes the derivation and major 
findings of Opdyke, 2004.) 

Meanwhile, others have hedged their bets. 
While being deposed as an expert witness for 
AT&T and other CLECs, Dr. Gerald Ford was 
asked:  
 

DO YOU BELIEVE THE MODIFIED Z-
TEST SHOULD BE REPLACED WITH 
THESE PROPOSED ALTERNATIVES? 
 

No. The development of the particulars of the 
performance plan took many months of hard 
work by some very smart people. It was only 
after considerable analysis and debate that the 
Modified Z-test [modified t test] was selected 
as the best test statistic for the performance 
plan. …I see no reason to alter the test 
procedures of the existing plan without strong 



www.manaraa.com

388 J.D. OPDYKE 

evidence that the other tests represent an 
improvement. 
 

SO YOU BELIEVE THE MODIFIED Z-
TEST [modified t test]  SHOULD BE USED? 
 

Yes, at least until some strong evidence is 
provided to indicate an alternative test is 
preferred. (Before the Texas PUC, Rebuttal 
Testimony of Dr. Gerald Ford for the CLEC 
Coalition, 08/23/04, p.36) 

The goal of this article, with its development of a 
single, nonparametric, yet generally powerful 
statistic for continuous-data OSS parity testing, 
has been to provide the “further documentation 
and consideration” implicitly requested by GTE 
(1998), as well as the “strong evidence” of  “an 
improvement” over the modified t  that Ford 
(2004) implicitly requested much more recently. 

 
Conclusion 

 
As summarized in Opdyke (2004), under the 
Telecommunications Act of 1996, ILECs are 
required to provide CLEC customers with local 
telephone service “at least equal in quality to” that 
which they provide to their own customers if they 
are to be allowed into the long distance telephone 
market (Telecommunications Act of 1996, Pub. 
LA. No. 104-104, 110 Stat. 56 (1996), at §251 (c) 
(2) (C)). The goal of this carrot-stick approach – 
the carrot being the potentially lucrative long 
distance market, and the stick being this 
requirement of at-least-equal service provision – is 
to promote competition in the newly deregulated 
local telephone markets. Implementing and 
enforcing the at-least-equal service provision 
requirement has taken the form of OSS parity 
testing – statistically testing the service data 
represented in thousands of operations support 
services performance metrics to ensure that the 
service provided to CLEC customers is, in fact, at 
least equal.  

Results from these statistical tests indicating 
average service and/or service variability that is 
not at least equal, i.e., findings of disparity, 
typically require an ILEC to pay fines (sometimes 
US$ millions) to the CLEC(s), and sometimes to 
the state(s); disparity that is consistent and 
widespread over time (i.e., backsliding) can serve 
as cause for the revocation of an ILEC’s approval 

to provide long distance service. These stakes are 
high, not only for individual firms but also for the 
entire industry, so choosing the correct, if not the 
best statistics to use in OSS parity testing is a very 
important decision. 

To date, the modified t statistic (Brownie et 
al., 1990) has been approved and used in OSS 
parity testing across the country. It is used on 
continuous-data performance metrics as a test of 
whether average service and/or service variability 
are at least equal for CLEC customers compared to 
their ILEC counterparts. However, Opdyke (2004) 
demonstrated that the modified t is an ineffective 
and misleading choice for this purpose in this 
setting. It remains potentially vulnerable to 
gaming – intentional manipulation of its score to 
mask disparity – but far more importantly, it 
remains absolutely powerless to detect inferior 
CLEC service provision under a wide range of 
relevant data conditions. Opdyke (2004) proposed 
the use of several other easily implemented 
conditional statistical procedures that are not 
vulnerable to gaming and typically provide 
dramatic power gains over the modified t. The 
selection of which among them to use, however, 
depends on the relative sizes of the two data 
samples and a distributional characteristic (the 
kurtosis) of the specific performance metric being 
tested. Although this is arguably straightforward, a 
single test that could accomplish the same thing 
would be preferable, and the development of such 
a statistic is the motivation for this article. 

In this article, an easily-implemented 
maximum test – OBMax – was developed based 
on the multiple statistics proposed by Opdyke 
(2004). OBMax maintains reasonable Type I error 
control and is always either nearly as powerful as 
its constituent tests, or almost as often as not, even 
more powerful. More importantly, it typically 
provides dramatic power gains over the modified t. 
The one set of narrow conditions under which the 
modified t has a slight power advantage (always 
less than 0.1 under symmetry) are exactly those 
under which consequent fines or remedies 
imposed on ILECs will be the smallest – small 
CLEC sample sizes and small location shifts (and 
equal or close-to-equal variances). 

In contrast, the typically dramatic power gains 
of OBMax over the modified t under most other 
conditions of disparity (sometimes gains of even 
1.0!) translate into the appropriate identification of 
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vastly larger amounts of remedies that the 
modified t will miss. From both a statistical and 
remedy-impact perspective, therefore, OBMax is 
superior at detecting disparity, and thus, at 
enforcing the at-least-equal service provision of 
the Telecommunications Act of 1996. It 
consequently is an unambiguously better statistic 
than the modified t for use in OSS parity testing to 
achieve the major objective of the Act: the 
movement of local telephone service from 
regulation to full market competition. 
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Appendix 
 

OBt and OBG: O’Brien’s OBt test involves 
running the following ordinary least squares 
regression on pooled data including both samples:  

                    2
0 1 2i i i iy x xβ β β ε= + + + ,             (6) 

where y is a dummy variable indicating inclusion 
in the CLEC sample, and x is the performance 
metric variable. If the parameter on the quadratic 
term (β2) is (positively) statistically significant at 
the 0.25 level, use the critical value of the overall 
equation to reject or fail to reject the null 
hypothesis; if it is not, use the critical value of the 
overall equation of the following ordinary least 
squares regression instead:  

                          0 1i i iy xβ β ε= + +                    (7) 

O’Brien’s OBG test is identical to the OBt test 
except that the pooled-sample ranks of x are used 

in the regressions instead of the x data values 
themselves. 
 

Modified Levene test: The modified Levene test 
requires a simple data transformation: take the 
absolute value of each data point’s deviation from 
its respective sample median (as per Brown and 
Forsythe, 1974), and then calculate the usual one-
way ANOVA statistic using these transformed 
values (as per Levene, 1960). The resulting 
statistic (8) is referenced to the F distribution as 
usual.  

Let = − �ij ij iz x x  where �ix is sample i’s median (8)   
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where =∑i ij iz z n  and  ⋅⋅ =∑∑ ij iz z n  

However, because this test is designed as a two-
tailed test, and the hypotheses being tested in this 
setting are one-tailed, the p-value resulting from 
this test, when used conditionally with O’Brien’s 
tests as in Table 1, must be subtracted from 1.0 if 
the CLEC sample variance is less than the ILEC 
sample variance. Or, if one does not need to 
calculate a p-value that is be known to be larger 
than α (as when the CLEC sample variance is 
smaller), the calculation simply can be skipped. 
 

Shoemaker’s F1 test: Shoemaker’s F1 test is simply 
the usual ratio of sample variances referenced to 
the F distribution, but using different degrees of 
freedom:   

 
2 2

,∼

C IC I df dfs s F                                               (9) 

where            4
4

ˆ 1
2

ˆ 3
i

i i
i

n
df n

n
µ
σ

⎛ ⎞−= −⎜ ⎟−⎝ ⎠
   

where i = C, I corresponds to the two samples, and 

4µ  and 4σ  are estimated from the two samples 
when pooled:  

                ( ) ( )
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4 1 2
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ˆ
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ij i
i j

x x n nµ
= =

= − +∑∑            (10) 
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      ( ) ( )( ) ( )
2

4 2 2
1 1 2 2 1 2ˆ 1 1n s n s n nσ ⎡ ⎤= − + − +

⎣ ⎦
  (11) 

 
Shoemaker (2003) notes that the biased estimate 
for 4σ  is used for improved accuracy. 
 
Separate-variance t test:  The separate-variance t 
test, also known as the Welch or Behrens-Fisher t 
test, is presented below: 
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Satterwaith’s (1946) degrees of freedom for tsv is:   
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If df is not an integer, it should be rounded down 
to the next smallest integer (Zar, 1999, p. 129) 
 
Test of D’Agostino et al. (1990):  The test of 
D’Agostino et al. (1990) is calculated as follows: 
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                                                 (~ standard normal) 
 
For one-tailed testing of skewness to the left, 

check ( )1
Pr ≤ gZ Z ; for skewness to the right, 

check ( )1
Pr ≥ gZ Z . See Zar (1999), p. 115-116, 

for further details. 
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Introduction 

 
Robust design has been widely used in industry 
to improve productivity and achieve higher 
quality at a lower cost. The main idea in robust 
design is to develop product and process designs 
that can deliver at a minimal cost units of target 
performance which are usable or functional with 
maintained quality under all intended operating 
conditions.  
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 Thus, one major approach in robust 
design is to reduce variation in the quality 
characteristic without actually eliminating the 
causes of variation (the noise factors). Instead of 
replacing some components with more 
expensive ones to achieve smaller variation from 
target, robust design methodology seeks 
combinations of levels of factors affecting the 
quality characteristics that are least sensitive to 
environmental changes in production or 
operating conditions. This adjustment to the 
optimal levels are usually less expensive and are 
achieved through parameter design. 

In parameter design, techniques of design of 
experiments are widely used to obtain data for a 
number of experimental runs corresponding to 
different combinations of the factors. An 
analysis of the resulting data is performed to 
approximate the optimal combination yielding 
the smallest variation from the target. In these 
regards, Taguchi-type experiments consisting of 
crossed arrays are sometimes performed, and the 
experimental data are analyzed using signal to 
noise ratio as a performance measure. A factor 
affecting response or product characteristic can 
be classified as a control factor or a noise factor 
(internal or external). Control factors are factors 
the levels or values of which are controllable 
during production. In contrast, the levels of the 
noise factors are expensive to control in 
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production or uncontrollable during use in the 
lifetime of the product. However, for the 
purpose of assessing their effects on the quality 
characteristics, the levels of the noise factors 
may also be controlled in the experimental runs 
in parameter design. In crossed array designs, 
each treatment combination of the control 
factors considered appears with every member 
in a set of treatment combinations of noise 
factors. 

 Taguchi’s crossed array design and the 
signal-to-noise ratio analysis were criticized in 
the literature (Box, 1988). Some major 
difficulties in Taguchi’s approach are 
summarized in Barreau et al. (1999). Crossed 
array design generally calls for a larger number 
of experimental runs which may be deemed 
unnecessary when some of the interactions may 
be safely assumed to be zero (Shoemaker et al., 
1991). Furthermore, the use of signal-to-noise 
ratio may not always be appropriate as a 
performance measure to be minimized (Box, 
1988), and modeling directly the signal to noise 
ration as the response in ANOVA is generally 
not intuitive and problematic. As an alternative 
design, the use of combined arrays has been 
suggested in the literature (Welch et al., 1990; 
Shoemaker et al., 1991). 

In combined array design, both the control 
and noise factors are integrated into the same 
array, resulting in less number of experimental 
runs. The resulting data are then analyzed 
differently, with the control factors affecting 
variance through their interactions with the noise 
factors (O’Donnell and Vining, 1997; Myers, 
1997). Engel and Huele (1996) used a 
generalized linear modeling approach to analyze 
combined array designs. 

It is interesting to note that similar approach 
of modeling through interactions between the 
control and the noise factors is in fact more 
appropriate for crossed array designs (Barreau, 
et al., 1999). Despite some of its major 
drawbacks, Taguchi's approach is still embraced 
by many practitioners, largely because of its 
conceptual simplicity and easier implementation 
that requires less sophisticated analytical tools. 
Furthermore, the combined array methodology, 
though more economical, is less robust than the 
crossed array design to model misspecification 
especially when certain significant interactions 

among control factors are accidentally omitted 
in the design and analysis.  
 The number of experimental runs 
required in a crossed array design can be 
substantially reduced by employing fractional 
factorial designs for the inner (involving control 
factors) and outer array (involving noise 
factors). Barreau, et al. (1999) examined the role 
of interactions between control and noise factors 
in a Taguchi type experiment. These approaches 
of design and analysis have the advantages of 
being more economical, and yet are capable of 
retaining the benefits of having crossed inner 
and outer arrays. 
 The use of interaction analysis also 
throws light on how the noise variables affect 
the response, and provides a more natural 
analysis than a direct modeling of the signal-to-
noise ratio as a response variable. Design of 
resolution III can be used for the inner array 
without any adverse effects on the study of 
variation or performance measure even if some 
interactions exist between control factors. 
However, complication arises when two factor 
interactions exist between noise factors. Such 
interactions do not appear in the true unknown 
objective function to be minimized for finding 
optimal levels, but it is shown in this paper that 
they can seriously bias the estimation of this 
objective function. 
 It is suggested that this potential bias be 
corrected based on a small confirmatory 
experiment. It is also proposed to use orthogonal 
polynomials in the analysis to facilitate the 
identification of adjustment variables, variables 
that only affect variation through the mean 
function. It is well known that the use of 
adjustment variables greatly simplifies the 
process of minimizing variation while having 
the mean on target. Furthermore, the use of 
orthogonal polynomials when some variables are 
quantitative allows one to better relate the 
analysis to response surface methodology and to 
obtain interpolated values for improved results 
in variance minimization. 

 
Methodology 

 
In this section, an outline of a systematic 
approach for analyzing data from a crossed array 
design is given. The details are best explained by 
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a practical example, which will be left to the 
next section. Let y be the response variable 
representing a certain product characteristic. 
Suppose there are c control variables each with 
kc levels, and n noise variables each has kn levels. 
For the ease of discussion, all the control and 
noise variables are assumed to be quantitative, 
but the necessary modifications when there are 
both quantitative and qualitative variables will 
be demonstrated with a real example in the next 
section. 
 Suppose that there are Nc treatment 
combinations in the inner array, which is an 
orthogonal resolution III main effect plan. 
Similarly, there are Nn treatment combinations in 
the outer array, which is an orthogonal 
resolution III main effect plan. Assume all 
interactions involving three or more factors 
(both control and noise factors) are non-
significant. For the ith control factor xi, there are 
kc levels corresponding to kc numeric coded 
values. Denote the set of the kc numeric coded 
values by W. Let )(),...,( 11 xuxu

ck −  be 

orthogonal polynomials where )(xu j  is a 

polynomial of degree j such that 

( ) 0
i

j i
x W

u x
∈

=∑ , 
'( ) ( ) 0

i

j i j i
x W

u x u x
∈

=∑
, for all 

j and ,jj ≠ . 

 The n noise factors nzz ,...,1 are random 

variables assumed to be independent and, 
without loss of generality, to have mean 0 and 
standard deviation 1. Thus if all the two factor 
control-control and noise-noise interactions are 
suppressed, a linear model for the response y 
conditional also on nzz ,...,1 can be formulated 

as: 
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where iα  is a 1×ck  vector, ,i
γ  is a scalar, 

ii ,β is a 1×ck vector of unknown coefficients, 

and T
k xuxuxu

c
))(),...,(()( 11 −= . Here the error 

term e has mean 0 and constant variance 2
eσ . 

Thus for given cxx ,...,1 , treating nzz ,...,1 as 

random, the variance of y is therefore 
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 Thus to estimate the unknown iα , ,i

γ  

and 
'iiβ  can be estimated by the least squares 

estimators iα̂ , ,ˆ
i

γ  and 
'îiβ  using data collected 

from a crossed array design where the outer 
array is an orthogonal Resolution III main effect 
plan with each noise factors set at two levels -1 
and +1 (corresponding to 1±  standard 
deviation). The optimal solution for achieving 
smallest variation is obtained by minimizing the 
objective function (1). To obtain an approximate 
solution for smallest variation, one can minimize 
with respect to cxx ,...,1 , the estimated objective 

function: 
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 How is this variance minimization 
procedure affected if some or all of the two 
factor noise-noise interactions are in fact non-
negligible? It is not difficult to see that in such 
cases, for given cxx ,...,1  the variance of y 

differs from (2.1) by a positive term that does 
not involve cxx ,...,1 . Thus one might want to 

minimize the same function ),...,(ˆ 1 cxxh . 

However, because the main effects in the outer 
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array are aliased with certain two factor noise-

noise interactions, the estimator 'ˆiγ  no longer 

estimates 'iγ  alone, but the sum of 'iγ  and the 

effects of the two factor noise-noise interactions 
in the same alias set. Thus it is not appropriate to 

minimize directly ),...,(ˆ 1 cxxh  without 

adjustment. It is proposed here that a follow up 
2n factorial (or a faction of 2n) experiment of the 
n noise factors be performed to estimate all the 
two factor noise-noise interactions 
independently. The estimates obtained are used 
to correct for bias of the estimated coefficients 

in the function ),...,(ˆ 1 cxxh . This procedure will 

be illustrated with the example in next Section.  
If for a control factor xi , the vector 

' 0iiβ =  

for all ni ,...,1. = , then xi does not appear in the 
objective function and the optimal solution does 
not depend on xi. This kind of control factor is 
called adjustment factor. Their existence greatly 
simplifies the procedure of minimizing variance 
while the mean is made on target, as the 
variation can first be minimized using the non-
adjustment control variables, and then the values 
of the adjustment variable is set to give the 
targeted mean value. The identification of 
adjustment variables can be done by examining 
the magnitudes of the two factor control-noise 
interactions using graphical technique such as 
the half normal probability plot (Box, 1988).  

With the present formulation through 
orthogonal polynomials, one can also examine 
the sum of squares of the orthogonal contrasts 
corresponding to these interactions. It is also 
suggested that the effects of the interactions of 
each control variable with the noise variables on 
the results of variance minimization be studied 
for this purpose. 

These approaches will also be illustrated 
with an example in the next section. If the 
constant variance in the assumed model is 
violated, one might have to transform the 
response variable to attain approximate 
homogeneity of variances. As explained in Box 
(1988), the minimization of variance in the 
transformed metric can be seen as approximately 
minimizing a performance measure independent 
of the mean (PerMIA). 

Results 
 
The new methods are outlined to re-analyze the 
data from a crossed array design, studied by 
Vandenbrande (2000), using signal-to-noise 
ratio. The data involve a car body paint spray 
process in which it is required to spray paint on 
a plate evenly to a desirable width. Although the 
surface has to be adequately covered, overspray 
would result in unnecessarily higher cost in paint 
as well as causing quality problems on other part 
of the car body. The response measurement y is 
the width of the paint pattern. 
 There are four control variables: type of 
gun x1 (a qualitative variable with values 1, 2 
and 3 representing three different guns), paint 
flow x2, paint airflow x3 and atomizing airflow 
x4. The last three variables are quantitative and 
each is set at 3 levels (low, medium and high) 
which we take to be equally spaced and coded as 
-1, 0, +1. There are three noise factors: color z1, 
input air pressure z2, and paint viscosity z3. Each 
of the three noise factors has two levels: -1 and 
+1. A Taguchi type of crossed array experiment 
is performed using the L9 and L4 orthogonal 
arrays for, respectively, the inner and outer 
arrays, as displayed in Table 1. 
 There are therefore 36 experimental 
runs, determined by crossing the 4 treatment 
combinations in the outer array with each of the 
9 treatment combinations in the inner array. The 
observed data are given in (Vandenbrande, 
1998, 1999).  

The first step in the analysis involves 
defining indicator variables for any qualitative 
control variables and finding orthogonal 
polynomials for the quantitative control 
variables. Here, only type of gun is qualitative 
and we define x11 to be equal to 1 for type 1 and 
0 otherwise, x12 equal to 1 for type 2 and 0 
otherwise. The linear and quadratic orthogonal 
polynomials used for 

2 3,  x x  and x4 are u1(x)=x, 

u2(x)=2-3x2. 
The coefficients of the linear contrast 

corresponding to x =-1, 0, +1, are u1(x)=-1, 0, 
+1, and that of the quadratic contrast 
corresponding  to x =-1, 0 ,+1, are u2(x)=-1,2,-1. 
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Table 1. Inner and outer array layout 

Inner Array 

x1 x2 x3 x4 

1 0 0 0 
1 1 1 1 
1 -1 -1 -1 
2 -1 0 1 
2 0 1 -1 
2 1 -1 0 
3 -1 1 0 
3 0 -1 1 
3 1 0 -1 

Outer array 
z1 -1 1 1 
z2 -1 1 -1 
z3 -1 -1 1 

 
 

Our model, suppressing two factor control-
control, noise-noise as well as higher order 
interactions is therefore: 
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The least squares estimates of ijα , 

'iγ  and 
'ii jβ , 

4,...1=i , ' 1, 2,3i = , 2,1=j , and the broken 
down sum of squares for each degree of freedom 
are given in Table 2.  

In the second step, one may proceed if 
desirable to identify adjustment variables which 
do not interact with any of the noise variables. 
Specifically, we look for quantitative adjustment 
variables as these variables can be used to make 
continuous adjustment of the mean to the target 
value. By looking at the sum of squares (SS) 
corresponding to the orthogonal contrasts 

,)(
ii zxu , it is seen that the control factor paint 

flow x2 has small SS of interactions with all 
three noise factors. This suggests that using x2 as 
an adjustment variable and drop it from the 
variance function (1). The effect of excluding x2 

from the study of variance will be examined 
later.  

In step 3, minimize the estimated objective 

function ĥ  defined in Section 2, or equivalently, 
the estimated variance function of y given 31, xx  

and 4x . In principle, the mean and variance 

(treating 321 ,, zzz  as random along with e) of y 

given 321 ,, xxx  and 4x  can be estimated based 

on the analytical expression for the mean and 
variance derived from (3.1). However, an 
equivalent but more intuitive and easily 
programmable procedure is to calculate the 
mean and variance based on generated pseudo 
observations. 

To generate these pseudo observations, we 
first set a new variable z4 to two levels at -1 and 

+1 as other noise factors. Also let MSE=4γ̂ . 
The pseudo observations are generated using 
(3.1) with the least square estimates replacing 
the unknown coefficients and also the error e 
by 44ˆ zγ . Here, the zi, i=1,…, 4 can be -1 or +1, 
yielding a total of 24 pseudo observations. The 
conditional mean and variance of y given 

321 ,, xxx  and 4x  can then be estimated by the 

usual mean and variance of the pseudo 
observations (with 24 as the divisor in 
calculating variance). This procedure is justified 
as it is equivalent to using Gaussian Quadrature 
to evaluate the first two moments, and the two 
point Gaussian Quadrature is known to yield 
exact integral for polynomial of degree 3. 

The added advantage of using the 
approach of pseudo observations is that it can be 
readily applied to evaluate any expected loss 
function L(y), not just the quadratic loss 
function, by calculating the mean loss at the 
values of the pseudo observations. This can be 
particularly helpful if an analytical expression 
for the expected loss is difficult to obtain.  
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Table 3 gives the estimated standard 

deviation (column (1)) for all 27 treatment 
combinations of 31, xx , and 4x . The 

combination ,31 =x  ,13 −=x  ,14 =x  yields 

the smallest value of standard deviation of 1.6. 
However, because of practical consideration, 
high atomizing air must be combined with 
somewhat higher fan air. 

One might consider the next best 
combination at ,11 =x  ,13 −=x  ,04 =x  with 

an estimated standard deviation of 1.8. The use 
of orthogonal polynomials allows interpolation 
to obtain improved results at ,11 =x  ,1.13 −=x  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
,4.04 −=x  yielding a smaller standard 

deviation of 1.6. The last few columns of Table 
3 give the mean and standard deviation for each 
of x2 = -1, 0, +1 when x2 is also included in the 
variance analysis. The difference in standard 
deviations from column (1) is minimal. 
 Furthermore, if a target mean of 45 is 
desired, then x2 should be set around x2 = 1. As 
pointed out in the last section, the procedure of 
minimizing variance can be adversely affected if 
some of the two factor noise-noise interactions 
are non-zero. Thus we suggest, as a safeguard 
against this potential problem by assessing these 
interactions with small number of additional 
experimental runs.  In the present  example, each 

Table 2. Estimates and sum of squares: 
ŷ  = 39.6 + 1.02 x11 - 2.57 x12 + 3.84 u1(x2)+ 0.604 u2(x2) + 3.64 u1(x3)-1.69 u2(x3) 

-2.99 u1(x4) +1.37 u2(x4) -3.63 z1+ 0.308 z2 - 0.0417 z3 + 3.48 x11 z1 + 2.58 x12 z1 

+ 0.550 x11 z2 - 0.0500 x12 z2 - 1.15 x11 z3 + 0.233 x12 z3 - 0.0125 u1(x2) z1 

+ 0.0931 u2(x2) z1+0.438 u1(x2)z2 +0.121 u2(x2) z2-0.221 u1(x2)z3+0.290 u2(x2) z3 

-1.46 u1(x3) z1-0.253 u2(x3) z1-0.550 u1(x3) z2+0.717 u2(x3) z2 0.783 u1(x3) z3 

- 0.889 u2(x3) z3+1.73 u1(x4) z1-0.519 u2(x4) z1-1.08 u1(x4) z2-0.717 u2(x4) z2 

+ 0.850 u1(x4) z3 + 0.369 u2(x4) z3. 

 
 

Control factor 
x2 

Control factor 
x3 

Control factor 
x4 

 
Effects 

Sum of 
squares 

 
Effects 

Sum of 
squares 

 
Effects 

Sum of 
squares 

u1(x2) z1 0.004 u1(x3) z1 51.042 u1(x4) z1 72.107 

u2(x2) z1 0 .623 u2(x3) z1 4.601 u2(x4) z1 19.427 

u1(x2)z2 4.594 u1(x3) z2 7.260 u1(x4) z2 27.735 

u2(x2) z2 1.051 u2(x3) z2 36.980 u2(x4) z2 36.980 

u1(x2)z3 1.170 u1(x3) z3 14.727 u1(x4) z3 17.340 

u2(x2) z3 6.067 u2(x3) z3 56.889 u2(x4) z3 9.827 
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Table 3. Means and standard deviations 

 
main effect in the outer array is aliased with the 
interaction between the remaining two noise 
factors. For instance, the coefficient 3γ̂  of the 

noise factor “viscosity” is small, but since z3 is 
aliased with z1z2, it actually estimates the sum of 

123 γγ + , where 12γ  is the coefficient of z1z2.  

 In the last step, we propose to have a 22 

factorial (or a factional factorial so that the 
interactions suspected to be significant are 
estimable) of the noise factors conducted at the 
solution obtained in step 3, i.e. ,11 =x  

,1.13 −=x  40x4 .−= . To estimate 12γ , first 

subject the fitted value based on (3.1) from each 
of the y values from the new experiment and 
estimate 12γ  by the slope of the regression of 

the adjusted y on 321 zzz − .  

 

 
 

 
 As an illustrative example, suppose an 
estimate 855112 .ˆ −=γ  is obtained. Then the 

coefficient 3γ  can be re-estimated as -0.042-(-

1.855) = 1.813. Column (2) of Table 3 now 
gives the standard deviations based on the new 
model (model (2) together with the additional 
term 2112 zzγ ). The results are markedly different 
from column (1), and the smallest value no 
longer occurs at ,31 =x  ,13 −=x  ,14 =x  

suggesting that such adjustment might be 
necessary. 

 
Conclusion 

 
We have suggested in this article a systematic 
approach in analyzing crossed array designs, 
where fractional factorial design may be 
employed in the outer array. This kind of 

                                                                     x2 = -1                x2 = 0                    x2 = +1 

  x1            x3          x4                   (1)        (2)         mean      SD         mean      SD          mean    SD 

1 
1 
1 
1 
1 
1 
1 
1 
1 
2 
2 
2 
2 
2 
2 
2 
2 
2 
3 
3 
3 
3 
3 
3 
3 
3 
3 
 

-1 
-1 
-1 
0 
0 
0 
1 
1 
1 
-1 
-1 
-1 
0 
0 
0 
1 
1 
1 
-1 
-1 
-1 
0 
0 
0 
1 
1 
1 
 

-1 
0 
1 
-1 
0 
1 
-1 
0 
1 
-1 
0 
1 
-1 
0 
1 
-1 
0 
1 
-1 
0 
1 
-1 
0 
1 
-1 
0 
1 
 

3.7 
1.8 
4.2 
6.3 
3.3 
3.8 
3.4 
3.6 
2.1 
2.6 
2.3 
3.4 
5.5 
3.1 
2.4 
3.9 
5.1 
3.1 
4.1 
3.6 
1.6 
7.2 
5.5 
3.1 
6.3 
6.9 
3.9 
 

3.5 
3.0 
4.7 
5.6 
3.1 
3.5 
3.9 
4.9 
3.9 
3.2 
4.0 
4.6 
5.1 
3.7 
2.9 
5.0 
6.5 
5.0 
4.4 
4.8 
3.4 
6.9 
5.8 
3.4 
6.9 
8.0 
5.5 

 

35.8 
36.9 
29.8 
34.4 
35.5 
28.4 
43.1 
44.2 
37.1 
32.2 
33.4 
26.3 
30.8 
31.9 
24.8 
39.5 
40.6 
33.5 
34.8 
35.9 
28.8 
33.4 
34.5 
27.4 
42.1 
43.2 
36.1 

 

3.1 
1.4 
3.8 
5.9 
2.9 
3.3 
2.9 
3.6 
1.8 
1.8 
2.2 
3.0 
5.0 
2.8 
1.5 
3.6 
5.2 
3.0 
3.7 
3.6 
0.9 
6.9 
5.4 
2.5 
6.1 
7.0 
3.8 

 

41.5 
42.6 
35.5 
40.0 
41.2 
34.1 
48.8 
49.9 
42.8 
37.9 
39.0 
31.9 
36.5 
37.6 
30.5 
45.2 
46.3 
39.2 
40.5 
41.6 
34.5 
39.0 
40.1 
33.0 
47.7 
48.9 
41.8 

 

3.3 
0.9 
4.0 
5.9 
2.5 
3.4 
2.9 
3.3 
2.0 
2.2 
2.0 
3.4 
5.0 
2.5 
1.9 
3.6 
5.0 
3.1 
3.7 
3.3 
1.2 
6.8 
5.0 
2.5 
6.0 
6.8 
3.8 

 

43.5 
44.6 
37.5 
42.1 
43.2 
36.1 
50.8 
51.9 
44.8 
39.9 
41.0 
33.9 
38.5 
39.6 
32.5 
47.2 
48.3 
41.2 
42.5 
43.6 
36.5 
41.1 
42.2 
35.1 
49.8 
50.9 
43.8 

 

4.0 
1.0 
3.9 
6.7 
3.5 
4.0 
3.4 
3.0 
1.0 
2.7 
1.2 
2.8 
5.8 
3.1 
2.4 
3.7 
4.5 
2.1 
4.3 
3.2 
0.3 
7.6 
5.5 
3.2 
6.3 
6.6 
3.3 
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designs is still popular because of its simplicity 
and its greater robustness than combined array 
designs to certain type of model mis-
specification. It is however demonstrated that 
non-ignorable noise-noise interactions may still 
create problems with the crossed array design. A 
method of rectifying these difficulties is 
proposed, but the problem of finding cost 
effective follow up design to complement the 
original design is worth studying. 
 Our approach also assumes the constant 
variance assumption conditional on values of 
both the control and noise factors. If this 
assumption is violated, the response variable 
may have to be transformed to attain constant 
variances before the suggested analysis can be 
carried out. 
 Alternatively, the use of generalized 
linear model (Nelder and Lee, 1991) or the 
approach of Engel (1982) may also be 
appropriate. The choice of an appropriate 
transformation may be facilitated using the 
graphical plot of Box (1988), or the analysis of 
Chan and Mak (1997). However, even if the 
quadratic loss function is used in the original 
metric, the induced loss function in the 
transformed scale is no longer quadratic. In this 
case, the expected loss can be approximated 
using the idea of pseudo observations. This 
approach is equivalent to using Gaussian 
Quadrature to carry out the integration in 
computing the expected loss. As is well known 
the approximation can be improved by using 
more data points for the noise factors in 
generating the pseudo observations. Details will 
not be given here.  
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Testing Normality Against The Laplace Distribution 
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Some normality test statistics are proposed by testing non-nested hypotheses of the normal distribution 
and the Laplace distribution. If the null hypothesis is normal, the proposed non-nested tests are 
asymptotically equivalent to Geary’s (1935) normality test. The proposed test statistics are compared by 
the method of approximate slopes and Monte Carlo experiments. 
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Introduction 
 
In statistical analysis, many models and methods 
rely upon the assumption of normality, which 
should be examined by some adequate tests. 
However, in several data (e.g. economic and 
financial data), the existence of outliers is much 
frequent, and the observations or disturbances 
may have some leptokurtic distributions, where 
the kurtosis is larger than three. In order to 
detect such leptokurtic non-normal distributions, 
we apply the method of non-nested testing 
which has high sensitivity (power) for an 
explicit alternative hypothesis. 
 Based on Cox (1961, 1962) and 
Atkinson (1970), it this article non-nested test 
statistics between the normal distribution and the 
Laplace (or double-exponential) distribution, 
which is a typical leptokurtic distribution are 
proposed.   All   of  the  proposed   test  statistics 
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are asymptotically normal. When the null 
hypothesis is normal, these test statistics are 
asymptotically equivalent to Geary’s (1935) 
normality test statistic. 
 In the context of regression models, the 
maximum likelihood estimator with the Laplace 
distribution error is the least absolute deviation 
(LAD) estimator. Therefore, these test statistics 
are also useful to decide whether the LAD 
regression or the conventional OLS regression 
should be applied. 
 By applying Pesaran’s (1987) strict 
definition of non-nested hypotheses, we find that 
the normal distribution and the Laplace 
distribution are globally non-nested, and that the 
power analysis using Pitman-type local 
alternatives is not available. Therefore, these 
non-nested test statistics are compared by the 
method of approximate slope (or Bahadur 
efficiency) developed by Bahadur (1960, 1967). 
Furthermore, Monte Carlo simulations are 
carried out to compare the small sample 
properties of the proposed tests and other 
conventional normality tests. Simulation results 
indicate that these tests show reasonable 
performances in terms of the size and power. 
  
Non-nested Test Statistics 
 Throughout this article, demeaned 
observations are considered, i.e., the mean is 
assumed to be zero. Let 1( … )nY Y Y= , ,  be 

independently and identically distributed (iid) 
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random variables. Consider the following non-
nested hypotheses: 

21
( ) exp

22
f

y
H f y α

απα
⎡ ⎤

: ; = − ,⎢ ⎥
⎣ ⎦

          (1) 

 

1
( ) exp ,

2g

y
H g y β

β β
⎡ ⎤| |: ; = −⎢ ⎥
⎣ ⎦

                    (2) 

 
where fH  is the normal distribution with zero 

mean, and gH  is the Laplace distribution with 

zero mean. fH  and gH  belong to separate 

parametric families and are called non-nested 
hypotheses. In order to test non-nested 
hypotheses, Cox (1961, 1962) proposed a testing 
procedure based on a modified likelihood ratio. 
When fH  is the null hypothesis and gH  is the 

alternative hypothesis, the Cox test statistic is 
written as 
 

ˆ
ˆˆ( ) ( ) E ( ( ) ( ))f f g f gT L L L L ααα β α β= − − − ,   (3) 

           

where 
1

( ) log ( ; )
n

f i
i

L f yα α
=

=∑  and 

1

( ) log ( ; )
n

g i
i

L g yβ β
=

=∑  denotes the log 

likelihood functions of the hypotheses fH  and 

gH , respectively, α̂  and β̂  denote the 

maximum likelihood estimators under fH  and 

gH , respectively, ˆE ( )α ⋅  is the expected value 

under fH  when α  takes the value α̂ , and 

ˆplimα αβ β=  is the probability limit of β̂  

under fH  as n → ∞ . Define 

 

 

log ( ),i iF f Y α= ; log ( )i iG g Y αβ= ; ,  

log ( )
.i

i

f Y
Fα

α
α

∂ ;=
∂

  (4) 

 

 Cox (1961, 1962) showed that fT  is 

asymptotically normal with zero mean and 
variance 

2C ( )
V ( ) V ( )

V ( )
i i i

f i i
i

F G F
T n F G

F
α α

α α
α α

⎡ ⎤− ,= − − ,⎢ ⎥
⎣ ⎦

  (5)           

 
where ( )Vα ⋅  and C ( )α ⋅,⋅  denote the variance 

and the covariance under fH , respectively. 

 In the same manner, set the Laplace 
distribution gH  as the null hypothesis and set 

the normal distribution fH  as the alternative 

hypothesis. In this case, the Cox test statistic gT  

is written as 
 

ˆ
ˆ ˆˆ( ) ( ) E ( ( ) ( ))g g f g fT L L L L βββ α β α= − − − ,      (6)           

 
where ˆE ( )

β
⋅  is the expected value under gH  

when β  takes the value β̂ , and ˆplimβ βα α=  

is the probability limit of α̂  under gH  as 

n → ∞ . gT  is also asymptotically normal with 

zero mean and variance V ( )gTβ , which is 

defined in the same manner as (4). If V ( )fTα  

and V ( )gTβ  are consistently estimated by 

ˆV ( )fTα  and ˆV ( )gT
β

, respectively, 

 

ˆV ( )f f fN T Tα= / , ˆV ( )g g gN T T
β

= /        (7) 

 
can be used as test statistics which follow the 
standard normal limiting distribution. 
 In setup (1) and (2), obtain 
 

2ˆ
ii

Y nα = /∑ , ˆ
ii

Y nβ = | | /∑ ,                     (8) 

 
 

ˆplim E ( ) 2iYα α αβ β α π= = | | = / ,  
2 2ˆplim E ( ) 2iYβ β βα α β= = = .          (9) 
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Therefore, when the null hypothesis is normal 
and the alternative hypothesis is Laplace, the 
Cox test statistic is 
 

ˆ

ˆ ˆ
log log

2 ˆfT n n
α

β π β
β α

⎛ ⎞ ⎛ ⎞
= = ,⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
       (10) 

 
with the asymptotic variance 3

2 2V ( )fT π
α = − . 

On the other hand, when the null hypothesis is 
Laplace and the alternative hypothesis is normal, 
the Cox test statistic is 
 

2
ˆ

ˆ ˆ
log log

2 2 2g

n n
T

β

α α
α β

⎛ ⎞ ⎛ ⎞
⎜ ⎟= = ,⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

              (11) 

 
with the asymptotic variance 1

4V ( )gTβ = . 

 Next, derive Atkinson’s (1970) test. The 
Atkinson test procedure is derived from the 
comprehensive probability density function 
(pdf), which includes ( )f y α;  and ( )g y β;  as 

special cases. When fH  is the null hypothesis 

and gH  is the alternative hypothesis, the 

Atkinson test statistic is written as 
 

ˆ ˆˆ( ) ( ) E ( ( ) ( ))f f g f gTA L L L L αα αα β α β= − − − .      (12) 

 
Comparing (3) and (12), the difference between 

fT  and fTA  is their second terms. Because the 

Atkinson test fTA  and the Cox test fT  are 

asymptotically equivalent under fH , the 

asymptotic variance of fTA  is same as (5) (see 

Pereira, 1977). Analogous results are obtained 
for the case where gH  is the null hypothesis and 

fH  is the alternative hypothesis. In order to 

conduct the Atkinson test, we can use 
 

ˆV ( )f f fNA TA Tα= / , ˆV ( )g g gNA TA Tβ= /        (13) 

 
as test statistics which follow the standard 
normal limiting distribution. When the null 
hypothesis is normal and the alternative 

hypothesis is Laplace, the Atkinson test statistic 
is: 

ˆ

ˆ ˆ
1 1

2 ˆfTA n n
α

β π β
β α

⎛ ⎞ ⎛ ⎞
= − = − ,⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
       (14) 

 
and when the null hypothesis is Laplace and the 
alternative hypothesis is normal, the Atkinson 
test statistic is 
 

2
ˆ

ˆ ˆ
1 1

2 2 2g

n n
TA

β

α α
α β

⎛ ⎞ ⎛ ⎞
⎜ ⎟= − = − .⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

           (15) 

 
Because the computation of our non-nested test 
statistics (i.e., fN , gN , fNA , and gNA ) needs 

only α̂  and β̂ , their implementation is quite 
easy. 
 fT  and fTA  are related to another 

normality test suggested by Geary (1935). The 
Geary test statistic is written as 
 

2

ˆ

ˆ
ii

ii

Y
G

n Y

β
α

| |
= = ,∑

∑
                         (16) 

 
From (10) and (14), the relationships among G , 

fT , and fTA  are 

 

log
2fT n G
π⎛ ⎞

= ,⎜ ⎟⎜ ⎟
⎝ ⎠

1
2fTA n G
π⎛ ⎞

= − .⎜ ⎟⎜ ⎟
⎝ ⎠

 (17) 

 
Therefore, if the standardized test statistics is 
compared, it can be shown that under fH  the 

Cox test and the Atkinson test are asymptotically 
equivalent to the Geary test. 

 
Power Comparison 
 This section considers theoretical 
properties of the proposed non-nested tests. We 
first investigate the consistency of the Cox test 
and the Atkinson test. Pereira (1977) showed 
that the Cox test is always consistent, but the 
Atkinson test is not always consistent. From (14) 
and (15): 
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1plim 2 1 0 1138fn TAβ π− = / − ≈ − . ,        (18) 

 
1plim (1 2)( 4 1) 0 1073gn TAα π− = / / − ≈ − . .   (19) 

 
Because both fTA  and gTA  converge to non-

zero constants, the Atkinson test is consistent in 
our particular setup. 
 Using Pesaran’s (1987) strict definition 
of the non-nested hypotheses, which is based 
upon the Kullback-Leibler information criterion 
(KLIC), next examine the relationship between 
the normal distribution ( fH ) and the Laplace 

distribution ( gH ). The KLIC for the pdf 

( )f y α;  against the pdf ( )g y β;  is defined as 

 

( ) (log ( ) log ( ))fgI E f y g yαα β α β, = ; − ; .    (20) 

 
Assume that ( )fgI α β,  has a unique minimum 

at ( )β α∗ . Pesaran (1987) defined the closeness 

of gH  to fH  as 

 

( ) ( ( ))fg fgC Iα α β α∗= , .                         (21) 

 
 Similarly, define the KLIC for ( )g y β;  

against ( )f y α;  (denote ( )gfI β α, ) and the 

closeness of fH  to gH  (denote ( )gfC β ). 

Using ( )fgC α  and ( )gfC β , Pesaran (1987) 

classified the relationship between two 
hypotheses into three categories, i.e., nested, 
globally non-nested, and partially non-nested. In 
the case of (1) and (2), ( )fgI α β,  and 

( )gfI β α,  are written as 

 

1 1 2 1
( ) log(2 ) log(2 )

2 2fgI
αα β πα β

β π
, =− + + − , (22) 

 

 

21
( ) log(2 ) log(2 ) 1

2gfI
ββ α πα β
α

, = − + − .  (23) 

 

Because ( ) 2β α α π∗ = /  and 2( ) 2α β β∗ = ,  

2 1
( ) log 0 04842

2fgC α
π

⎛ ⎞= + ≈ . ,⎜ ⎟
⎝ ⎠

          (24) 

 

1
( ) log( ) 0 07236

2gfC β π= − ≈ . .          (25) 

 
Because both ( )fgC α  and ( )gfC β  are nonzero 

constants, fH  and gH  are globally non-nested 

and the power analysis using a local alternative 
is not available (see Pesaran (1987)). 
 Because the Pitman-type power analysis 
cannot be applied, compare the Cox test and the 
Atkinson test by the method of approximate 
slopes developed by Bahadur (1960, 1967). The 
method of approximate slopes compares the 
convergence rates of the significance levels of 
tests (to zero) under some fixed alternative 
hypothesis with some fixed power. 
 Thus, approximate slopes are useful to 
analyze the power properties of tests under 
globally non-nested hypotheses. Let nα�  be the 
asymptotic significance level of some test with a 
given sample size n . The approximate slope is 

defined as 1lim( 2 log )nn α−−
�

. If a test 1T  has a 

greater approximate slope than another test 2T , 

we call that 1T  is Bahadur efficient relative to 

2T . Pesaran (1984) showed that the approximate 

slopes of the Cox test and the Atkinson test are 

given by 1 2plim ( )fn Nβ
−  and 1 2plim ( )fn NAβ

− , 

respectively. Therefore, from (10), (11), (14), 
and (15),  
 

( )( )2

21 2

3
2 2

log
plim 0 2061fn N

π

β π
− = ≈ . ,

−
       (26) 

 

( )2

21 2

3
2 2

1
plim 0 1828fn NA

π

β π
−

−
= ≈ . ,

−
           (27) 

 

2

1 2plim log 0 05835
4gn Nα
π− ⎛ ⎞⎛ ⎞= ≈ . ,⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
     (28) 
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2

1 2plim 1 0 04605
4gn NAα
π− ⎛ ⎞= − ≈ . .⎜ ⎟

⎝ ⎠
         (29) 

 
In both cases (i.e., the null is normal, and the 
null is Laplace), the Cox test is Bahadur efficient 
relative to the Atkinson test. Thus, the Cox test 
has better global power property than the 
Atkinson test. 
 

Results 
 
In order to analyze the finite sample properties 
of the proposed tests, we conduct Monte Carlo 
simulation. In addition to the non-nested test 
statistics in (10), (11), (14), and (15), consider 
the normality tests by Bowman and Shenton 
(1975) (BS), Shapiro and Wilk (1965) (SW), 
D’Agostino (1971) (DA) and Anderson and 
Darling (1954) (AD), which is a modified 
Kolmogorov-Smirnov test, as alternative tests.  

 
 
 

 
 
As the data generating process (DGP), employ 
the   standard  normal,   standard   Laplace,   and 
standard logistic distribution. The sample sizes 
are set as (20 50 100)n = , , . The number of 
replications is 10000. 
 Table 1 shows finite sample rejection 
frequencies of the null hypothesis at the 5% 
level. From this table, the following may be 
seen. First, the Cox test fT  with the normal null 

hypothesis demonstrates better performances 
than the Atkinson test fTA  in terms of the size 

accuracy and power. This power superiority of 

fT  is consistent with the relative Bahadur 

efficiency of fT . Second, comparing to the other 

normality tests, fT  has the highest power when 

the DGP is the standard Laplace distribution. 
Also fT  is second best when the DGP is the 

 
Table 1. Finite sample rejection frequencies of the null hypothesis at the one side 5% level  

DGP n  fT  gT  fTA  gTA  BS SW DA AD 

 20 0.0429 0.1812 0.0368 0.0239 0.0234 0.0469 0.0526 0.0512 

Normal 50 0.0451 0.6167 0.0410 0.4438 0.0353 0.0494 0.0488 0.0509 

 100 0.0498 0.9291 0.0469 0.8875 0.0434 0.0484 0.0525 0.0522 

 20 0.3427 0.0311 0.3012 0.0014 0.2118 0.2498 0.3556 0.2663 

Laplace 50 0.7072 0.0418 0.6945 0.0190 0.5107 0.4105 0.6927 0.5498 

 100 0.9377 0.0460 0.9339 0.0254 0.7783 0.5386 0.9175 0.8265 

 20 0.1184 0.0995 0.1066 0.0108 0.0931 0.1102 0.1497 0.1052 

Logistic 50 0.2549 0.2859 0.2428 0.1678 0.2313 0.1459 0.2984 0.1682 

 100 0.4072 0.5356 0.3957 0.4512 0.3673 0.1289 0.4531 0.2367 
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logistic distribution. Third, the Atkinson test 

gTA  with the Laplace null hypothesis shows 

enough power when the DGP is the standard 
normal distribution. Note that gT  and gTA  can 

provide additional information, which cannot be 
obtained by the conventional normality tests 
based on the normal null hypothesis. 
 

Conclusion 
 

By applying the Cox and Atkinson test, we 
propose the non-nested test statistics of the 
normal and the Laplace distribution. The 
proposed test statistics proposed are 
asymptotically normal, and are easily computed. 
Approximate slopes show that the Cox test has 
better power properties than the Atkinson test. In 
simulation, the Cox test with the normal null 
hypothesis shows higher power for leptokurtic 
distributions comparing to the other normality 
tests. The Atkinson test with the Laplace null 
hypothesis is also useful to analyze 
distributional forms of data. 
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A Discretized Approach to Flexibly Fit Generalized Lambda Distributions to Data 
 

Steve Su 
Epi-stat Division, George Institute for International Health 

Sydney, New South Wales, Australia 
_____________________________________________________________________________________ 
 
This article presents a flexible approach to fit statistical distribution to data. It optimizes the bin-width of 
data histogram to find a suitable generalized lambda distribution. In addition to the default optimization, 
this approach provides additional flexibility akin to the concepts of loess and kernel smoothing, which 
allow the users to determine the amount of details they would like to smooth over the data. The approach 
presented in this article will allow users to visually compare and choose the parameters of generalized 
lambda distribution that best suit their purposes of study. 
 
Key words: generalized lambda distributions, quantile distributions, fitting distributions to data 
_____________________________________________________________________________________ 

 
Introduction 

 
An essential problem in data analysis is to find a 
probability distribution that will adequately fit 
the empirical data. Considerable literature exists 
in this area, ranging from the parametric work of 
generalized lambda distribution (Ramberg & 
Schmeriser, 1974; Ramberg, Tadikamalla, 
Dudewicz & Mykytka, 1979; Ozturk & Dale, 
1985; Freimer, Mudholkar, Kollia, & Lin, 1988; 
Okur, 1988; King & MacGillivray, 1999; Karian 
& Dudewicz, 2000; Lakhany & Massuer, 2000) 
to nonparametric work of kernel density 
estimation (Silverman, 1985). In spite of these 
works, no current work exists on allowing a 
range of possible generalized lambda 
distribution (GλD) fits to data, pending on users’ 
desire to suppress or accentuate certain features 
of the data based on prior knowledge of the 
distribution. This is important when a particular 
method fails to provide a fit that highlights the 
essential features of the data exhibited and 
known by the analyst. In these situations, it will 
often be preferable to explore other plausible 
GλDs. 
 
 
Steve Yu Shuo Su is a Research Fellow at the 
Epi-stat Division of the George Institute, 
affiliated with the University of Sydney. His 
research interests are in applied statistical 
methods in business and epidemiology. Email: 
ssu@thegeorgeinstitute.org. 

This article proposes an extension of the 
existing fitting method using GλD which offers 
more flexibility and in many cases can highlight 
features of the data not considered by the King 
and MacGillivray (1999)’s starship method. 
Instead of optimizing using goodness of fit 
method, this article suggests an alternative 
approach which is to optimize based on the 
number of classes or bins of the data.  The 
number of bins of the data can be determined by 
the user, offering flexibility to suppress or 
highlight details, much like the concept of 
smoothing a data set using different weights in 
loess or kernel smoothing. This is a valuable tool 
in practice because the real distribution of the 
data set is almost never known and the methods 
developed in this article can be used to conduct 
sensitivity analysis to assess the effects of using 
different yet plausible distributions.  

The principal emphasis in this article is 
to allow the user to fit a wide range of different 
distributions to data set rather than to satisfy the 
goodness of fit statistics. Also, the exclusive use 
of goodness of fit statistics in the fitting of 
distribution to data as was done in previous 
works (King & MacGillivray, 1999; Lakhany & 
Massuer, 2000) does not guarantee the resulting 
distribution fit will satisfy the goodness of fit, 
but merely tries to maximize it. The beauty of 
the approach in this article is that it allows the 
data to be represented in different angles. This is 
important because unlike theoretical simulated 
data, real life data is often messy. Very often, 
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real life data does not have a nice continuous 
range of values one can get from theoretical 
simulations. Due to this imperfection, it is often 
desirable to have an alternative data fitting 
method that could provide alternative fits 
beyond the traditional goodness of fit methods. 
This will give the user a possible range of 
distribution fits that could arise from the data set 
and this can lead to valuable sensitivity analysis 
on the impact of different distributions. The use 
of goodness of fit criteria could also enhance the 
credibility of fit under different fits but should 
not discredit it. This is because it is only 
possible to test the goodness of fit of one 
realization of the real life data from its 
underlying distribution, which may or may not 
be representative.  

The article begins with a literature 
review on the existing methods of GλD 
parameters estimation, which progressively 
result in the development of this new method. 
Results of the application of the new methods on 
real life data are then presented and the article 
concludes with a discussion on the shortcomings 
of this new method. 
 
Review of Literature 
 This literature review begins with the 
basic theory of GλD and discusses some of the 
fitting methods reported in literature. The 
literature review then presents two methods that 
appear to give promising results. These two 
methods are extended and discussed in the 
method section.  

The Ramberg-Schmeiser (1974) (RS) 
GλD is an extension of Tukey’s lambda 
distribution (Hastings, Mosteller, Tukey, & C 
1947). It is defined by its inverse distribution 
function: 
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In Expression (1), 0≤u≤1, λ2 ≠ 0 and λ1 
,λ2, λ3, λ4 are respectively the location, scale, 
skewness and kurtosis parameters of generalized 
lambda distribution GλD(λ1 ,λ2, λ3, λ4). In 

particular, Karian, Dudewicz and MacDonald 
(1996) noted that GλD is defined if and only if: 

 

0
)1( 1

4
1

3

2

43
≥

−+ −− λλ λλ
λ

uu               (2) 
]1,0[∈u      

  (2) 
Another distribution known as FMKL 

GλD also exists, due to the work of Freimer 
Mudholkar, Kollia and Lin (1988). This 
distribution is slightly different to RS GλD and 
they overlap when λ3=λ4.  The FMKL GλD can 
be written as: 
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         (3) 
Under Expression (3), 0≤u≤1, and λ1, λ2, 

λ3, λ4 are consistent with the interpretations in 
RS GλD, namely λ1 ,λ2 are the location and scale 
parameters and  λ3, λ4 are the shape parameters. 
In particular, if λ3=λ4=0, both RS and FMKL 
GλD have: 
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 (4) 
The fundamental motivation for the 

development of FMKL GλD is that the 
distribution is proper over all λ3 and λ4 (Freimer, 
Mudholkar, Kollia, & Lin, 1988). This adds 
convenience to users who wish to program this 
function as there are fewer restrictions on the 
values of λ3 and λ4. The only restriction on 
FMKL GλD is λ2>0.  

The extensive use of FMKL GλD is 
reported in Freimer et al (1988). Due to the wide 
range of shapes GλD possesses, for example: U 
shaped, bell shaped, triangular, and 
exponentially shaped distributions and its 
simplicity, it has been used in Monte Carlo 
simulations (Hogben, 1963), the modeling of 
empirical distributions (Ramberg, Tadikamalla, 
Dudewicz, & Mykytka, 1979; Okur, 1988), and 
in the sensitivity analysis of robust statistical 
methods (Shapiro, Wilk, & Chen, 1968). Other 
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research works on GλD concentrate on 
estimating the parameters of the GλD from 
empirical data and these are discussed below. 
In any optimization problem, it is necessary to: 
 

1. Find suitable initial values, and 
2. Choose the appropriate optimization 

scheme. 
 

Perhaps the most common approach has 
been to use method of moments to estimate the 
parameters of GλD as demonstrated in Ramberg 
et al (1979) and Karian and Dudewicz (1996, 
2000).  These works covered only the RS GλD 
and often use tables based on the third and 
fourth moments or percentiles of the data to find 
suitable initial values. The appropriate 
optimization scheme involves finding a GλD 
with parameters λ1, λ2, λ3, λ4 that matches 
closely with the first four moments of the 
empirical data. This is done numerically through 
either the Nelder-Simplex (Nelder & Mead, 
1965) algorithm as in the work of Ramberg, et 
al. (1979) or the Newton-Raphson algorithm or 
tabulated values (Karian & Dudewicz, 2000). 
Karian and Dudewicz (1996) also discussed the 
use of the generalized beta distribution to model 
the distributions that were not covered by the 
original RS GλD. In Karian and Dudewicz 
(2000), an alternative method is also 
demonstrated which matches the RS GλD with 
the parameters λ1, λ2, λ3, λ4  based on the first 
four percentiles of the data set. This is a 
variation on the same theme of the matching of 
moment method but one in which Karian and 
Dudewicz (2000) reported can produce better 
fits than in the case with other methods of 
moment matching under RS GλD.  

In a different line of work, Ozturk and 
Dale (1985) used a version of least squares 
estimation to find the parameters of RS GλD. 
They derived the squared distance between 
empirical data points with the expected values of 
the order statistics, and numerically minimized 
this measure using Nelder-Simplex method to 
derive parameter estimates for the RS GλD. 

The literature recognizes that matching 
the first four moments or using the “least 
squares” method by Ozturk and Dale (1985) 
does not necessarily produce a good fit to the 
data (Karian & Dudewicz, 2000; Lakhany & 

Massuer, 2000). This is due to different 
parameters of the GλD can results in the similar 
first four moments. For example, in the case of 
the least squares method by Ozturk and Dale 
(1985), the goal of minimizing the squared 
distance between empirical data points with the 
expected values of the order statistics of GλD 
does not necessarily coincide with the formal 
goodness of fit objective such as the 
Kolmogorov-Smirnov Goodness-of-Fit Test. 

It is precisely the need to assess the 
resulting fit with the goodness of fit objective 
that King and MacGillivray (1999) used the 
starship methods. In the starship method, grid 
points comprising of λ1, λ2, λ3, λ4 aimed at 
covering a wide range of GλD, calculated from 
the sample quantiles. Then, for each of the grid 
points the theoretical GλD was transformed into 
uniform distribution and goodness of fit 
statistics like Anderson-Darling test statistics or 
Kolmogorov-Smirnov test statistics were 
calculated. The set of grid points with the lowest 
Anderson-Darling statistics was then being 
chosen as the initial values for optimization, 
usually through the Nelder-Simplex algorithm. 
The resulting values from the optimization 
scheme are the parameter estimates of the GλD, 
given by starship method.  

Lakhany and Mausser (2000) suggested 
a variation of using re-sampling method 
combined with the method of moments and a 
goodness of fit test via the FMKL GλD. They 
first generated initial values for the method of 
moment matching via quasi random number 
generator (i.e., the Sobol sequence generator 
(Bratley & Fox, 1988)), and then found the set 
of values λ1, λ2, λ3, λ4 that matched optimally 
(through the Nelder-Simplex algorithm) with the 
first four moments from the data. This set of 
values was then evaluated through a goodness of 
test statistic such as adjusted Kolmogorov-
Smirnov test statistics. Under this method, any 
solution that results in a p-value > 0.05 is 
accepted. Lakhany and Mausser (2000) 
commented that this method is much more 
efficient time-wise than the starship method 
developed by King and MacGillivray (1999) and 
allows for automatic restarts from different 
initial values to help to find a distribution that 
will adequately fit the data. The use of p-values 
in the optimization scheme, however, can be 



www.manaraa.com

STEVE SU 411 

somewhat problematic. The deficiency of p-
values is well known, since failure to reject does 
not mean the hypothesis is true since it may be 
that the sample size is too small to be able to 
detect differences between the empirical and 
fitted data. Conversely, rejection of the 
hypothesis does not mean the fitted model is 
inappropriate, as the user may have a different 
purpose to fitting the data other than to satisfy 
the goodness of fit criteria.  

An important improvement of Lakhany 
and Mausser (2000)’s approach is the flexibility 
of fits it offers to the users. As different initial 
values are chosen, different results can be 
obtained. However, this flexibility is rather 
limited as the users have no real control over the 
amount of smoothing they would like to achieve.  

The current literature does not appear to 
cover a comparison of the method of percentiles 
from Karian and Dudewicz (2000) with the other 
methods like starship by King and MacGillivray 
(1999), nor with the automatic re-sampling 
methods of Lakhany and Massuer (2000). The 
method below will consider both the method of 
percentiles under RS GλD and the method of 
moments under the FMKL GλD. The rationale is 
that the existing literature appears to recommend 
these two methods hence these methods are 
chosen for extension to offer greater flexibility 
of fit than the methods previously reported.  

A detailed discussion of the method of 
percentiles using the RS GλD and the method of 
moments using FMKL GλD is outlined below. 

Method of percentiles using the RS GλD:  

The following is obtained directly from 
Karian and Dudewicz (2000). For a given data 
set X with values x1, x2, xn, the p-th percentile 
defined by Karian and Dudewicz (2000) is 

)( 1

^

rrrp yyky ++= +π , where Y= y1, y2,… yn 

are sorted values of X in ascending order and r is 
the truncated value of (n+1)×p with k being 
(n+1)×p-r. 

Instead of using the first four moments, 
the following statistics are used: 
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5) 
where v is an arbitrary number from 0 to 0.25.  
 

The relationship between the theoretical 
ρ1, ρ2, ρ3, ρ4 and λ1, λ2, λ3, λ4 in the RS GλD is as 
follows: 
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6) 
The condition ]1,0[,0,0, 4321 ∈ρ≥ρ≥ρ∞<ρ<∞−  

must also be true, which is a direct consequence 
of the definition of ρ1, ρ2, ρ3, ρ4. In Karian and 
Dudewicz (2000), a fit for the GλD is found by 
solving Expression (7) through the use of tables. 
This can also be solved this numerically via 
Newton-Raphson method. 
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7) 
In the extended method described 

below, however, the following minimization 
scheme in Expression (8) is used. Once λ3, λ4 are 
obtained, λ1, λ2 can be obtained directly via 
Expression (6).  
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Method of Moments under the FMKL GλD: 

In an alternative approach, Lakhany and 
Mausser (2000) used the method of moments for 
the FMKL GλD. The following are extracts 
from Lakhany and Mausser (2000):  

For a given data set X with values x1, 
x2,… xn, the i-th moment αi is defined in 
Expression (9). 
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Putting a= 
2

1

λ
 and b= 

4221
1

11

λλ
+

λλ
−λ , with Y=(X-b)/a, using 

( )∫
−=

1

0

1 )()( duuFXE
kk  and binomial 

expansion gives Expression (10). 

∑

∫∑

∫

=
−

=

λ

−

−λ

λλ

+λ+−λβ
λλ

−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

λ
−−

λ
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

λ
−−

λ
=

=

k

oi
43j

4
jk

3

j

k

1

0

k

oj
j

4

j

jk
3

)jk(
j

k

1

0 43
k

k
k

)1j,1)jk((
)1(

j

k
s

du
)u1(u

)1(
j

k
s

du
)u1(u

s

)Y(Es

43

43

      (10) 

10) 
In Expression (10), β(*) denotes beta 

function. Note that both arguments of the beta 
function must be positive, implying that min(λ3, 
λ4) > -1/k if the distribution is to have finite k-th 
moments. The k-th central moment (except for 
the first which is the mean) of the distribution 

)(1 uF − denoted as µk are hence given in 
Expression (11). 
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The theoretical α3 and α4 are given in 
Expression (12). 
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The same methodology now follows as 
from Lakhany and Mausser (2000). They 
propose to find λ3, λ4 by minimizing Expression 

(13), where 3

^

α  and 4

^

α  are sample values using 
sample moments. 
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Once λ3, λ4 is determined it is possible to find λ1, 
λ2 as shown in Expression (14). 
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Extension of previous methodology 

 The principle underlying earlier 
methods (King & MacGillivray, 1999; Lakhany 
& Massuer, 2000) is to use goodness of fit as a 
criteria to determine whether the resulting GλD 
fits the data adequately. However this, as will be 
demonstrated later, does not give the potential 
for a wide range of different plausible 
distribution fits to data. 

The new method described here uses the 
percentile method from Karian and Dudewicz 
(2000) and the method of moments with the 
FMKL GλD. It also uses quasi random numbers 
to find initial values, but the optimization can be 
based on the number of classes or bins the user 
specifies. This optimization scheme allows users 
to suppress or accentuate part of the distribution 
as desired, a feature that is not explicitly 
considered in other methods. The range of initial 
values should be chosen based on the shape of 
the distribution shown by the histogram, or they 
maybe left unspecified with a default set of 
values chosen.  

 
 
 
 

A full description of the algorithm is 
provided below: 
 

1. Specify a range of initial values for λ3, 
λ4, and the number of initial values to be 
selected. Here, the λ3, λ4 are set by 
default to range from -1.5 to 1.5 for the 
RS GλD percentile method and -0.25 to 
1.5 for the FMKL GλD method of 
moment. These default values are from 
author’s clinical experiences and appear 
to work well in most situations. It is 
possible to change these initial values if 
desired. 

 
The quasi random generator used is 

based on the work of Hong and Hickernell 
(http://www.mcqmc.org/Software.html) and the 
scrambling method of Owen (1995) and Faure 
and Tezuka (2000). This code is available from 
the beta resample library in Splus 6.0 and 
scrambling methods are applied so that the 
numbers generated fills uniformly onto the λ3, λ4 
two dimensional space. To increase the speed, it 
is possible to set the initial values where λ3= λ4. 
This appears to work well in many situations. By 
default, 100 of such initial values are chosen in 
this case and used in step 2. 
 

2. Evaluate λ1, λ2 for each of the initial 
values λ3, λ4. Remove all the set of 
values that do not: 

a. Result in a legal 
parameterization of GλD. 

b. Span the entire region of the 
data set.  

 
From these sets of initial points, find the 

values of λ3, λ4 that matches closely with the 
data. This is to generate a set of initial values 
that produce the lowest values in Expression (8) 
and Expression (13), to be used as initial values 
in the optimization process.  
 

3. Sort the sample data in ascending order, 
and divide the data set into evenly 
spaced classes with bin edges that span  

 
  
 
 



www.manaraa.com

FIT GENERALIZED LAMBDA DISTRIBUTIONS TO DATA 
 
414 

 the data set. Calculate the proportion of  
 the sample out of the total sample in 
 each class. Hence Table 1 maybe 
 constructed: 
 

Table 1 Calculating proportion of data in each class 
 

Classes 1.5-2 2-2.5 2.5-3 3-3.5 Sum 
Proportion 
of data 

0.1 0.6 0.2 0.1 1 

 
Table 1 shows four classes, with the 

proportion of the data set falling in each class in 
the second column. Let the proportion of data in 
each class be denoted di for i=1,2,3..n classes 
and the proportion of data from the theoretical 
GλD be the vector ti for i=1,2,3…n classes. The 
quantity that one wants to minimize is: 

 

∑
=

−
n

i
iii tdd

1

2)(          (15) 

15) 
Expression (15) is the weighted squared 

deviation of the theoretical proportions with the 
actual data proportions. This is weighted so that 
the data with higher proportions are given 
priority in the minimization scheme. The 
resulting fit will then be more likely to capture 
the majority of the data. The weighting factor di 
can be removed if desired. In addition, this 
optimization scheme also rejects estimations that 
do not span the entire data set. 

The number of classes, n, can be solely 
determined by the user, or determined by the 
formula devised by this article (discussed 
below), or via previous literature works as in 
Sturges, Scott (1979; 1992) or Freedman  and 
Diaconis (1981). 

Sturges’ formula is based a bin width of:  
 

)1m/(log)data(range 2 +              (16) 
 
This strategy often results the bin width being 
too wide as reported in Venables and Ripley 
(2002), and has the disadvantage that “outliers 
may inflate the range and increase the bin width 
in the centre of the distribution.”   

Hyndman (1995) also argued that the use of 
Sturges’ formula should be avoided since there 
is no sound statistical backing to its derivation. 

 Scott (1979) used 3/1
^

5.3 −mσ  , 
although Freedman & Diaconis (1981) proposed 

3/12 −Rm , where R is the inter-quartile range 

and 
^

σ  is the estimated standard deviation from 
the data, and m is the number of observations in 
the data. Freedman & Diaconis’s (1981) use of 
inter-quartile range is more robust against 
outliers and tends to choose smaller bins than 
the formula by Scott (1979). More complicated 
rules are also available in Scott (1992) but they 
are not discussed here.  

The methods developed in this article 
calculate the default number of classes to be 
optimized over as the one that gives ζ: the 
minimal squared error between the first two 
moments of the categorized data with the actual. 
For example, in the context of Table 1, the first 
two moments of the categorized data can be 
calculated using the following table, which takes 
the mid point of the class intervals and treat the 
data as discrete. The mean and variance of data 
shown in Table 2 are 2.4 and 0.1525 
respectively; this is then compared with the 
actual mean and variance of the continuous data 
with the squared error subsequently calculated. 
The number of classes chosen for optimization 
would be the one with minimal squared error or 
ζ. It is possible to choose any other number of 
classes such as the formula in Scott (1979) and 
Freedman & Diaconis (1981). 
 
Table 2 Calculating mean and variance from Table 1 
 
Observation 1.75 2.25 2.75 3.25 Sum 
Proportion 
of data 

0.1 0.6 0.2 0.1 1 

 
The philosophy for this approach is to 

choose the number of classes that best represents 
the first two moments of the data, so that the 
distribution fitted would resemble more or less 
an accurate representation of the data set. 

Although formulas for determining the 
optimal bin width for the histograms interval do 
exist, users can exercise their judgments by 
choosing the number of classes. Generally 
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speaking, higher number of classes will result in 
details of the distribution being accentuated, 
while lower number of classes will tend to 
suppress details of the distribution.  
 

4. The optimal result can be obtained via 
the Nelder-Mead Simplex algorithm or 
another suitable numerical optimization 
algorithm. It is advisable to re-use the 
initial values in the optimization process 
to ensure the result obtained is a global 
minimum rather than a local minimum. 
Steps 1 to 3 may be repeated if 
necessary, where the number of classes 
and the range of initial values can be 
adjusted until the results are deemed 
adequate. The final fitting result can be 
examined by plotting the result on the 
histogram with the fitted line as well as 
testing the goodness of fit using the 
Kolmogorov-Smirnov (KS) test. 

Results 

 
The analysis below is divided into two parts. 
The first part is a theoretical comparison 
between data fitting methods with well known 
statistical distributions. A two sample KS test is 
carried out by sampling 100 points from the 
theoretical and fitted distributions and the 
number of times the p-value exceeds 0.05 is 
recorded over 1000 times. This will give the user 
an independent measure as to the adequacy of 
fits beyond a visual comparison. The second part 
shows the fitting method over some real life 
data, and the goodness of fit test is carried out on 
the comparison between sampling 90% of the 
real life data with the fitted data using two 
sample KS test over 1000 runs. 
 This is also known as the Monte Carlo 
KS test in this article. It is worth cautioning that 
the use of goodness of fit as a measure for 
quality of fit would bias methods that seek to 
maximize goodness of fit. In fact, it is a circular 
logic. The use of goodness of fit to assess the 
quality of fits used in this article will not suffer 
from this problem, but it needs to bear in mind 
that the objective of fit in this article was not  to 
maximize the goodness of fit,  and  so  it  may  
not   always  be  as  high  as starship method 
(STAR) which uses standard statistical goodness 

of fit such as Kolmogorov-Smirnov and 
Anderson Darling test statistics in its data fitting 
algorithm. 

The following compares between the 
revised percentile method of the RS GλD 
(RPRS), the revised method of moment under 
the FMKL GλD (RMFMKL) and the STAR 
method. Previous literature such as King and 
MacGillivray (1999), Lakhany and Mausser 
(2000), and Karian and Dudewicz (2000) have 
already covered comparisons between the 
starship methods, the GλD under the RS and 
FMKL GλD using the method of moments and 
percentiles as well as the least square method 
used by Ozturk (1985); hence these will not be 
repeated here.  

Commentary 

The modified methods RPRS and 
RMFMKL are perhaps not appropriately termed 
as the percentiles and method of moments are 
not used in the optimization step but only for 
choosing the initial values for the optimization 
process. However, the differences in the two 
methods highlight the fact that the choices of 
initial values and type of GλD are important in 
the outcome of these extended methods, since 
different results are obtained even though both 
methods undergo the same optimization scheme.  

Comparison with Theoretical Distributions 

Figure 1 and Table 3 show the resulting 
fits of RPRS, RMFMKL and STAR on well 
known statistical distributions. Using the default 
fitting method described above, RPRS and 
RMFMKL are very close to the actual 
distribution in Figure 1. This result is further 
confirmed in Table 3, where more than 90% of 
the time, the Monte Carlo KS test will indicate 
there is no difference between the fitted and 
actual distributions. 

The real interest of the method of this 
article is not in the fitting of theoretical 
distributions. In the theoretical simulation it is 
possible to compare between the actual and 
approximate distributions, but not so in practice. 
It is precisely the reason that one does not know 
the real underlying distribution of real life data, 
one needs a flexible fitting method that could 
allow us to assess different distribution fits and 
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the stability of distribution fits under different 
data representations by the histogram.  

The following real life examples will 
compare different cases where different methods 
work well under different situations. It will also 
use the Monte Carlo KS tests results to 
demonstrate the quality of fit under the goodness 
of fit objective.  
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Figure 1: Demonstrating the distribution fits of well 
known statistical distributions. 
 

Table 3: Monte Carlo KS goodness of fit tests results 
over 1000 runs. A value close to 1000 indicates high 
level of confidence of a good fit. 
 
Distribution RPRS RMFMKL STAR 
normal(0,1) 941 966 955 
student(5) 943 940 960 
exp(1) 945 905 944 
gamma(5,3) 957 960 961 
lognormal(0, 967 977 969 
weibull(5,2) 964 968 952 
beta(1,1) 970 963 970 
beta(3,3) 966 966 959 
f(6,25) 939 964 961 
chisq(5) 962 966 958 
 

 
Dataset used 

The datasets used in here were supplied 
by research works of Sabri Hassan and Victoria 
Clout at School of Accountancy in Queensland 
University of Technology, Australia. The dataset 
by Sabri Hassan is based on 44 Australian 
extractive industries firms, listed on the ASX 
(Australian Stock Exchange) from 1998 to 2001. 
The dataset used is based on the mean value of 
each individual company over four years. 
Market to Book values (sh.mtb), transparency 
(sh.transp), and profit (sh.profit) variables were 
extracted and used in this demonstration.  There 
are 176 observations in this data set and the 
goodness of fit test below will sample 160 
observations from this data set and the fitted 
distribution. 

Victoria Clout’s data consisted of 361 
US firms, listed on the S&P500.  The selection 
requirements were December year-end firms for 
the 1977 to 1995 period. Similarly, the data used 
is based on the mean values for each company 
over the 12 years period. Market to Book ratio 
(vc.mbr), Ratio of cash and marketable 
securities over current assets (vc.flex), return on 
assets (vc.roa) were used in this demonstration.  
There are 143 observations in this data set and 
the goodness of fit test below will sample 130 
observations from this data set and the fitted 
distribution. 

In addition to financial data, geological 
data (faithful) on the duration of 272 eruptions 
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from the Old Faithful geyser in Yellowstone 
National Park (Hardle, 1991) was also used.  

The following examples are designed to 
demonstrate the flexibility the new methods 
which can fit alternative, convincing 
distributions other than suggested by the starship 
method. It also designed to offer a balanced 
view on some of the possible deficiencies of this 
method in relation to satisfying the goodness of 
fit tests.  

Figure 2 is an example of graphical 
over-fitting by the STAR method, and how the 
use of default settings described in this article 
appears to give a more adequate fit. The number 
of classes to be optimized over is 12, using the 
default calculations. The histogram shown in 
Figure 2 is plotted using 100 classes. Using the 
Monte Carlo KS test, the results are 0, 7 and 732 
for RPRS, RMFMKL and STAR respectively. 
This suggests that STAR is the best fit among 
the three under the Monte Carlo KS test.  It is 
however possible to improve the Monte Carlo 
KS test of the RPRS fit by increasing the 
number of classes to be fitted.  
 
Example 1: sh.mtb 
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Figure 2: Fitting of sh.mtb data using RPRS, 
RMFMKL and STAR methods. The extreme scale is 
due to an extreme outlier, which is retained for 
illustrative purposes. For example, a certain process 
may have a huge loss with a very small probability, 
but it is nevertheless important to model that 
scenario. 
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Figure 3: Fitting of sh.mtb data using RPRS, 
RMFMKL and STAR methods using 150 classes. 
This shows how it is possible to fit using different 
histogram bin widths to improve the goodness of fit.  
 
 Figure 3 shows the result of such fit 
graphically and the Monte Carlo KS results are 
585, 561 and 749 for RPRS, RMFMKL and 
STAR. A real strength of the method developed 
in this article is that it gives a range of plausible 
fits which the goodness of fit could be assessed 
objectively. For example, it can be considered 
that the results in Figure 2 are less likely to be 
the real representation of the data than Figure 3. 
 
Example 2: sh.transp, alternatives suggested by 
RPRS, RMFMKL: 
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Figure 4: Figures showing fitting of sh.transp data 
using RPRS, RMFMKL and STAR, the first 
histogram uses 100 classes while the second 
histogram uses 50 classes. 

 
 
 

The graphs in Figure 4 show two 
histograms with 100 and 50 classes with the 
default optimization classes to be optimized over 
being 31. STAR failed to capture the upward 
trend of the data. If it is desirable to reach the 
peak of the histogram data with 100 classes, it is 
possible to refit RPRS and RMFMKL over 100 
classes, resulting in Figure 5. Using 50 or 100 
classes will result in Monte Carlo KS test results 
of 0, 0, and 300 for RPRS, RMFMKL and 
STAR. 
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Figure 5: Figure showing alternative fitting of 
sh.transp sh.transp by RPRS and RMFMKL using 
100 histogram classes. 
 

This suggests that none of the methods 
appear to work well in this case, as STAR 
although the best out of the three in the Monte 
Carlo KS test, only really can be said to 
represent the data 3 times out of 10. In situation 
like this, where none of the method appears to 
work well, it is useful to explore other plausible 
fits and conduct sensitivity analysis to examine 
the impact on a particular analysis using 
different distributions. 
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Figure 6: Figure showing alternative fitting of 
sh.transp using 12 histogram classes. 

 
Figure 6 shows how STAR captured a 

different representation of the dataset; by 
manually adjusting the classes of histograms to 
12, the fit by STAR appears to be more 
plausible. Alternative fits by RPRS and 
RMFMKL using 12 classes appears to represent 
the data well. This example highlights the 
importance of allowing alternative methods, 
since they can give different and possibly valid 
representations to the same data set. The Monte 
Carlo KS test results are 23, 2 and 290 for 
RPRS, RMFMKL and STAR. It also shows the 
flexibility of RPRS and RMFMKL which can 
give different fits to the data set depending on 
the number of classes specified. An additional 
analysis showing the effect of changing number 
of classes from 5 to 55 and the corresponding 
RPRS and RMFMKL fits is shown in Figure 7. 
All the Monte Carlo KS test results under each 
of the class suggest 0, 0 and 300 for RPRS, 
RMFMKL  and  STAR  respectively. The graphs  

 
 
 

show how different fits may be obtained by 
varying the number of classes and it is possible 
these may not change the result of the Monte 
Carlo KS tests at all. The sharp spike exhibited 
in Figure 7 for 15 classes is characteristic of 
RPRS fits, as will be shown in more examples 
below. 
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Figure 7: Figure showing alternative fitting of 
sh.transp using different histogram classes. 

 
Example 3: vc.leverage, similar results: 

This example shows that consistent 
results can often be obtained between different 
methods. RPRS and RMFMKL used 89 classes 
by default calculations in this case. The result is 
shown in Figure 8 below with the histogram 
exhibiting 100 classes. The Monte Carlo KS 
tests suggest 882,887 and 945 for RPRS, 
RMFMKL and STAR respectively. It is 
normally the case that STAR has somewhat 
higher goodness of fit score, owing to its fitting 
objective. 
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Figure 8: Figure showing fitting of vc.roa data using 
RPRS, RMFMKL and STAR. All methods give 
similar results. 

 
Example 4: vc.mbr  

RPRS and RMFMKL used 20 classes by 
default calculations in this optimization scheme. 
Figure 9 shows a histogram with 100 classes, 
and all methods give different representations to 
the dataset. They are all valid representations as 
suggested by Monte Carlo KS tests, with 929, 
887 and 934 for RPRS, RMFMKL and STAR. A 
striking feature is that RPRS is similar to 
RMFMKL and they appear to capture the peak 
of data better than the STAR method. An 
additional analysis showing the effect of 
changing number of classes from 5 to 55 and the 
corresponding RPRS and RMFMKL fits is 
shown in Figure 10. This example shows how 
plausible fits can be gauged by using the method 
described in this article. Table 4 shows the 
resulting Monte Carlo KS tests for different 
number of classes and it can be used to as a 
rough guide  as to how credible certain fits are to  

 
 
 
 
 

the data set. For example, for RMFMKL, the 
most plausible fits are from classes of 15 and 35. 
This example at Table 4 also shows that the 
method developed in this article can be as good 
as STAR method, in addition to offering 
flexibility to provide convincing fits. 
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Figure 9: Figure showing fitting of vc.mbr data using 
RPRS, RMFMKL and STAR. RPRS and RMFMKL 
appear to represent the peak of the data better than 
STAR.  

 
 
 

Table 4: Monte Carlo KS test for vc.mbr over different 
number of classes 

 
     Classes 
 
Method 5 15 25 35 45 55 

RPRS 481 940 933 905 908 873 

RMFMKL 354 929 713 932 812 778 

STAR 932 930 923 917 942 925 
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Figure 10: Figure showing alternative fitting of 
vc.mbr using different histogram classes. 

 
Example 5: faithful, bimodal data, splitting fits by 
STAR, RPS and RMFMKL: 
 This last example shows cases where it 
may be difficult to fit the data adequately when 
one encounters a bimodal shaped data. In such 
cases, the data can be divided into two with two 
different distributions fitted on each side. 
Problem can arise when the end points do not 
match as appeared to be possible with the STAR 
method in this case. However, as shown in 
Figure 11, this can be easily corrected for 
example, by setting the optimization scheme to 
only include distributions that have maximum 
values less or equal to 3 for the distribution on 
the left hand side, and the distribution to have 
minimum values bigger or equal to 3 on the right 
hand side.  
 The original default number of classes 
was 52 on the RHS of Figure 11 and it does not 
satisfy the Monte Carlo KS test well, with 614 
and 187 for RPRS and RMFMKL. Instead of 
using the default class calculation, the number of 
classes was manually adjusted to 20 and this 
result in Monte Carlo KS test of 855, 873 and 
890 for RPRS, RMFMKL and STAR. On the 
LHS the default setting of 15 classes satisfy the 

Monte Carlo KS test well, resulting in 921, 927 
and 917 for RPRS, RMFMKL and STAR and 
very similar fits. Figure 11 shows three plausible 
alternative fits and it is possible some data set 
may require a mixture of RS and FMKL GλD. 
The alternative fit by KDE is also provided in 
Figure 12 for comparison purposes. Figure 12 
shows two different fits using KDE. However, 
the KDE fit, in an attempt to reach the more 
extreme points of the histogram became less 
smooth. This rugged appearance will not occur 
from using generalized lambda distributions. 
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Figure 11: Figure showing fitting of eruptions data 
using RPRS, RMFMKL and STAR and the use of 
splitting techniques in fitting bi-modal shaped data. 
The values below 3 are fitted first and the values 
above 3 are fitted later.  
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Figure 12: Graph showing two different KDE fits for 
the eruptions data.  
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Application of fitting distributions to data using 
GλD, and a comparison to Kernel Density 
Estimation method 
 The use of RPRS or RMFMKL can help 
users to model a wide variety of distributions as 
well as acting as a smoothing device with the 
flexibility of increasing or decreasing levels of 
details of the data. Another method that allows 
for density estimation is Kernel Density 
Estimation (KDE) (Silverman 1985). This is a 
nonparametric method of estimating the 
distribution of the data and can often result in a 
rather rugged appearance compared to the 
smooth fits from using GλD. Another advantage 
of using GλD is that the parametric form of the 
function is known. Consequently, mathematical 
analysis on the function is possible. In 
considering re-sampling from the modeled 
distributions for simulation purposes, both KDE 
and GλD could be used.  
 
Simulation from KDE and GλD 

Simulation from KDE is a simple 
exercise. KDE calculations give k sets of 
(x1,y1)… (xk,yk) co-ordinates which span the 
distribution of the data. For each consecutive set 
of points, the area under the line is a trapezium. 
Let this area be t1, t2,… tk-1.  

Assume one want to sample n numbers 
from the KDE distribution. For each of the 
interval i=1,2,3,… k-1, calculate nti, and 
generate nti numbers from a uniform distribution 
on the interval, repeating the process for all k-1 
intervals.  

Simulation from GλD simply requires 
generating n uniform distribution over [0, 1] and 
substituting the result into Expression (1) for the 
RS GλD and Expressions (3) for the FMKL 
GλD.  

Shortcomings of the RPRS AND RMFMKL 

 All methodologies have their 
shortcomings, and the method devised here is no 
exception. The design of the RPRS and 
RMFMKL can suffer from the following 
deficiencies.  

1. Different results in different runs for the 
same settings. RPRS and RMFMKL is 
based on re-sampling methods over the 
specified range of initial values, hence 
different runs will result in different 

initial values being chosen. This is the 
reason sampling is based on scrambled 
quasi random sampling (Owen 1995; 
Hong & Hickernell, 2002) available 
from the Splus beta resample library, so 
that the values span evenly throughout 
the ranges each time.  In most cases 
there are no dramatic changes between 
each run; however situations do occur 
when the one run results in a better fit 
than other runs. This problem can be 
minimized by increasing the number of 
values to be sampled in the region. For 
example, if one million points were 
chosen over the span of [-1.5, 1.5] then 
dramatic changes in the result between 
different runs would be less likely.  

 
2. Optimization method converges falsely 

or do not converge. This is a problem 
associated with all numerical 
optimization schemes, rather than 
related to this method directly. The 
program written for RPRS and 
RMFMKL allows for the quasi-Newton 
method, conjugate gradients method 
(Fletcher & Reeves, 1964), the Nelder-
Mead algorithm (Nelder & Mead, 1965) 
and SANN (Belisle, 1992). Hence if one 
optimization method fails, the other 
methods can be used instead. So far the 
use of Nelder-Mead algorithm has 
proven to be effective in the cases 
examined here and no case of non 
convergence have occurred in the 
application of this optimization 
procedure. 

 
3. Subjective choice of the number of 

classes required. Considerable 
difficulties can arise when choosing 
number of classes for optimization. 
While this flexibility is intended, it also 
may allow data analysts to manipulate 
the results and choose a method that 
appears to suit their needs, rather than 
one that is the most representative of the 
data. This deficiency does not affect the 
starship method, which only allows one 
optimal output based on the goodness of 
fit measure.  
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Conclusion 
 
The exposition in the result section shows the 
methods developed in this article can offer good 
alternatives of fitting distribution to data in 
terms of satisfying Monte Carlo KS tests.  While 
the use of RPRS and RMFMKL offers great 
flexibility, it also offers rooms for subjective 
bias in selecting the adequate fit. The use of 
goodness of fit statistics, however, can help the 
user to determine the likelihood of a certain 
distribution fit in the absence of expert 
knowledge of the underlying data set. 
 In some situations, where the goodness 
of fit statistics cannot be adequately satisfied the 
user could use the methods developed in this 
article to conduct sensitivity analysis on the 
impact of results using different distributions. 
Lastly, improvement on the current RPRS and 
RMFMKL is also possible by at least two ways, 
by either improving the optimization algorithm 
or set an algorithm to quickly find plausible 
initial values. 
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Testing Goodness Of Fit Of The Geometric Distribution: 
An Application To Human Fecundability Data 

 
Sudhir R. Paul  

Department of Mathematics and Statistics 
University of Windsor 

 
 
 
A measure of reproduction in human fecundability studies is the number of menstrual cycles required to 
achieve pregnancy which is assumed to follow a geometric distribution with parameter p. Tests of 
heterogeneity in the fecundability data through goodness of fit tests of the geometric distribution are 
developed, along with a likelihood ratio test statistic and a score test statistic. Simulations show both are 
liberal, and empirical level of the likelihood ratio statistic is larger than that of the score test statistic. A 
power comparison shows that the likelihood ratio test has a power advantage. A bootstrap p-value 
procedure using the likelihood ratio statistic is proposed. 
 
Key words: Beta-geometric distribution; bootstrap p-value; fecundability data; geometric distribution; 
likelihood ratio test; score test.  
 
 

Introduction 
 
The geometric distribution is important in many 
real life data analyzes. For example, in 
fecundability studies (Weinberg & Gladen, 
1986), the number of cycles required to achieve 
pregnancy would be distributed as a geometric 
distribution with parameter p. However, in real 
life data situations, the actual variation of the 
data may exceed that of the geometric 
distribution, as the parameter p may not remain 
constant in the course of the experiment. It is 
then useful to assume that the parameter p varies 
from observation to observation. One can 
assume one of many continuous distributions for 
p in the parameter space 0<p<1. But, the most 
convenient and most sensible distribution for p 
is the beta distribution, because it is the natural 
conjugate prior distribution in the Bayesian 
sense. 
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It also produces a convenient mixed distribution, 
namely, the beta-geometric distribution. The 
parameters of this mixed distribution have 
practical interpretation. In some other analogous 
applications, such as in Toxicology, the beta-
binomial distribution arises as a beta mixture of 
the binomial distribution (Weil, 1970; Williams, 
1975; Crowder, 1978; Otake & Prentice, 1984).  

It is assumed that ~p|Y geometric 

distribution. Let  pq −= 1 . Then, the 
probability function of Y is  

.)|( 1 pqqyYP y−==  
In human reproduction the random 

variable Y may be the number of menstrual 
cycles required for conception in which the 
parameter p may be interpreted as the pre-cycle 
conception probability or a measure of 
fecundability (Weinberg & Gladen, 1986). It is 
assumed that the parameter p is fixed for a given 
couple, but across couples it varies according to 
some unspecified underlying distribution which 
is assumed to be beta with probability density 
function given by  

 

,p,
),(B

)p(p
),|p(f 10

1 11
<<−=

−−

βα
βα

βα
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where  
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is the beta function and where  )a(Γ  is the 
gamma function:   
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This distribution is known as the beta-

geometric distribution. In the human 
reproduction literature P(Y=y) is the probability 
that conception occurs at y for a randomly 
selected couple. The beta-geometric distribution 
can be written in terms of the parameter  

)/( βααπ += and )/( βαθ += 1 , where p is 

interpreted as the mean parameter and θ  as the 
shape parameter (Weinberg & Gladen, 1986), 
which is given in what follows.  
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corresponds to the geometric distribution with 

mean  
p

1
  and variance .

p
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The purpose of this article is to develop 
tests of goodness of fit of the geometric 
distribution against the beta-geometric 
distribution. A score test and a likelihood ratio 
test are developed. The score test (Rao, 1947) is 
a special case of the more general C(α ) test 
(Neyman, 1959) in which the nuisance 
parameters are replaced by their maximum 

likelihood estimates which are N consistent 
estimates (N=number of observations used in 
estimating the parameters) . The score or the 
C(α ) class of tests (i) often maintain, at least 
approximately, a preassigned level of 
significance (Bartoo & Puri, 1967), (ii) require 
estimates of the parameters only under the null 
hypothesis, and (iii) often produce statistics 
which are simple to calculate.  

These tests are robust in the sense that 
their optimality remain true whatever the form 
of the distribution assumed for the data under 
the alternative hypothesis - a property called 
robustness of optimality by Neyman and Scott 
(1966). The C(α ) test has been shown by many 
authors to be asymptotically equivalent to the 
likelihood ratio test and to the Wald test (Moran, 
1970; Cox & Hinkley, 1974). Potential 
drawbacks to the use of the likelihood ratio and 
Wald tests include the fact that both require 
estimates of the parameters under the alternative 
hypotheses and often show liberal or 
conservative behaviour. Examples of this may 
be found in Barnwal & Paul (1988), Paul (1989), 
Paul (1996), Paul & Banerjee (1998), and Paul 
and Islam (1995).  

In the present context, although the 
score test statistic has a very simple form, both 
the score test and the likelihood ratio test have 
been found, by simulation, to be liberal. A 
power comparison, using the empirical quantiles 
derived from the corresponding size simulation 
to ensure that each test had approximately the 
nominal size, has been conducted. This 
comparison shows that the likelihood ratio test 
has power advantage over the score test. A 
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bootstrap likelihood ratio test is therefore 
proposed to test the fit of a geometric model 
against the over-dispersed geometric model. The 
bootstrap likelihood ratio test provides 
approximately correct p-value (Davison & 
Hinkley, 1998). McLachlan (1987) uses the 
bootstrap likelihood ratio test to test for the 
number of components in mixture of normal 
distributions. McLachlan notes that the bootstrap 
and the true null distribution of the likelihood 
ratio statistics are the same. The bootstrap 
likelihood ratio test was also used by others in 
similar contexts (Aitkin, Anderson & Hinde, 
1981; Karlis & Xekalaki, 1999).  

For the situation in which the data are 
found to be heterogeneous, maximum likelihood 
estimates of the parameters of the beta-
geometric distribution and the elements of the 
exact Fisher information matrix are obtained. 
Two sets of data including one on human 
fecundability study from Weinberg & Gladen 
(1986) are analyzed.  
 
Tests of Goodness of Fit 
 
Estimation of the Parameters 
 Suppose data are available on n 
individuals as  .n,,i,yi �1=  The maximum 
likelihood estimate of the parameter p of the 
geometric distribution is ,y/p̂ 1= where  

∑ == n
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the data based on the beta-geometric distribution 
is given as  
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written as  
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The maximum likelihood estimates π̂  and  θ̂ of 
the parameters π  and θ  are obtained by solving 
the maximum likelihood estimating equations 

π∂
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simultaneously subject to the constraints 

.0and10 ><< θp  Note that there is no 
closed form solution for these equations. So 
these equations are to be solved using a 
numerical procedure such as the Newton-
Raphson method or a numerical subroutine, such 
as the IMSL subroutine ZBRENT or NEQNF.  
 
The Likelihood Ratio Test 
 The maximized log-likelihood under the 
geometric distribution is  
 

)ˆ1log()1()ˆlog(0 pynpnl −−+=          (1) 

 
 
 
and that under the beta-geometric distribution is  
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Then, the likelihood ratio statistic to test 

for 0:0 =θH  against 

).(2is0: 01 llLRH A −=>θ  Under standard 

conditions, the asymptotic null distribution of 
this likelihood ratio statistic would be chi-square 
with 1 degree of freedom. However, since the 
parameter θ  is necessarily nonnegative, there is 
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a boundary problem and the regular asymptotic 
likelihood theory breaks down in this situation. 
In the course of a general discussion of 
asymptotic properties of likelihood procedures 
when some of the parameters are on the 
boundary, Self & Liang (1987) derive a 
representation for the asymptotic distribution of 
the likelihood ratio statistic. Since the parameter 
value under 0H  is on the boundary of the 

parameter space it can be easily seen from the 
results of Self & Liang (1987) that the correct 
distribution of the LR test is a 50:50 mixture of 
zero and chi-square with 1 degree of freedom 
provided .10 << p  

 
The Score Test 
 
Define 
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Then, a score test statistic for testing 0:0 =θH  

against 0: >θAH  is given by  

.)/(/ 2
πππφθθ IIISZ −=   If the nuisance 

parameter  π   is replaced by its maximum 
likelihood estimate under the null hypothesis, 
then, asymptotically, as  ,∞→n the distribution 
of Z is standard normal. Note, under the null 
hypothesis π  becomes .p  Then, the following 
is obtained  
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It can be shown that  

.//)( 22 pnIIISVar =−= πππφφφ  Thus, the 

score test statistic for testing  
0:0 =θH against 0: >θAH  is given by 

.)/(/ 2pnSZ =   If p is replaced by ,p̂  

where p̂  is the maximum likelihood estimate of 
the parameter p of the geometric distribution, in 
Z, then, under the null hypothesis 0:0 =θH , 

the statistic Z will have an asymptotic standard 
normal distribution. Since this is a one-sided test 
the null hypothesis is rejected at )%1(100 α−  

level of significance if ,αzZ > where, tz  is the 

)%1(100 t−  point of the standard normal 
distribution.  

 
Simulations 
 A simulation experiment was conducted 
to study size properties of the likelihood ratio 
statistic LR and the score test statistic Z. Data 
have been generated from the geometric 
distribution with values of the geometric 
parameter  .5, .4, .3, .2, .1,=p sample sizes,  

50, 20, 10,=n and   .10. .05,=α Each 
simulation experiment was based on 5000 
replications. Empirical size values are given in 
Table 1.  
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Table 1: Empirical sizes, in percent, for H0 of score test statistics Z and the likelihood ratio statistic 
LR 
 

p  
n  α  Statistics 0.1 0.2 0.3 0.4 0.5 

10 
 

0.05 Z 
LR 
LR1 

8.0 
12.0 
12.0 

6.9 
10.6 
10.6 

7.2 
10.6 
10.6 

6.5 
10.5 
10.5 

6.6 
10.0 
10.0 

 
20  Z 

LR 
LR1 

11.2 
13.0 
12.0 

10.2 
11.4 
10.6 

10.2 
11.4 
10.6 

11.5 
12.7 
10.5 

13.3 
15.0 
10.0 

 
50  Z 

LR 
LR1 

13.3 
14.2 
12.0 

12.6 
13.3 
10.6 

12.3 
13.2 
10.6 

13.8 
14.6 
10.5 

16.4 
16.6 
10.0 

 
100  Z 

LR 
LR1 

13.3 
14.2 
12.0 

12.6 
13.3 
10.6 

12.3 
13.2 
10.6 

13.8 
14.6 
10.5 

16.4 
16.6 
10.0 

 
500  Z 

LR 
LR1 

13.3 
14.2 
12.0 

12.6 
13.3 
10.6 

12.3 
13.2 
10.6 

13.8 
14.6 
10.5 

16.4 
16.6 
10.0 

 
10 0.10 Z 

LR 
LR1 

14.0 
19.0 
12.0 

12.6 
17.1 
10.6 

12.4 
16.6 
10.6 

12.8 
18.0 
10.5 

12.8 
18.3 
10.0 

 
20  Z 

LR 
LR1 

17.9 
20.0 
12.0 

16.7 
18.2 
10.6 

16.6 
18.2 
10.6 

17.9 
19.7 
10.5 

21.8 
23.0 
10.0 

 
50  Z 

LR 
LR1 

21.6 
21.2 
12.0 

20.2 
20.6 
10.6 

19.9 
20.0 
10.6 

21.9 
22.5 
10.5 

25.5 
25.6 
10.0 

 
100  Z 

LR 
LR1 

13.3 
14.2 
12.0 

12.6 
13.3 
10.6 

12.3 
13.2 
10.6 

13.8 
14.6 
10.5 

16.4 
16.6 
10.0 

 
500  Z 

LR 
LR1 

13.3 
14.2 
12.0 

12.6 
13.3 
10.6 

12.3 
13.2 
10.6 

13.8 
14.6 
10.5 

16.4 
16.6 
10.0 
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From Table 1 it is seen that both the 

score test statistic and the likelihood ratio 
statistic are liberal. Empirical level of the 
likelihood ratio statistic is larger than that of the 
score test statistic. Also, empirical level 
increases as the sample size increases. A mean-
variance correction of the score test statistic 
using Taylor series expansion (Paul, 1996) 
produces empirical levels that are too small 
compared with the nominal levels.  

A power comparison of the two 
statistics was also conducted. The empirical 95% 
quantiles derived from the corresponding size 
simulation have been used to ensure that each 
test had approximately the nominal size of 0.05. 
Empirical quantiles were calculated based on 
20,000 replications and empirical power 
calculations were based on 1000 replications. 
Empirical power values are given in Table 2. 
The likelihood ratio statistic, in general, shows 
power advantage, over the score test.   

 
The Bootstrap Goodness of Fit Test 
 As seen from the simulation results in 
Section 3, both the likelihood ratio test and the 
test based on the score test statistic are liberal. 
However, the likelihood ratio test has some 
power   advantage    over   the    score   test.   So,  
 
 
 

 

 
 
following Davison & Hinkley (1997), a 
bootstrap test of the null hypothesis 

0:0 =θH against : 0AH θ >  is proposed. The 

bootstrap likelihood ratio test procedure 
proceeds according to the following steps: 
 
Step 1. Obtain p̂ of the parameter p of the 
geometric distribution from the data. Calculate 
the value of the likelihood ratio statistic LR, say 
LR0, from the data.  
 
Step 2. Generate n observations from the fitted 
null distribution, i.e., the geometric distribution 
with parameter pp ˆ=  and calculate the 

likelihood ratio statistic LR *
0 .  

 
Step 3. Repeat step 2 B times obtaining B values 
of the bootstrap likelihood ratio statistic, say, 

LR )(
0
b , b=1,2,...,B. 

 
Step 4. Estimate the bootstrap p-value by   
 

.
1

}{#1
ˆ 0

)( *
0

+
≥+

=
B

LRLR
p

b

boot  

 
This gives the level at which to reject or not to 
reject .0H  A typical value of B is 1000. 

Table 2: Empirical powers, in percent, for H0 , at 05.0=α , of score test statistics Z and the 
likelihood ratio statistic LR. The extra-geometric variation is .01(.05)(.1) 
  
 
 
 
 
 
 
 
 
 
 
 
 
 

  p    
n  Statistics 0.1 0.3 0.5 

10 
 

Z 
LR 

 

6(32)(67) 
7(38)(82) 

8(20)(39) 
9(25)(52) 

5(9)(15) 
5(10)(18) 

20 Z 
LR 

 

11(53)(88) 
10(57)(96) 

22(49)(70) 
25(64)(86) 

10(19)(39) 
12(24)(46) 

50 Z 
LR 

 

15(81)(99) 
16(84)(99) 

53(93)(97) 
54(97)(99) 

8(38)(70) 
13(44)(81) 
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Elements of the Expected Fisher Information 
Matrix of the Beta-geometric Distribution 
 In this section, the elements of the 
expected Fisher Information matrix for the 
estimates of the parameters of the beta-
geometric distribution are derived. The 
calculations are quite involved, so the details 
were omitted. The exact expressions are given in 
what follows. 
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Calculations of the above terms do not 

pose any difficulty if ∞  in the upper limit of the 
summation is replaced by a sufficiently large 
number, say, 5000. Thus, the estimated variance 

of π̂ and θ̂ are  
 

22

2
11 22 12

ˆ
ˆvar( )

ˆ ˆ ˆ( )

I

I I I
π =

−
 

 
and 
 

11

2
11 22 12

ˆ
ˆvar( )

ˆ ˆ ˆ( )

I

I I I
θ =

−
  

 

respectively, where 221211
ˆand,ˆ,ˆ III  are estimates 

of 221211 and,, III  respectively obtained by 

replacing the parameter p by its maximum 
likelihood estimate.  

 
 

Examples 
Example 1: The data, given in the Table 3 from 
Weinberg & Gladden (1986), refer to times, 
taken by couples that were attempting to 
conceive, until pregnancy results.  

 
Table 3: Data from Weinberg and Gladen (1986) 
on the number of menstrual cycles to pregnancy 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

The data were obtained retrospectively, 
starting from a pregnancy in each case. 
Weinberg & Gladen (1986) analyzed 
fecundability data for a total of 586 women, 
contributing a total of 1844 cycles. See 
Weinberg & Gladen (1986) for more details 
regarding the data. For these data, the data for 12 
or more cycles has been combined.  

An estimate of the parameter p of the 
geometric distribution for these data is 

.3177874.ˆ =p  An estimate of the variance is 
2ˆ ˆ(1 ) /p p− = 6.76. The observed variance, 

however, is 8.68 which is much larger than the 
variance predicted by the geometric distribution. 
This indicates that an over-dispersed geometric 
distribution may fit the data better than the 
geometric distribution. Now, the value of the 
likelihood ratio statistic is LR=14.97 with a p-
value (using the 50:50 mixture of 0 and chi-
square with 1 degree of freedom)=0.00000006 
and the bootstrap p-value is 0.002. In calculating 
the bootstrap p-value B=500 have been used. 
The data shows very strong evidence in favor of 

Cycles Number of 
Women 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
 

227 
123 
72 
42 
21 
31 
11 
14 
6 
4 
7 
28 
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the beta-geometric distribution. Note that in this 
example the p-value of the likelihood ratio 
statistic is much smaller than the corresponding 
bootstrap p-value. This is in line with the 
simulation results in Section 3 that the 
likelihood ratio test is liberal.  

The maximum likelihood estimates of 
the parameters π  and θ  of the beta-geometric 

distribution are =π̂ 0.36596 and θ̂ =0.0745 and 

the standard errors of the estimates π̂  and θ̂ are 
.0162 and .0204 respectively. 

 
Example 2: In example 1 the data produce a 
value of 14.97 for the likelihood ratio statistic. 
This is rather large and therefore it is not 
surprising that both the ordinary likelihood ratio 
test and the bootstrap likelihood ratio test 
provide same conclusion. Moreover, the 
observed variance is about 28% larger than what 
is predicted by the geometric distribution. Thus, 
the data given in Table 4 was produced; it was 
obtained by modifying the data set in Table 3.  

 
Table 4: Modified data of Table 3 on the number 
of menstrual cycles to pregnancy 
 

Cycles Number of 
Women 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

180 
123 
72 
42 
21 
31 
11 
14 
6 
4 
7 
18 

 
 
For these data an estimate of the 

variance predicted by the geometric distribution  

is 2ˆ ˆ(1 ) /p p− = 6.88 and the corresponding 
observed variance is 7.72. These two variances 
are much closer than the two corresponding 
variances for the data in Table 3. This indicates 
that the geometric distribution might fit these 

data well. For these data the value of the 
likelihood ratio statistic is LR=2.51 with a p-
value (using the 50:50 mixture of 0 and chi-
square with 1 degree of freedom) = 0.025 and 
the bootstrap p-value is 0.14. For these data, the 
bootstrap likelihood ratio procedure shows that 
the geometric distribution fits the data well at 
5% level of significance which is contradicted 
by the ordinary likelihood ratio test. The reason 
for this is that the likelihood ratio test is liberal. 

 
References 

 
Aitkin, M., Anderson, D., & Hinde, J. 

(1999). Statistical modelling of data on teaching 
styles. Journal of the Royal Statistical Society, 
A,  144, 419-461. 

Barnwal, R. K. & Paul, S. R. (1988). 
Analysis of one-way layout of count data with 
negative binomial variation. Biometrika 75, 215-
222. 

Bartoo, J. B. & Puri, P. S. (1967). On 
optimal asymptotic tests of  composite statistical 
Hypothesis. The Annals of Mathematical 
Statistics, 38, 1845-52. 

Crowder, M. J. (1978). Beta-binomial 
ANOVA for proportions. Applied Statistics, 27, 
34-37. 

Cox, D. R. & Hinkley, D. V. (1974). 
Theoretical Statistics. London: Chapman and 
Hall. 

Davison, A. C. & Hinkley, D. V. (1997). 
Bootstrap Methods and Their Application. 
Cambridge University Press. 

International Mathematical and 
Statistical Libraries (1994). IMSL Manual. The 
Numerical Solution Source, Houston, Texas. 

Karlis, D. & Xekalaki, E (1999). On 
testing for the number of components in a mixed 
Poisson model. Annals of the Institute of 
Statistical Mathematics, 51, 149-162. 

Otake, M. & Prentice, R. L. (1984). The 
analysis of chromosomally aberrant cells based 
on beta-binomial distribution. Rediation 
Research, 98, 456-470. 

McLachlan, G. J. (1987). On 
bootstrapping the likelihood ratio test statistic 
for the number of components in a normal 
mixture. Applied Statistics, 36, 318-324. 



www.manaraa.com

PAUL 433 

Moran, P. A. P. (1970). On 
asymptotically optimal tests of composite 
hypothesis. Biometrika, 57, 47-55. 

Neyman, J. (1959). Optimal asymptotic 
tests for composite hypothesis. In  Probability 
and Statistics: The Harold Cramer Volume, U. 
Grenander (ed). New York: Wiley. 

Neyman, J. & Scott, E. L. (1966). On 
the use of C )(α optimal tests of composite 
hypotheses. Bulletin of the International 
Statistical Institute, 41, 477-497. 

Paul, S. R. (1989). Test for the equality 
of several correlation coefficients. The Canadian 
Journal of Statistics, 93, 217-227. 

Paul, S. R. (1996). Score tests for 
intraclass correlation in familial data. Biometrics 
52, 955-963. 

Paul, S. R. & Banerjee, T. (1998). 
Analysis of two-way layout of count data 
involving multiple counts in each cell. Journal 
of the American Statistical Association, 93, 
1419-1429. 

Paul, S. R. & Islam, A. S. (1995). 
Analysis of proportions based on parametric and 
semi-parametric models. Biometrics, 51, 1400-
1410. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Rao, C. R. (1947). Large sample tests of 
statistical hypotheses concerning several 
parameters with applications to problems of 
estimation. Proceedings of the Cambridge 
Philosophical Society, 44, 50-57. 

Self, S. G. & Liang, K. Y. (1987). 
Asymptotic properties of maximum likelihood 
estimators and likelihood ratio tests under 
nonstandard conditions. Journal of the American 
Statistical Association, 82, 605-610. 

Weil, C. S. (1970). Selection of valid 
number of sampling units and a consideration of 
their combination in toxicological studies 
involving reproduction, teratogenesis or 
carcinogenesis reproduction, teratogenesis. Food 
and Cosmetic Toxicology, 8, 177-182. 

Weinberg, P. & Gladen, B. C. (1986). 
The Beta-geometric distribution applied to 
comparative fecundability studies. Biometrics, 
42, 547-560. 

Williams, D. A. (1975). Analysis of 
binary responses from toxicological experiments 
involving reproduction and teratogenicity. 
Biometrics, 31, 949-952.  



www.manaraa.com

Journal of Modern Applied Statistical Methods   Copyright © 2005 JMASM, Inc. 
November, 2005, Vol. 4, No. 2, 434-445                                                                                                                  1538 – 9472/05/$95.00 

434 

Sample Size Calculation and Power Analysis of Time-Averaged Difference 
 

   Honghu Liu       Tongtong Wu 
          David Geffen School of Medicine        Department of Biostatistics 
             UCLA                                      UCLA   
    
 
 
Little research has been done on sample size and power analysis under repeated measures design. With 
detailed derivation, we have shown sample size calculation and power analysis equations for time-
averaged difference to allow unequal sample sizes between two groups for both continuous and binary 
measures and explored the relative importance of number of unique subjects and number of repeated 
measurements within each subject on statistical power through simulation. 
 
Key words: sample size calculation; power analysis; repeated measures design; time-averaged difference  
 

 
Introduction 

 
Sample size calculation and power analysis are 
essentials of a statistical design in studies. As 
statistical significance is likely the desired 
results of investigators, proper sample size and 
sufficient statistical power are of primary 
importance of a study design (Cohen, 1988). 
Although a larger sample size yields higher 
power, one cannot have as large a sample size as 
one wants, since sample subjects are not free and 
the resources to recruit subjects are always 
limited. As a result, a good statistical design that 
can estimate the needed sample size to detect a 
desired effect size with sufficient power will be 
critical for the success of a study. 

Some research has been done for sample 
size calculation and power analysis regarding 
different designs with cross-sectional data, such 
as difference between correlations, sign-test 
(Dixon &   Massey,   1969),  difference  between  
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means with two group t-test or analysis of 
variance (ANOVA) (Machin, Campbell, Fayers, 
& Pinol, 1997), contingence tables (Agresti, 
1996), difference of proportions between two 
groups, F-test (Scheffé, 1959), multiple 
regressions and logistic regressions 
(Whittemore, 1981; Hsieh et al., 1998). 

However, little research has been done 
about sample size calculation and power 
analysis with repeated measures design, 
especially for unbalanced designs, which is 
widely used in biological, medical, health 
services research and other fields. For example, 
in research for diseases with low incidence and 
prevalence; designs where the non-diseased 
group is much larger than the diseased group to 
ensure a sufficient large sample size for 
multivariate modeling. 

Unbalanced repeated measures 
situations also emerge in cluster randomized 
trials (Eldridge et al., 2001). Diggle et al. (1994) 
proposed a basic sample size calculation formula 
for time-averaged difference (TAD) with both 
continuous and binary outcome measures for the 
situation only with equal sample size in each 
group. Fitzmaurice et al. (2004) proposed a two-
stage approach for sample size and power 
analyses of change in mean response over time 
for both continuous and binary outcomes. 

Statistical software and routines have 
made sample size calculation and power analysis 
process much easier and flexible for researchers. 
With statistical software, one can efficiently 
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examine designs with different parameters and 
select the best design to fit the need of a research 
project. Currently, there are many types of 
statistical software that can conduct sample size 
and power analyses. These include the general 
purpose software which contain power analysis 
routines such as: NCSS (NCSS, 2002), SPSS 
(SPSS Inc., 1999), and STATA (STATA Press, 
2003); general purpose software that can be used 
to calculate power (i.e., contain non-central 
distribution or simulation purpose) such as: SAS 
(SAS Institute Inc., 1999), S-Plus (MathSoft, 
1999), and XLISP-STAT (Wiley, 1990); and 
stand-alone power analysis software such as: 
NCSS-PASS 2002 (NCSS, 2002), nQuery 
advisor (Statistical Solutions, 2000), and 
PowerPack (Length, 1987). A comprehensive 
list       of        sample         size      and       power  
analysis software can be found at 
http://www.insp.mx/dinf/stat_list.html.
 Although a lot of software can conduct 
sample size and power analyses, they are 
basically all for data with different cross-
sectional designs. The only software that can 
conduct sample size and power analyses with 
repeated measures design is NCC-PASS 2002, 
which handles power analysis for repeated 
measures ANOVA design. There is, however, no 
software available for TAD with repeated 
measures design. 

In this article, a formula has been 
developed for sample size calculation and power 
analysis of TAD for both continuous and binary 
measures to allow unequal sample size between 
groups. In addition, the relative impact and 
equivalence of number of subjects and the 
number of repeated measures from each subject 
on statistical power was examined. Finally, a 
unique statistical software for conducting sample 
size and power analysis for TAD was created. 

 
Methodology 

 
Sample size Calculation and Power Analysis 
 Sample size calculation and power 
analysis are usually done through statistical 
testing of the difference under a specific design 
when the null or alternative hypothesis is true. 
Although there are many factors that influence 
sample size and power of a design, the essential 
factors that have direct impact on sample size 

and statistical power are type I error ( 0H may be 

rejected when it is true and its probability is 
denoted by α ), type II error ( 0H may be 

accepted when it is false and its probability is 
denoted by β ), effect size (difference to be 

tested and it is usually denoted by ∆ ) and 
variation of the outcome measure of each group 
(for example, standard deviation )σ . Sample 
size and power are functions of these factors. 
Sample size and power analysis formulas link all 
of them together. For example, the sample size 
calculation formula for a two group mean 
comparison can be written as a function of the 
above factors:  
  

)/11/())//()(( 2
2/112 rSzzn +∆+= −− αβ , 

 
where 2n  is the sample size for group2, S is the 
common standard deviation of the two groups,  
r 10 ≤< r  is a parameter that controls the ratio 
between the sample sizes of group 1 and group 2 
(i.e., rnn /21 = ). β−1z  is the normal deviate for  

the desired power, 2/1 α−z   is the normal deviate 

for  the  significance level (two-sided test) and 
∆   is the difference to be detected.  
 For given levels of a type I error, a type 
II error and an effect size, sample size and 
statistical power are positively related: the larger 
the sample size, the higher the statistical power. 
Type I error is negatively related to sample size: 
the smaller Type I error, the larger sample size 
that is required to detect the effect size for a 
given statistical power. The larger type II error, 
the smaller power and thus one will need smaller 
sample size to detect a given effect size.    
 
Repeated Measures Design 
Time-Averaged Difference (TAD) 
 In many biomedical or clinical studies, 
researchers use the experimental design that 
takes multiple measurements on the same 
subjects over time or under different conditions. 
By using this kind of repeated measures design, 
treatment effects can be measured on “units” 
that are similar and precision can be determined 
by variation within same subject. Although the 
analyses become more complicated because 
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measurements from the same individual are no 
longer independent, the repeated measures 
design can avoid the bias from a single snapshot 
and is very popular in biological and medical 
research.  

Suppose there are two groups, group 1 
and group 2, and one would like to compare the 
means of an outcome, which could vary from 
time to time or under different situations 
between the two groups. With cross-sectional 
design, one will directly compare the means of 
the outcome between the groups with one single 
measure from each subject, which may not 
reflect the true value of the individual. 

For example, it is known that an 
individual’s blood pressure is sensitive to many 
temporary factors, such as mood, the amount of 
time slept the night before and the degree of 
physical exercise/movement right before taking 
the measurement. This is why the mean blood 
pressure of a patient is always examined from 
multiple measurements to determine his/her true 
blood pressure level. If only a single blood 
measurement is taken from each individual, then 
comparing mean blood pressure between two 
groups could be invalid as there is large 
variation among the individual measures for a 
given patient. To increase precision, the best 
way to conduct this is to obtain multiple 
measurements from each individual and to 
compare the time-averaged difference between 
the two groups (Diggle, 1994).  
 
Notations 
 Suppose that there is a measurement for 
each individual )(ijgy , where 2,1=g  indicating  

which group, kmi ,...,1= (with )2,1=k  

indicating the number of individuals in each 
group, and nj ,...,1=  indicating the number of 
repeated measures from each individual subject. 
Then TAD will be defined as:  
 

)*/)(())*/)(( 2
1 1 1 1

)(21)(1

1 2

mnymnyd
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i

n
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The following notations will be used to define 
the different quantities used in sample size 
calculation and power analysis for TAD:  
 

1. α : Type I error rate 
2. β : Type II error rate  
3. d:   Smallest meaningful TAD 

difference to be detected 
4. σ : Measurement deviation (assume to 

be equal for the two groups) 
5. n:  Number of repeated observations per 

subject 
6. ρ : Correlation between measures 

within an individual 
7. 21 ,mm : Number of subjects in group 1 

and group 2, respectively 
8. 21 mmM += : Total number of subjects 

in the design 
9. Mm /1=π : Proportion of number of 

subjects within group 1 ( 5.0=π gives 
equal sample size. 

MmMm )1(, 21 ππ −== ) 
 
Using the above notations, the next two sections 
will derive the sample size calculation formula 
for TAD between two groups with the flexibility 
of possible unequal sample size from each group 
for continuous and binary measures, 
respectively. 
 
Continuous responses 
 Consider the problem of comparing 
the time-averaged difference of a continuous 
response between two groups. Supposed the 
model is of the following form: 
 

njMixY ijij �� ,1;,,1,10 ==++= εββ  

 
where x indicates the treatment assignment, 

1=x for group 1 and 0=x for group 2. To 
test if the time-averaged difference is zero is 
equivalent to test 0: 10 =βH  vs. 0: 11 ≠βH . 

Without showing details of derivation, Diggle 
et al. (1994) have shown the sample size in the 
situation when group 1 and group 2 have the 
same sample size. With step by step 
derivation, here it is shown generally to the 
cases that the sample sizes of two groups 
could be unequal. Assume that the within 
subject correlation  
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( , )   fo r  an y   ij ikC o rr y y j kρ= ≠  

 
and  
 

2)( σ=ijyVar . 

 
Without lost generality, it is assumed that the 
smallest meaningful difference 0>d , and let 
the power of the test be β−1 . Under 0H : 

 

)1,0(
)ˆ(

ˆ

1

1 N
se

z →=
β

β
 

 

The above model can be written in matrix form: 
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The variance-covariance matrix (compound 
symmetry) can be written as  
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The estimates of regression coefficients of such 
a model are 
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By definition, it is known that 
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it is assumed that 0, therefore, the second term can 
be ingored
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Therefore,  

)ˆ( 1

2/11 βαβ
se

d
zz −=− −− , 

or 

2
2

1 / 2 1

1

2 2
1 2 2 1

2
1 2

( )
ˆvar( )

[( ) ]

[1 ( 1) ]( )

d
z z

n m m m m d

n m m

α β β

σ ρ

− −+ =

+ −
=

+ − +

 

In other words, given power β−1 , the total 
sample size needed to detect the smallest 
meaningful difference 0>d is 
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where s is the estimate of standard deviation. 
When mmm == 21 , the above formula 
becomes the same as that shown in Diggle et al. 
(1994) for balanced design: 
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Therefore, the power of the test can be written 
as: 
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 Binary responses 

 Suppose a binary response variable is to 
be compared between group 1and group 2. 
Assume  
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 To test if the proportions of responses 
being 1of the two groups are equal, the 
following model is considered 
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where x indicates the treatment assignment, 

1=x for group 1 and 0=x for group 2. this test 
will be equivalent to test 0: 10 =βH  vs. 

0: 11 ≠βH . Without showing the details, 
Diggle et al (1994) have shown the sample size 
in the situation when group 1 and group 2 have 
the same sample size. With step by step 
derivation, here it is generalized to the case that 
the sample size could be different between the 
two groups.  
            Suppose 021 >−= ppd  and the 

power of the test is β−1 . Under 0H , the 

estimate of 2σ  is  
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where 11 1 pq −=  and 22 1 pq −= . Under 1H , 

the estimate of 2σ  is  
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The variance estimator of 1β̂  is  
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and it is denoted as 

01 ,ˆˆ
Hβσ when replacing 

2σ  by 2
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The power of the test is:  
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In other words, given power β−1 , the total 
sample size needed to detect the smallest 
meaningful difference 0>d is 
 

[ ]

2

1 1 2 2 1 1 2 2
1 /2 1

1 1 1 2 2 2

1 1 2 2
2 2

( )( )

[1 ( 1) ] (1 )

(1 )

m p m p mq m q
z z

m pq m p q

n pq p q
M

n d

α β

ρ π π
π π

= −

⎛ ⎞+ + ⋅ +⎜ ⎟+⎝ ⎠

+ − + −
=

− −
              
             (4) 
 

When 21 mm = , the above formula is the same 
as shown in Diggle et al. (1994) for balanced 
design. Given sample size, the power of the test 
can be calculated using the following equation: 
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The Relative Impact of Number of Subjects and 
Number of Repeated Measures on Power 
 As the cost and the amount of effort to 
recruit subjects or to increase the number of 
repeated measurements for each participant is 
often different, it will be useful for investigators 
to know the relative impact of number of 
subjects and number of repeated measures on 
statistical power for testing TAD. The relative 
importance of the total number of subjects M 
and number of repeated measures n, which have 
nonlinear effects on the power, is now 
investigated. For easy derivation, let’s examine 
the situation of continuous measure.  

First, if the within subject correlation is 
0=ρ , then it can be seen that the number of 

subjects M and number of repeated measures n 
will have exactly the same impact on statistical 
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power. Using formula (3) and plugging in 
0=ρ , the power then becomes: 
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It can be explained that when 0=ρ  all the 
observations are independent and thus there is 
no distinction between the repeated 
measurements   and   different subjects. Second,  
when 1=ρ , the number of repeated measures 
has no more impact on power because it just 
repeats the same observations over again. This 
can be seen by plugging in 1=ρ  in formula (3): 
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To examine the impacts of M and n on 

the power when 10 << ρ , the amounts that 
need to be increased on M and n to achieve the 
same power are calculated. With other factors 
fixed and for a given n and M, how much does n 
need to be increased to achieve the same impact 
on power when increasing M by 1?  Recall the 
power function is 
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With other factors fixed, all that is required is to 
make the term, 
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a constant to achieve the same power. Let 'n  be 
the new n  that will have the same impact on 
power as M increased by 1. Then the following 
equation can be solved 
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and the following equation is obtained: 
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Thus increasing n by the amount, 
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is the same as increasing M by 1. This amount of 
increment depends on M, n and ρ . For 

example, if 5.0=ρ , then n needs to increase by 

)/()1( nMnn −+ ; if 05.0=ρ  n needs to 

increase by )05.095.0/()05.095.0( nMnn −+  
in order to have the same impact on power as M 
increased by 1.  

To examine which variable, M or n, has 
a larger impact on the power, it is required that 
one checks which variable needs to increase 
more to get the same power. The larger amount 
that needs to increase, the lower impact the 
variable has on statistical power. Set (9) equal to 
1 and obtain the following equation. 
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This is a quadratic function of n, and thus it has 
two roots 
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 Because n is always greater than 0, the 
positive root is taken. To say that the amount (9) 
is greater than 1, is equivalent to stating that 
equation (10) is greater than 0, or n is greater 
than n*, the root of (10). In other words, the 
impact of n on power is smaller than the impact 
of M when n is greater than n*. Based on (11), 
one can see that n* depends on both M and ρ  
nonlinearly. Figure 1 below shows the non-
linear relationship among M, n and ρ .  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 This 3-D figure reveals that the 
threshold n* will increase when M increases but 
for a same M value, the threshold will be larger 
when ρ  smaller. Figure 2 and Figure 3 are 
special slides of the 3-D figure of Figure 1. 
Figure 2 shows the relationship between the 
threshold n* and ρ  for M=300 and Figure 3 
shows the relationship between the threshold n* 
and M for ρ =0.4.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. The Relationship of n*, ρ  and M. 
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%SP_TAD Software, Syntax and Parameters     

To implement the algorithm for 
calculating the sample sizes or power for time-
averaged difference, we have written a statistical 
macro procedure %SP_TAD, where SP stands 
for sample and power, TAD stands for time 
averaged difference in SAS/MACRO.  
          The syntax of the macro is simple and 
straightforward. To use this macro, one simply 
needs to invoke the macro with specific values 
for the parameters required. Here is the list of 
parameters that need to be specified:   
 
(1) type-------continuous (=1) or binary (=2) 
responses. This sets up the tone of the type of 
the outcome measure to be analyzed. The 
following parameters of (2) to (9) must be 
provided for continuous responses: 
(2) alpha----Type I error rate 
(3) beta----- Type II error rate 
 

 
 
(4) d--------Smallest meaningful difference to be 
detected 
(5) sigma----Measurement deviation (for 
continuous responses) 
(6) n--------Number of repeated observations per 
subject 
(7) rho------Correlation among each subject 
(8) pi--------Proportion of number of subjects 
within group 1 
(9) M--------Total number subjects 

For binary outcome, sigma is not 
needed. Instead, two more parameters need to be 
provided: 
 (10) pa-------Pr(Y_ij=1) in group 1 
 (11) pb-------Pr(Y_ij=1) in group 2 
 
To run the macro, one needs simply to issue: 
 
%sp_tad(type=, alpha=, beta=, d=, sigma=, n=, 
rho=, pi=, pa=, pb=, M=); 
        

 
Figure 2. The Relationship of n* and ρ , with M = 300 fixed. 

 
 
 

Figure 3. The Relationship of n* and M, with ρ  = 0.4 fixed. 

 
 



www.manaraa.com

LIU & WU 443 

where pa and pb should be left as blank for 
continuous outcome, and sigma should be left  
blank for binary outcome. Beta and M should 
not be provided at the same time.  To calculate 
required sample size, beta must be provided.  To 
calculate power, M must be provided. Type is 1 
or 2, where 1 stands for continuous responses 
and 2 stands for binary responses. The software 
code is available upon request from the author.  
 
Application 
 Repeated measures design has wide 
applications in social, biological, medical and 
health service research. To avoid possible bias 
from snapshot of data collection at one time 
point and to reduce the cost of collecting data 
from different subjects, repeated measures data 
are often collected. Through a real example, this 
section demonstrates the input, output and the 
functionality of the %SP_TAD software and 
how the procedure works with continuous 
outcome measures. For binary outcome 
measures, the process will be similar.  
      For continuous measures, an example of 
a patient’s diastolic blood pressure between a 
treatment and control group is examined 
(generally, diastolic blood pressure below 85 is 
considered “normal”). The level of a person’s 
blood pressure could be affected by many 
temporary factors, such as the amount of time 
that the person slept last night, the person’s 
mood, physical activity right before taking blood 
pressure measurement, etc. Thus, a one time 
snapshot of blood pressure will likely not be 
accurate. To accurately estimate the level of 
blood pressure of a patient or a group of 
patients, means of multiple measurements of 
blood pressure from a patient are usually used.   

Suppose that a design is required to 
examine the difference of diastolic blood 
pressure between the treatment and control 
groups. To avoid bias from one time snapshot, 
five repeated measures of blood readings were 
taken from each patient within a week (one 
reading each day). Based on previous studies, 
intra-class correlation at the level of 0.4, type I 
error 0.05 and type II error 0.15 and a common 
standard deviation of 15 was used. Assume that 
a difference in mean blood pressure as small as 
10 points between the   treatment and control 
groups is desired. Since the treatment is more 

expensive than the control and more controls 
than treatment participants is desired, with a 
ratio of 3:2. Using these parameters, the 
calculation with the following syntax can be 
established: 
 
%sp_tad(type=1, alpha=0.05, beta=0.15, d=10, 
sigma=15, n=5, rho=0.4, pi=0.6, pa=, pb=, M=); 
 

Execute the procedure and the answer is 
158 in treatment group and 105 in control group. 
Assume that the control group had a mean 
diastolic blood pressure 88. Then, the given 
sample size of 158 in the treatment group and 
105 in the control group with 5 repeated 
measurements from each patient will allow one 
to detect a mean diastolic blood pressure of the 
treatment as low as 78.  
          For the same question, assume 158 
patients in treatment group and 105 patients in 
the control group with 5 repeated measures of 
blood pressure. With a type I error 0.05, what 
kind of power will is needed to detect a 
difference in mean blood pressure of as small as 
10 points? Using the same procedure, these 
parameters can be instituted and the macro with 
the following syntax can be executed:  
 
%sp_tad(type=1, alpha=0.05, beta=, d=10, 
sigma=15, n=5, rho=0.4, pi=0.6, pa=, pb=, 
M=263); 
 
The answer for power will be 85%. 
 

Conclusion 
 
Time-averaged difference of repeated measures 
data has wide applications in many fields of 
research. TAD provides the opportunity to 
examine the difference in means between groups 
with higher precision using repeated 
measurements from each subject. This article 
deals with sample size and power analyses 
issues for time-averaged difference of repeated 
measures design. It presents the details of 
derivation of the general sample size calculation 
and power analysis formula for TAD with 
unequal sample size between two groups. 
Allowing unequal sample size will enable 
researchers to have the opportunity to choose an 
unbalanced design so that smaller number of 
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subjects could be used for the group that is either 
more expensive, hard to recruit or with limited 
number of available subjects. 

Repeated measures data points also arise 
from cluster randomized trials, where it typically 
has repeated individuals within randomized 
clusters. There is growing literature on the topic 
starting with initial work involving balanced 
equally sized groups, but is now extending to 
more complex situations, of which unequal 
group sizes is also a possible scenario (Eldridge, 
2001).         
           Repeated measures data has two 
dimensions of sample sizes: the number of 
different individuals and the number of repeated 
measurements from each individual. As shown 
in the article, because data from different 
individuals are independent, the number of 
different subjects seems to have a larger effect 
on power than the number of repeated 
measurements from the same subject. However, 
there is a threshold of the number of repeated 
measures, which will yield a larger impact by 
increasing the number of repeated measures than 
by increasing the number of subjects on 
statistical power. However, increasing the 
number of subjects by 1 means to increase the 
number of observations by n (the new subject 
gets n repeated measurements as others) and 
increasing the number of repeated measures by 1 
means to increase the number of observations by 
M (every subject increases one repeated 
measurement). Thus, when ρ is very small (i.e. 
about zero), one will need a larger n to exceed 
n*, the threshold, in order to have a larger 
impact of increment of n than M on power.  
 In most of the situations, n is not large 
and much smaller than M, thus likely M will 
have larger impact than n. For the two extreme 
cases where 0=ρ  or 1=ρ , the impact of the 
increase of the number of repeated measures will 
be the same as the increase of the number of 
individuals in each group ( 0=ρ ) or there will 
be no impact of increasing the number of 
repeated measures ( 1=ρ ) on power. 
 The software created is easy to use and 
can handle both continuous outcome measure 
and dichotomous outcome measure by issuing a 
value of “1” or “0” for the parameter “type”. For  

the same software, one can also estimate the 
underlying statistical power for a given sample 
size with a given type I error, type II error, 
variation and effect size.    
 

References 
 

Agresti, A. (1996). An introduction 
tocategorical data analysis. Wiley: New York. 

Cohen, J. (1988).  Statistical 
poweranalysis for the behavioral sciences. 
Second edition. Lawrence Erlbaum Associates: 
Hove and London. 

Diggle, P. J., Liang, K. Y., & Zegger,S. 
L. (1994). Analysis of longitudinal data.  Oxford 
University Press: Oxford. 

Dixson, W. J., Massey, F. J. 
(1969).Introduction to statistical analysis.  
McGraw-Hill: New York. 

Elashoff,  J. D. (2000). nQuery advisor 
(Version 4.0.). Statistical Solutions: Cork, 
Ireland. 

Lenth, R. V. (1987). “PowerPack,” 
Software for IBM PCs and compatibles. 
Provides an interactive environment for power 
and sample-size calculations and graphics. 

Eldridge, S., Cryer, C., Defer, G., & 
Underwood, M. (2001). Sample size calculation 
for intervention trials in primary care 
randomizing by primary care group: an 
empirical illustration from one proposed 
intervention trial. Statistics in Medicine 20(3), 
367-376. 

Fitzmaurice, G. M., Laird, N. M., & 
Ware, J. H. (2004). Applied longitudinal 
analysis. Wiley: Chichester. 

Hsieh, F. Y., Block, D. A., & Larsen, M. 
D. (1998).  A simple method of sample size 
calculation for linear and logistic regression. 
Statistics in Medicine, 7, 1623-1634. 

Machin, D., Campbell, M., Fayers, P., 
&Pinol, A. (1997). Sample size tables for 
clinical lstudies (2nd ed.). London: Blackwell 
Science. 

NCSS Statistical Software, NCSS: 
Kaysville, Utah, 2002. 

SAS/IML, User’s Guide, Version 8. 
SAS Institute Inc: Cary , NC, 1999. 

SAS/STAT, User’s Guide, Version 9. 
SAS Institute Inc: Cary, NC, 1999. 

 



www.manaraa.com

LIU & WU 445 

Scheffé, H. (1959). The analysis 
ofvariance. Wiley: New York. 

S-PLUS 2000 User’s Guide, MathSoft 
Data Analysis Products Division: Seattle, WA, 
1999. 

SPSS Base 10.0 for Windows User's 
Guide. SPSS Inc.: Chicago IL, 1999. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

STATA, Version 8. STATA 
Press:Texas. 2003. 

Tierney, L. (1990). Lisp-Stat, an object-
oriented environment for dynamic graphics. 
Wiley: New York. 

Whittemore, A. (1981). Sample size 
forlogistic regression with small response 
probability. Journal of the American Statistical 
Association, 76, 27-32. 
 



www.manaraa.com

Journal of Modern Applied Statistical Methods   Copyright © 2005 JMASM, Inc. 
November, 2005, Vol. 4, No. 2, 446-459                                                                                                                  1538 – 9472/05/$95.00 

446 

Type I Error Of Four Pairwise Mean Comparison Procedures 
Conducted As Protected And Unprotected Tests 

 
        J. Jackson Barnette                           James E. McLean 
           Department of Biostatistics        Program of Educational Research 
    University of Alabama at Birmingham                University of Alabama, Tuscaloosa 
 
 
Type I error control accuracy of four commonly used pairwise mean comparison procedures, conducted 
as protected or unprotected tests, is examined. If error control philosophy is experimentwise, Tukey’s 
HSD, as an unprotected test, is most accurate and if philosophy is per-experiment, Dunn-Bonferroni, 
conducted as an unprotected test, is most accurate. 
 
Key words: Type I error control, experimentwise vs. per-experiment error, protected vs. unprotected tests, 
pairwise comparisons, Tukey’s HSD, Dunn-Bonferroni, Dunn-Sidak, Holm’s sequentially rejective    
 
 
 

Introduction 
 
Whenever a researcher has more than two 
comparisons to test, control of the Type I error-
rate becomes a concern. Soon after Fisher 
developed the process of analysis of variance 
(ANOVA), he recognized the potential problem 
of the error-rate becoming inflated when 
multiple t tests were performed on three or more 
groups. 
 He discussed this problem in the 1935 
edition of his famous book, The Design of 
Experiments. His recommendation of using a 
more stringent alpha when performing his Least 
Significant Difference Procedure (LSD) is based 
on this concern. However, researchers still 
criticized the LSD as providing inadequate 
control of Type I error. This early recognition of 
the problem has resulted in hundreds of multiple 
comparison procedures being developed over the 
years.   
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The earliest example of what is now 

known as a multiple comparison procedure 
could be found in 1929, when Working and 
Hotelling applied simultaneous confidence 
intervals to regression lines. The Fisher (1935) 
reference cited earlier was the first application to 
the process of ANOVA. The Type I error-rate 
control problem was also referred to by Pearson 
and Sekar in 1936 and Newman in 1939. 
Newman described a multiple comparison test 
that used the “Studentized Range Statistic.”  It is 
said that his work was prompted by a discussion 
he had with Student. Years later, Keuls 
published an updated version of the procedure 
(1952) using the Studentized range. That 
multiple comparison procedure is now known as 
the Student-Newman-Keuls procedure. 
 Most studies of Type I error rates for 
follow-up of pairwise mean differences have 
been based on what is referred to as 
experimentwise or familywise error control 
philosophies. These terms were more 
extensively described by Ryan (1959) and Miller 
(1966). Experimentwise (EW) Type I error 
relates to finding at least one significant 
difference by chance for the specified alpha 
level. In these cases, the only difference of 
concern is the largest mean difference. 
Experimentwise Type I error control ignores the 
possibility of multiple Type I errors in the same 
experiment. The pairwise mean differences for 
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those other than the largest mean difference are 
not considered. Type I error control is such that 
not all possible Type I errors are evaluated. In 
these cases, many procedures such as Tukey’s 
HSD are considered to have conservative Type I 
error control since the actual probabilities of 
finding at least one Type I error are lower than 
the nominal alpha level. 
 Per-experiment (PE) Type I error 
control considers all the possible Type I errors 
that can occur in a given experiment. Thus, more 
than one Type I error per experiment is possible 
and reasonably likely to occur if there is an 
experimentwise Type I error on the highest 
mean difference. Klockars & Hancock (1994) 
pointed out the importance and risks associated 
with this distinction. They found, using a Monte 
Carlo simulation, that there was a difference of 
.0132 in the per-experiment and experimentwise 
Type I error rates for Tukey’s HSD when alpha 
was set at .05. This discussion was expanded in 
their 1996 review titled “The Quest for α” 
(Hancock & Klockars). Thus, when one has 
exact control of Type I error in the 
experimentwise situation, the per-experiment 
Type I error probability is higher. One of the 
purposes of this research was to examine how 
much of a difference there may be between 
experimentwise and per-experiment Type I error 
rates for four of the most commonly used 
pairwise multiple comparison procedures when 
used with alpha levels of .10, .05, and .01, and to 
determine the relative influence on this 
difference of number of groups and number of 
subjects per group. While most Type I error 
research is based on an experimentwise mode, 
the per-experiment Type I error is more 
consistent with the reality of pairwise hypothesis 
testing. It considers not only the largest mean 
difference subjected to error control, but all the 
pairwise differences.  
 There seems to be an inconsistency of 
logic when comparing the power of various 
methods and manners of Type I error control. 
When it is stated that the Student-Newman-
Keuls is more powerful than Tukey’s HSD or 
Holm’s procedure is more powerful than Dunn-
Bonferroni; the notion is that one method leads 
to more rejections of partial null hypotheses. 
However, if one considers the notion of 
experimentwise Type I error (the largest 

pairwise difference or more being rejected), then 
SNK and HSD have the same power and Dunn-
Bonferroni and Holm have the same power. 
Differences in power only come when 
considering pairwise differences that are found 
beyond the k number of means steps. Thus, 
should not error rate take into account the 
possible false rejections in the entire structure of 
mean differences, not just the largest one? Per-
experiment Type I error control is more 
consistent with actual pairwise hypothesis 
decision-making. 
 Four multiple comparison procedures 
were selected for this research: Dunn-
Bonferroni, Dunn-Sidak, Holm’s sequentially 
rejective, and Tukey’s HSD. Based on a review 
of current literature and commonly used 
statistical texts, it was concluded that these are 
among the most frequently used pairwise 
procedures and represent a variety of approaches 
to control for Type I error. Since the names of 
these procedures tend to vary slightly in texts, 
statistical software, and in the literature, each is 
described briefly below: 
 The Dunn-Bonferroni procedure uses 
the Bonferroni inequality (αPE  ≤ ΣαPC) as 
authority to divide equally the total a priori error 
among the number of tests to be completed, 
often following the application of the Fisher 
LSD procedure. The LSD procedure is 
equivalent to conducting all pairwise 
comparisons using independent t tests with the 
MSerror as the common pooled variance estimate 
(Kirk, 1982). An example of the application of 
the Dunn-Bonferroni would be identifying the a 
priori α as .05 where tests are required to 
compare means of five groups using 10 
comparisons, running each individual test at the 
.05/10= .005 level (Hays, 1988). Sidak’s 
modification of the Dunn-Bonferroni procedure, 
referred to as the Dunn-Sidak procedure 
substituted the multiplicative computation of the 
exact error-rate, αPE = 1 − (1 − αPC)c where c is 
the number of comparisons for the Bonferroni 
Inequality (αPE  ≤ ΣαPC), otherwise following 
the same procedures (Kirk, 1982). 
 A procedure proposed by Holm in 1979, 
Holm’s Sequentially Rejective procedure is also 
referred to as the Sequentially Rejective 
Bonferroni procedure. Assuming a maximum of 
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c comparisons to be performed, the first null 
hypothesis is tested at the α/c level. If the test is 
significant, the second null hypothesis is tested 
at the α/(c − 1) level. If this is significant, the 
testing continues in a similar manner until all c 
tests have been completed or until a 
nonsignificant test is run. The testing stops when 
the first nonsignificant test is encountered 
(Hancock & Klockars, 1996). 
 Tukey’s Honestly Significant Difference 
procedure (HSD) was presented originally in a 
non-published paper by Tukey in 1953. Its 
popularity has grown to the point where it is, 
possibly, the most widely used multiple 
comparison procedure. The HSD is based on the 
Studentized Range Statistic originally derived by 
Gossett (a.k.a., Student) (1907-1938). This 
statistic, unlike the t statistic, takes into account 
the number of means being compared, adjusting 
for the total number of tests to make all pairwise 
comparisons (Kennedy & Bush, 1985).  
 Many researchers follow the practice of 
conducting post-hoc pairwise multiple 
comparisons only after a significant omnibus F 
test. Protected tests are conducted only after a 
significant omnibus F test, while unprotected 
tests are conducted without regard to the 
significance of the omnibus F test. Many 
common statistical texts either recommend or 
imply the use of a protected test for all post-hoc 
multiple comparison procedures (e.g., Hays, 
1988; Kennedy & Bush, 1985; Kirk, 1982; 
Maxwell & Delaney, 1990). While these texts 
provide a logical basis for this, and excellent 
reviews of multiple comparison procedures are 
available (e.g., Hancock & Klockars, 1996; 
Toothaker, 1993), little empirical evidence is 
presented, either analytically or empirically, to 
justify this practice. 
 The research questions addressed in this 
research are:   
 

1. Which of these four multiple 
comparison procedures has the most 
accurate control of Type I error 
across the three alpha conditions? 

 
2. Does error control accuracy differ 

when tests are conducted as 
protected or unprotected tests? 

 

3. Do methods differ relative to 
accuracy when conducted as 
experimentwise vs. per-experiment 
control? 

 
Methodology 

 
Monte Carlo methods were used to generate the 
data for this research. All data comprising the 
groups whose means were compared were 
generated from a random normal deviate routine, 
which was incorporated into a larger compiled 
QBASIC program that conducted all needed 
computations. The program was written by the 
senior author. All sampling and computation, 
conducted with double-precision, routines were 
verified using SAS® programs. Final analysis of 
the summary statistics and correlations was 
conducted using SAS®. 
 Several sample size and number of 
groups arrangements were selected to give a 
range of low, moderate, and large case 
situations. The numbers of groups were: 3, 4, 5, 
6, 8, and 10 and the sample sizes for each group 
were: 5, 10, 15, 20, 30, 60, and 100, which when 
crossed gave 42 experimental conditions. This 
was replicated for three nominal alphas of .10, 
.05, and .01. The approach used was to 
determine what number of replications would be 
needed to provide an expected .95 confidence 
interval of +/- .001 around the nominal alpha.  
 This is an approach to examination of 
how well observed Type I error proportions are 
reasonable estimates of a standard nominal 
alpha. In other words, if alpha is the standard, 
what proportion of the estimates of actual Type I 
error proportions can be considered accurate, as 
evidenced by them being within the expected .95 
confidence interval around nominal alpha? 
 This was based on the assumption that 
errors would be normally distributed around the 
binomial proportion represented by nominal 
alpha. Thus, when alpha was .10, 345742 
replications were needed to have a .95 
confidence interval of +/- .001 or between .099 
and .101. When alpha was .05, 182475 
replications were needed to have a .95 
confidence interval of +/- .001 or between .049 
and .051 and when alpha was .01, 38032 
replications were needed to have a .95 
confidence interval of +/- .001 or between .009 
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and .011. Observed Type I error proportions 
falling into the respective .95 confidence 
intervals are considered to be accurate estimates 
of the expected Type I error rate.  
 Within each nominal alpha/sample 
size/number of groups configuration, the number 
of ANOVA replications were generated. Each 
replication involved drawing of elements of the 
sample from a distribution of normal deviates, 
computation of sample means, and the omnibus 
F test. Error rates were determined for protected 
and unprotected tests for each of the four 
multiple comparison procedures. While Dunn-
Bonferroni, Dunn-Sidak, and HSD use only one 
critical value for all differences, the pairwise 
differences were recorded in a hierarchical 
fashion to determine pairwise differences 
significant at each of the numbers of steps 
between means from k down to 2. This approach 
permitted determination of experimentwise Type 
I error (at least one Type I error per experiment) 
or a Type I error for the largest mean difference, 
and per-experiment Type I errors or the total 
number of Type I errors observed regardless of 
where they are in the stepwise structure.  
 Summary statistics were computed for 
each alpha level for experimentwise and per-
experiment conditions including: the mean 
proportion of Type I errors, standard deviation 
of the proportion of Type I errors, and the 
percentage of those proportions falling in the 
three regions associated with the .95 confidence 
interval of nominal alpha +/- 0.001.Additional 
analysis included computation of differences 
between per-experiment proportions and 
experimentwise proportions (PE-EW).  
 Preliminary analyses were run using the 
Monte Carlo program to test its accuracy. First, 
500,000 standard normal scores (z scores) were 
generated and the statistics for the distribution 
were computed. This resulted in a mean = -
.00096, variance = 1.0013, skewness = .00056, 
kurtosis = .00067, and the Wilk-Shapiro D = 
.000734 (nonsignificant). Thus, we concluded 
that the program generates reasonable normal 
distributions. Second, 900,000 cases were 
computed with k ranging from 2 to 10 and n 
ranging from 5 to 100 with no differences 
between the group means. In each case, the 
proportions of significant F statistics were 
computed corresponding to preset alphas of .25, 

.10, .05, .01, .001, and .0001. The resulting 
proportions of rejected null hypotheses were 
.24989, .10106, .05071, .01022, .001004, and 
.000103 respectively. These results support the 
accuracy of the Monte Carlo program. 

 
Results 

 
The first research question is: Which of these 
four multiple comparison procedures has the 
most accurate control of Type I error across the 
three alpha conditions? The results for each of 
the three alpha conditions are presented in 
Tables 1 through 3 and Figures 1 through 3. 
Table 1 and Figure 1 present results when 
nominal alpha is set at .10, Table 2 and Figure 2 
present results when nominal alpha is set at .05, 
and Table 3 and Figure 3 present results when 
nominal alpha is set at .01.  
 When alpha is set at .10, if the Type I 
error rate philosophy is experimentwise, the 
most accurate of these four procedures is clearly 
Tukey’s HSD, conducted as an unprotected test, 
with a mean observed Type I error rate of 
.09940 and with 78.6% of the observed Type I 
errors being in the range of .099 to .101. The 
HSD conducted as a protected test with an 
experimentwise control philosophy had a mean 
of .08134, somewhat conservative. All of the 
other procedures conducted, based on the 
experimentwise philosophy are conservative 
procedures with mean Type I error rates in the 
range of .07239 to .07535 when conducted as 
unprotected tests and .06695 to .06885 when 
conducted as protected tests. 
 If the Type I error control philosophy is 
per-experiment, the most accurate procedure is 
clearly the Dunn-Bonferroni, conducted as an 
unprotected test with a mean observed Type I 
error rate of .10011 and 85.7% of the observed 
Type I errors in the range of .099 to .101. When 
the philosophy is per-experiment and conducted 
as unprotected tests, the other three methods 
tend to be liberal with the mean error rate for the 
Dunn-Sidak at .10481 and the Holm procedure 
at .10582. Tukey’s HSD was very liberal in this 
situation with a mean error rate of .14579. When 
conducted as protected tests, HSD was slightly 
liberal with a mean error of .12741 and the other 
three methods were reasonably accurate with 
mean errors of .09466 for the Dunn-Bonferroni, 
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.09834 for the Dunn-Sidak, and .10036 for 
Holm’s procedure.  

When nominal alpha was set at .05, the 
results were very similar. If the Type I error rate 
philosophy is experimentwise, the most accurate 
of these four procedures is clearly Tukey’s HSD, 
conducted as an unprotected test, with a mean 
observed Type I error rate of .04993 and with 
97.6% of the observed Type I errors being in the 
range of .049 to .051. The HSD conducted as a 
protected test with an experimentwise control 
philosophy had a mean of .03865, somewhat 
conservative. All of the other procedures 
conducted,   based    on     the     experimentwise  
philosophy are conservative procedures with 
mean Type I error rates in the range of .03864 to 
.03943 when conducted as unprotected tests and 
.03352 to .03395 when conducted as protected 
tests. 
 If the Type I error control philosophy is 
per-experiment, the most accurate procedure is 
clearly the Dunn-Bonferroni, conducted as an 
unprotected test with a mean observed Type I 
error rate of .04998 and 92.9% of the observed 
Type I errors in the range of .049 to .051. When 
the philosophy is per-experiment and conducted 
as unprotected tests, the other three methods 
tend to be liberal with the mean error rate for the 
Dunn-Sidak at .05110 and the Holm procedure 
at .05208. Tukey’s HSD was very liberal in this 
situation with a mean error rate of .06674. When 
conducted as protected tests, HSD was slightly 
liberal with a mean error of .05531 and the other 
three methods were slightly conservative with 
mean errors of .04483 for the Dunn-Bonferroni, 
.04560 for the Dunn-Sidak, and .04696 for 
Holm’s procedure. 

When nominal alpha was set at .01, the 
patterns of results were very similar to the .10 
and .05 nominal alpha conditions. If the Type I 
error rate philosophy is experimentwise, the 
most accurate of these four procedures is clearly 
Tukey’s HSD, conducted as an unprotected test, 
with a mean observed Type I error rate of 
.01002 and with 100.0% of the observed Type I 
errors being in the range of .009 to .011. The 
HSD conducted as a protected test with an 
experimentwise control philosophy had a mean 
of .00702, somewhat conservative. All of the 
other procedures conducted, based on the 
experimentwise philosophy are conservative 

procedures with mean Type I error rates in the 
range of .00860 to .00865 when conducted as 
unprotected tests and .00647 to .00649 when 
conducted as protected tests. If the Type I error 
control philosophy is per-experiment, the most 
accurate procedure is clearly the Dunn-
Bonferroni, conducted as an unprotected test 
with a mean observed Type I error rate of 
.01003 and 97.6% of the observed Type I errors 
in the range of .009 to .011.  

When the philosophy is per-experiment 
and conducted as unprotected tests, the Dunn-
Sidak outcome is very close to the Dunn-
Bonferroni outcome with a mean error rate of 
.01007 and 92.9% of the observed errors in the 
.009 to .011 range. The other two methods tend 
to be liberal with the mean error rate for the 
Holm procedure at .01026 and Tukey’s HSD  
with a mean error rate of .01181. When 
conducted as protected tests, all four methods 
were conservative with Tukey’s HSD slightly 
less conservative with a mean error rate of 
.00878. The other three methods were slightly 
more conservative with mean errors of .00790 
for the Dunn-Bonferroni, .00793 for the Dunn-
Sidak, and .00814 for Holm’s procedure.  
 In summary, relative to research 
question 1 (Which of these four multiple 
comparison procedures has the most accurate 
control of Type I error across the three alpha 
conditions?), if the most accurate control of per-
experiment Type I error is desired, the Dunn-
Bonferroni, conducted as an unprotected test, is 
the most accurate across all three levels of alpha. 
It consistently provides a mean Type I error rate 
closest to nominal alpha, has the lowest 
variance, and captures the highest proportion of 
observed Type I errors in the expected +/- .001 
interval. Although the Dunn-Sidak and Holm 
provide values that are reasonably close, they 
tend to be slightly more liberal and less accurate, 
particularly with higher nominal alpha. As alpha 
decreases, both the Dunn-Sidak and Holm 
approach the level of accuracy of the Dunn-
Bonferroni. Tukey’s HSD is liberal as an 
unprotected test in control of per-experiment 
Type I error, although this decreases as alpha 
decreases. If the error control philosophy is 
experimentwise, Tukey’s HSD is the most 
accurate, conducted as an unprotected test. It has 
a mean error closest to nominal alpha, the lowest 
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variance, and the highest proportion of observed 
Type I errors in the expected +/- .001 interval. 
When alpha is .10, HSD is slightly less accurate 
than when alpha is .05 or .01. The other three 
methods are conservative, with the Dunn-Sidak 
being slightly less conservative compared with 
Dunn-Bonferroni and Holm. 
 The second research question is: Does 
error control accuracy differ when tests are 
conducted as protected or unprotected tests? If 
the interest is in using any of these methods as a 
protected test, a practice not generally supported 
by these data, the HSD provides the most 
accurate control of experimentwise Type I error 
although it is very conservative at all alpha 
levels. The other three methods are very 
conservative in control of experimentwise Type 
I error. If per-experiment control of Type I error 
is the philosophy, HSD is liberal when alpha is 
.10 or .05 but becomes more accurate, even 
somewhat conservative, when alpha is .01. Of 
the remaining three, Holm’s procedure tends to 
be more accurate across the three alpha levels. It 
is clear and expected that unprotected tests are 
more powerful than protected tests.  
 The third research question is: Do 
methods differ relative to accuracy when 
conducted as experimentwise vs. per-experiment 
control? It seems pretty clear that the results 
vary a great deal depending on the Type I error 
control philosophy. By the very nature of these 
philosophies, there will be a higher proportion of 
Type I errors in the per-experiment condition 
compared with the experimentwise condition. In 
every case, across alpha levels and for both 
protected and unprotected tests, the lowest 
difference between these rates was for the Dunn-
Bonferroni, followed relatively closely by the 
Dunn-Sidak, Holm’s procedure has next highest, 
and the highest difference was for the HSD. 
Thus, the issue is more a concern if one is using 
the HSD as compared with the other three 
methods.  

 
Conclusion 

 
These results provide insights on two major 
controversies. One is the need for a significant 
omnibus F test as the gateway for conducting 
pairwise follow-ups (i. e., the protected test). Is 
it not possible, as Hancock & Klockars (1996) 

pointed out, that this requirement overprotects 
against finding pairwise differences?  These 
results certainly support that claim, particularly 
when experimentwise Type I error is the control 
philosophy. Protected tests were more 
conservative in every case. It can clearly be 
concluded that none of these four tests should be 
used as protected tests when experimentwise 
error control is used. If per-experiment error 
control is desired, only the Holm procedure with 
alpha of .10 was more accurate as a protected 
test than as an unprotected test. However, that 
accuracy difference was lower when alpha was 
.05 or .01.  

The other controversy is the use of 
experimentwise vs. per-experiment Type I error 
control. Clearly there is a difference in the error 
rates of these philosophies. The authors of this 
article contend that per-experiment mode is 
closest to the realities of pairwise hypothesis 
testing, because more than just the largest 
pairwise difference is of interest and all pairwise 
comparisons are tested. The conventional 
wisdom, based on experimentwise Type I error 
control, is that the Dunn-Bonferroni is very 
conservative and that the HSD is conservative, 
but less so. 

The HSD is often recommended because 
it is conservative, yet provides reasonable power 
for finding significant differences; but this 
relates to experimentwise control and a 
protected test. Yet, arguments could be made 
that the HSD gets its power from a higher-than-
nominal alpha level. In this research, when HSD 
is used as a protected test with alpha of .10 or 
.05, the actual per-experiment Type I error rates 
are .12741 and .05531 respectively and actual 
experimentwise Type I error rates were much 
lower at .08134 and .03865. Thus, the 
operational alpha level is not the nominal level, 
but a higher level.  

If one is truly interested in maintaining 
an accurate level of control of Type I error, then 
methods which are shown to provide accurate 
actual controls should be used, and the power 
available can be determined by other 
comparison conditions: sample size, effect size, 
number of groups, and error variance. This 
research indicates that Tukey’s HSD, conducted 
as an unprotected test, is the most accurate 
control of experimentwise Type I error. If it is 
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desired that accurate, as advertised, control of 
per-experiment Type I error be the primary 
criterion, there is one method that seems to 
provide that regardless of alpha level and that is 
the Dunn-Bonferroni conducted as an 
unprotected test.  
 These findings are not consistent with 
common wisdom or with recommendations 
found or implied in most statistics texts. 
However, it is hoped that this research 
influences others to replicate this work, possibly 
using other methods. Only when one is willing 
to question our current practice can one be able 
to improve on it. 
 Additional study of the discrepancy 
between experimentwise and per-experiment 
Type I errors is needed. Determining the 

importance of this discrepancy is required. The 
current study did not consider the case of 
unequal sample sizes or heterogenous variances. 
Is it the same under conditions of unequal 
sample sizes and/or variances? While it might be 
useful to include other procedures such as the 
Student-Newman-Keuls, Scheffé, and 
modifications of Holm’s procedure, it is 
believed that it is unlikely that any of these 
methods will fare better as methods of Type I 
error control than Tukey’s HSD when 
experimentwise is the control philosophy, or the 
Dunn-Bonferroni when per-experiment is the 
control philosophy and unprotected tests are 
used.  
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Table 1. Observed Per-Experiment and Experimentwise Type I Error Rates for Selected Multiple 
Comparison Procedures when Conducted as Protected and Unprotected Tests with Alpha= .10 

 

Protected Test Unprotected Test 

 
Per- 

Experiment 
Error (PE) 

Experiment-
wise Error 

(EW) 

PE - EW 
Difference 

Per- 
Experiment 
Error (PE) 

Experiment-
wise Error 

(EW) 

PE - EW 
Difference 

Dunn- 
 

Bonferroni 

 
M 
 

M − α 
 

SD 
 

% in  
α +/-.001  

 
.09466 

 
−.00534 

 
.00427 

 
 

19.0 

 
.06695 

 
−.03305 

 
.00962 

 
 

0 

.02771 
 
 
 
 
 
 

 
.10011 

 
+.00011 

 
.00075 

 
 

85.7 

 
.07239 

 
−.02767 

 
.00626 

 
 
0 

.02772 
 
 
 
 
 
 

Dunn-Sidak 

  
 

M 
 

M − α 
 

SD 
 

% in  
α +/-.001 

 
 

.09834 
 

−.00166 
 

.00401 
 
 

19.0 

 
 

.06885 
 

−.03115 
 

.00972 
 
 

0 

 
.02949 

 
 
 
 
 
 

 
 

.10481 
 

+.00481 
 

.00093 
 
 
0 

 
 

.07535 
 

−.02465 
 

.00625 
 
 
0 

 
.02946 

 
 
 
 
 
 

Holm 

 
 

M 
 

M − α 
 

SD 
 

% in  
α +/-.001 

 
 

.10036 
 

+.00036 
 

.00739 
 
 

2.4 

 
 

.06695 
 

−.03305 
 

.00962 
 
 

0 

 
.03341 

 
 
 
 
 
 

 
 

.10582 
 

+.00582 
 

.00346 
 
 

7.1 

 
 

.07239 
 

−.02761 
 

.00626 
 
 
0 

 
.03343 

 
 
 
 
 
 

HSD 

 
 

M 
 

M − α 
 

SD 
 

% in  
α +/-.001 

 
 

.12741 
 

+.02741 
 

.00906 
 
 
0 

 
 

.08134 
 

−.01866 
 

.00755 
 
 

0 

 
.04607 

 
 
 
 
 
 

 
 

.14579 
 

+.04579 
 

.01472 
 
 
0 

 
 

.09940 
 

−.00060 
 

.00102 
 
 

78.6 

 
.04639 

 
 
 
 
 
 

 
 
 



www.manaraa.com

TYPE I ERROR OF FOUR PAIRWISE MEAN COMPARISON PROCEDURES 454 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 1
Accuracy of Type I Error Control with Experimentwise and Per-Experiment Control Conducted 

as Protected and Unprotected Tests when Nominal Alpha= .10 and % in .10 +/- 0.001 
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Table 2. Observed Per-Experiment and Experimentwise Type I Error Rates for Selected Multiple   
Comparison Procedures when Conducted as Protected and Unprotected Tests with Alpha= .05 
 

 

Protected Test Unprotected Test 

 Per- 
Experiment 
Error (PE) 

Experiment
-wise Error 

(EW) 

PE - EW 
Difference 

Per- 
Experiment 
Error (PE) 

Experiment
-wise Error 

(EW) 

PE - EW 
Difference 

Dunn- 
 

Bonferroni 

 
M 
 

M − α 
 

SD 
 

% in  
α +/-.001 

 
.04483 

 
−.00517 

 
.00315 

  
 

7.1 

 
.03352 

 
−.01648 

 
.00534 

 
 

0 

.01113 
 
 
 
 
 
 

 
.04998 

 
−.00002 

 
.00054 

 
 

92.9 

 
.03864 

 
−.01136 

 
.00294 

 
 

0 

.01134 
 
 
 
 
 
 

Dunn-Sidak 

  
 

M 
 

M − α 
 

SD 
 

% in  
α +/-.001 

 
 

.04560 
 

−.00440 
 

.00308 
 
 

16.7 

 
 

.03395 
 

−.00405 
 

.00536 
 
 

0 

 
.01165 

 
 
 
 
 
 

 
 

.05110 
 

+.00110 
 

.00052 
 
 

50.0 

 
 

.03943 
 

−.01057 
 

.00291 
 
 

0 

 
.01167 

 
 
 
 
 
 

Holm 

 
 

M 
 

M − α 
 

SD 
 

% in  
α +/-.001 

 
 

.04696 
 

−.00304 
 

.00433 
 
 

19.0 

 
 

.03352 
 

−.01648 
 

.00535 
 
 

0 

 
.01344 

 
 
 
 
 
 

 
 

.05208 
 

+.00208 
 

.00146 
 
 

33.3 

 
 

.03864 
 

−.01136 
 

.00294 
 
 

0 

 
.01344 

 
 
 
 
 
 

HSD 

 
 

M 
 

M − α 
 

SD 
 

% in  
α +/-.001 

 
 

.05531 
 

+.00531 
 

.00324 
 
 

2.4 

 
 

.03865 
 

−.01135 
 

.00458 
 
 

0 

 
.01666 

 
 
 
 
 
 

 
 

.06674 
 

+.01674 
 

.00541 
 
 

0 

 
 

.04993 
 

−.00007 
 

.00048 
 
 

97.6 

 
.01681 
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Figure 2
Accuracy of Type I Error Control with Experimentwise and Per-Experiment Control Conducted 

as Protected and Unprotected Tests when Nominal Alpha= .05 and % in .05 +/- 0.001 
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Table 3. Observed Per-Experiment and Experimentwise Type I Error Rates for Selected Multiple   
Comparison Procedures when Conducted as Protected and Unprotected Tests with Alpha= .01 

 

Protected Test Unprotected Test 

 
Per- 

Experiment 
Error (PE) 

Experiment-
wise Error 

(EW) 

PE - EW 
Difference 

Per- 
Experiment 
Error (PE) 

Experiment-
wise Error 

(EW) 

PE - EW 
Difference 

Dunn- 
 

Bonferroni 

 
M 
 

M − α 
 

SD 
 

% in  
α +/-.001 

 
.00790 

 
−.00210 

 
.00103 

 
 

11.9 

 
.00647 

 
−.00353 

 
.00123 

 
 

0 

.00143 
 
 
 
 
 
 

 
.01003 

 
+.00003 

 
.00048 

 
 

97.6 

 
.00860 

 
−.00140 

 
.00059 

 
 

26.2 

.00143 
 
 
 
 
 
 

Dunn-Sidak 

 
 

M 
 

M − α 
 

SD 
 

% in  
α +/-.001 

 
 

.00793 
 

−.00207 
 

.00103 
 
 

14.3 

 
 

.00649 
 

−.00351 
 

.00122 
 
 

0 

 
.00144 

 
 
 
 
 
 

 
 

.01007 
 

+.00007 
 

.00049 
 
 

92.9 

 
 

.00865 
 

−.00135 
 

.00058 
 
 

26.2 

 
.00142 

 
 
 
 
 
 

Holm 

 
 

M 
 

M − α 
 

SD 
 

% in  
α +/-.001 

 
 

.00814 
 

−.00186 
 

.00119 
 
 

31.0 

 
 

.00647 
 

−.00353 
 

.00123 
 
 

0 

 
.00167 

 
 
 
 
 
 

 
 

.01026 
 

+.00026 
 

.00054 
 
 

92.9 

 
 

.00860 
 

−.00140 
 

.00059 
 
 

26.2 

 
.00166 

 
 
 
 
 
 

HSD 

 
 

M 
 

M − α 
 

SD 
 

% in  
α +/-.001 

 
 

00878 
 

−.00122 
 

.00097 
  
 

42.9 

 
 

.00702 
 

−.00298 
 

.00116 
 
 

2.4 

 
.00176 

 
 
 
 
 
 

 
 

.01181 
 

+.00181 
 

.00080 
 
 

14.3 

 
 

.01002 
 

+.00002 
 

.00043 
 
 

100.0 

 
.00179 
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Testing For Aptitude-Treatment Interactions In Analysis Of Covariance And 
Randomized Block Designs Under Assumption Violations 
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This study compared the robustness of two analysis strategies designed to detect Aptitude-Treatment 
Interactions to two of their similarly-held assumptions, normality and residual variance homogeneity. The 
analysis strategies were the test of slope differences in analysis of covariance and the test of the Block-by-
Treatment interaction in randomized block analysis of variance. With equal sample sizes in the treatment 
groups the results showed that residual variance heterogeneity has little effect on either strategy but 
nonnormality makes the test of slope differences liberal and the test of the Block-by-Treatment interaction 
conservative. With unequal sample sizes in the treatment groups the often-reported sample size-variance 
heterogeneity pairing is problematic for both strategies. The findings suggest that the randomized block 
strategy can be characterized as an overly-conservative alternative to the test of slope differences with 
respect to robustness. 
 
Key words: Aptitude-treatment interactions, analysis of covariance, randomized block, nonnormality, 

variance heterogeneity, robustness 
 
 

Introduction 
 

One of the important issues in education is 
identifying when the effect of an instructional 
strategy depends on some individual difference 
variable (X) of the student. In their seminal 
work, Cronbach and Snow (1977) called these 
effects Aptitude-Treatment Interactions (ATIs). 
Two analysis approaches for identifying the 
presence of ATIs differ in terms of how they 
deal with an originally continuous X.  
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The first is a randomized block analysis 
of variance approach in which X is stratified into 
mutually exclusive subsets (Blocks). The second 
is a regression-based analysis of covariance 
approach in which the observed continuum of X 
is used. The question of interest is assessed with 
a test of the Block-by-Treatment interaction in 
the randomized block approach and a test of the 
homogeneity of regression coefficients in the 
analysis of covariance approach. 

The randomized block and the analysis 
of covariance approaches have been compared 
in terms of relative power and apparent 
popularity. When their assumptions are met, 
both approaches control Type I error to an 
acceptable level, while the analysis of 
covariance strategy has superior power 
(Klockars & Beretvas, 2001; Cronbach & Snow, 
1977; Pedhazur, 1997; Aiken & West, 1991). 
The power advantage is greatest when the 
randomized block strategy is based on a large 
number of blocks. In terms of popularity and 
familiarity for researchers, the randomized block 
strategy seems to have the advantage (Klockars 
& Beretvas, 2001; Keselman, Huberty, Lix, 
Olejnik, Cribbie, Donahue, Kowalchuk, 
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Lowman, Petoskey, Keselman, & Levin, 1998; 
Maxwell, O’Callaghan, & Delaney, 1993). The 
purpose of the current study is to compare the 
two strategies in terms of a different criterion, 
their relative robustness to violations of 
assumptions about the normality and between-
group variance homogeneity of the errors. 
 The two strategies make similar 
assumptions about the normality and variance 
homogeneity of the errors, but define error 
differently. In the randomized block design error 
is defined as the deviation of the scores from the 
mean of the Block-Treatment group. This mean 
reflects the outcome measure (Y) for all 
individuals in a treatment group who are 
categorized into the same block based on their X 
values. The error variance for the randomized 
block design is called the Subject/Block-by-
Treatment Mean Square or S/BT. In analysis of 
covariance, error is defined as the difference 
between the Y scores and the predicted value 
based on the X value of the subject. The 
predicted value is from the best fitting least 
squares line for the treatment group. The error 
variance for analysis of covariance is called the 
adjusted subject Mean Square or the residual 
variance. 

Research has considered the effects of 
nonnormality and variance heterogeneity on the 
robustness of the two strategies, but most of this 
work has been on the analysis of covariance 
strategy. None of this work has specifically 
compared the robustness of the two analysis 
strategies under the same assumption violations. 
This research suggests that the two assumption 
violations have different effects on the 
robustness of the analysis of covariance and 
randomized block strategies. 

Nonnormality seems to have a stronger 
impact on the robustness of the analysis of 
covariance strategy than on the robustness of the 
randomized block strategy. The analysis of 
covariance strategy becomes liberal when the 
error distribution is heavy-tailed and 
conservative when it is light-tailed (Conover & 
Iman, 1982; Headrick & Sawilowsky, 2000; 
Klockars & Moses, 2002). The randomized 
block strategy is mildly affected by all but the 
most extreme conditions of nonnormality 
(Milligan, Wong & Thompson, 1987; Keselman, 
Carriere, & Lix, 1995). 

The effect of variance heterogeneity on 
robustness depends on whether group sample 
sizes are equal. With equal sample sizes, 
variance heterogeneity has a negligible effect on 
the robustness of the analysis of covariance 
strategy (Dretzke, Levin & Serlin, 1982; 
Overton, 2001) and sometimes a negligible 
(Milligan, Wong & Thompson, 1987) or other 
times a liberal (Harwell, Rubinstein, Hayes & 
Olds, 1992) effect on the randomized block 
strategy. With unequal sample sizes, variance 
heterogeneity influences the robustness of the 
two strategies in the same way: when the group 
with the largest sample size has the smallest 
error variance (inverse pairing) both strategies 
are liberal, and when the group with the largest 
sample size has the largest error variance (direct 
pairing) both strategies are conservative. The 
current study considers the variance 
heterogeneity effect for equal and unequal 
sample sizes. 

Finally, the effect of combined 
nonnormality and variance heterogeneity is 
interactive for the analysis of covariance 
strategy and additive for the randomized block 
strategy. For the analysis of covariance strategy, 
the two assumption violations slightly correct 
for each other (Deshon & Alexander, 1996). For 
the randomized block strategy, the two 
assumption violations are not interactive so that 
robustness depends mostly on the extent of 
variance heterogeneity (Keselman, et al., 1995; 
Harwell, et al., 1992). 
 It is difficult to recommend either 
analysis of covariance or randomized block as 
the more robust strategy when the errors are 
nonnormal and heterogeneous. Comparisons of 
the two strategies have focused on power when 
their assumptions are met and their popularity 
among researchers. The research that has 
evaluated the impact of the assumption 
violations on robustness has not directly 
compared the robustness of the two strategies. 
The current study was motivated by these 
concerns. The major questions are 1) for 
combinations of nonnormality and variance 
heterogeneity, which strategy is more robust? 
and 2) how will the relative robustness of these 
two strategies compare to what is known about 
their relative power? 
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Methodology 
 

A Monte Carlo simulation study was conducted 
to investigate the relative robustness of the ATI 
analysis strategies. The null hypothesis of no 
ATI was true in all conditions. Empirical Type I 
error rates based on 10,000 iterations were 
generated for each condition. These empirical 
Type I error rates were then compared to the 
nominal Type I error rate of .05. Two treatment 
groups were used throughout the study. The 
following conditions were considered. 
 
Analysis strategies  
 The standard analysis of covariance test 
of regression slope heterogeneity (Slopes) and 
the randomized block Block-by-Treatment 
Interaction analyses were compared. The 
randomized block strategy was evaluated using 
two (RB2) and four (RB4) blocks of X using 
median and quartile splits of the X variable 
based on the total sample. While the creation of 
the X blocks using of the total sample can create 
slightly unequal sample sizes even though the 
treatment group sizes are intended to be equal, 
the use of the total sample was preferred over 
the excessively liberal strategy of creating the X 
blocks within each separate treatment group 
(Myers & Well, 1995).  
 
Assignment strategies  
 Two major strategies for assigning 
subjects to treatment conditions in randomized 
block and analysis of covariance are random 
assignment and assignment that utilizes subjects’ 
X scores (Lomax, 2001; Myers & Well, 1995). 
When subjects are randomly assigned to 
treatments without regard for X, the randomized 
block strategy creates X blocks after treatments 
are administered (post hoc blocking). When 
subjects are assigned to treatments based on 
their X score, the randomized block strategy first 
creates the desired number of blocks in the total 
sample and then randomly assigns equal 
numbers of subjects to each of the treatments 
from each of the blocks. The approach of 
assigning subjects to treatments based on X and 
using the analysis of covariance is called 
systematic assignment (Dalton & Overall, 1977), 
meaning that subjects are first ranked on X and 

then assigned to treatments in a systematic 
pattern (i.e. 12211221…). 

The consideration of analysis and 
assignment strategy resulted in six strategies to 
be   investigated:  analysis   of   covariance with 
random assignment, analysis of covariance with 
systematic assignment, RB2 and RB4 with 
random assignment (post hoc blocking) and RB2 
and RB4 with assignment from the blocks. 

 
Normality  
 Three shapes were used for X and the 
errors of Y, including a normal shape (skew=0, 
kurtosis=0), a skewed and heavy-tailed shape 
(skew=1, kurtosis=10) and an extremely skewed 
and heavy-tailed shape (skew=3, kurtosis=50). 
The shapes were generated with Fleishman’s 
(1978) method (described below). 

 
Variance Heterogeneity 
  Between-group variance heterogeneity 
was created to obtain a specified residual 
variance ratio of the treatment groups’ residual 
variances based on the groups’ deviations from 
their own regression lines. The variance 
heterogeneity considered in this study 
corresponds to how variance heterogeneity 
occurs in observed datasets (Oswald, Saad, & 
Sackett, 2000), meaning that groups differed 
more on their X-Y correlations and Y variances 
than on their X variances. The three considered 
residual variance ratios for the groups were 1/1, 
3/1 and 15/1. For the conditions of unequal 
sample size, the residual variances were directly 
and inversely paired with the treatment group 
sample sizes.  
 To assess the correspondence of the 
considered levels of residual variance 
heterogeneity from treatment group regression 
lines to levels of variance heterogeneity from 
Block-by-Treatment Y means, Tables 1 and 2 
give the ratios of the largest-to-smallest 
variances for the Block-by-Treatment cells of 
the RB2 and RB4 designs for all levels of 
assumption violations considered in this study. 
As analytical methods for deriving Y variances 
after forming categories on a correlated X 
variable are valid only for symmetric 
distributions (Maxwell & Delaney, 1993), the 
approach taken to produce the ratios in Tables 1 
and 2 was simply to generate each distribution 
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and residual variance heterogeneity combination 
in a total sample of 100,000 observations and 
then compute Y variances for the randomized 
block  designs  based on  random  assignment  to  
treatment conditions (note that the variance 
ratios based on assignment from the X blocks 
are almost exactly equal). 

Data were simulated so that the 
correlation was either .3 or .7 for one group. For 
the second group, the correlation was somewhat 
different from .3 or .7 so that, combined with a 
different Y variance, this second group’s slope 
was equal the first group’s slope while a desired 
level of variance heterogeneity was obtained. 
 
Sample Size  

Forty or eighty subjects per treatment 
group were used. The conditions of unequal 
sample size used forty subjects in one group and 
eighty in the other.  

 
Data Generation Method 
 The following data generation method 
was used to create X and Y variables of desired 
distributions, variances and correlations while 
allowing for different assignment strategies to 
the treatment conditions. 
  
1) N values of one standard normal variate, Z, 
were generated, where N was the total sample 
size based on two treatment groups that were 
intended to be of equal sample size. 
 
2) X was created as a transformation of Z using 
Fleishman’s (1978) method for generating 
nonnormal variables: 
  
 X = a + bZ + cZ2 + dZ3  (1) 
 
 The constants (a, b, c, and d) determined 
the first (mean), second (variance), third (skew) 
and fourth (kurtosis) moments of X. The values 
of the constants were derived to obtain the three 
distributions of interest in this study, where each  
 
 
 
 
 
 
 

distribution had a mean and variance of 0 and 1, 
respectively. The constants and resulting 
distributions are listed in Table 3. 
 
3) An error variable for Y (E) was generated 
exactly as X was in steps 1 and 2. E had the 
same distribution as X. 
 
4) Equal numbers of Xs and Es were randomly 
assigned to treatment groups 1 and 2. Depending 
on the particular strategy being studied, this 
involved either random assignment from the 
total available dataset (analysis of covariance 
and randomized block with post hoc blocking), 
random assignment from blocks of X 
(randomized block with assignment from the X 
blocks) or systematic assignment of the ranked 
X values to treatment groups (analysis of 
covariance with systematic assignment). The 
assignment strategies were the same in the 
unequal sample size conditions as in the equal 
sample size conditions, but after assignment one 
treatment group’s sample size was reduced by 
½, approximating an experimental study with 
massive loss of subjects from one of the two 
treatment groups.  
 
5) Y was created as a function of X and E:  
  
 Y= σYk[ρkX + (1- ρk

 2).5E] (2),  
 
where ρk was the desired X-Y correlation and 
σYk is the desired standard deviation of Y for 
treatment group k. The values ρk and σYk were 
determined for both treatment groups such that 
the two groups had the desired residual variance 
ratio and the null hypothesis of no slope 
differences was true. The values used are 
summarized in Table 4. 
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Table 1 Simulated ratios of largest-to-smallest Y variances in the Block-by-Treatment cells of the 
randomized block designs (XY correlation = .3, N=100,000). 

Residual Variance Ratio Distribution of X 
and E 

1/1 3/1 15/1 
Skew Kurtosis RB2 RB2 RB2 
0 0 1.0/1 2.9/1 14.5/1 
1 10 1.0/1 3.0/1 14.9/1 
3 50 1.1/1 

RB4 
1.1/1 
1.1/1 
1.3/1 3.0/1 

RB4 
3.1/1 
3.2/1 
3.4/1 14.3/1 

RB4 
15.4/1 
16.3/1 
15.3/1 

 
 
 
Table 2 Simulated ratios of largest-to-smallest Y variances in the Block-by-Treatment cells of the 
randomized block designs (XY correlation = .7, N=100,000). 

 
 
Table 3 Fleishman constants used to generate the variables 
Skew Kurtosis  a b c (=-a) d 
0 0  0 1 0 0 
1 10  -.08772 .56426 .08772 .12621 
3 50  -.17038 -.04789 .17038 .26005 

 
 

Residual Variance Ratio Distribution of X 
and E 1/1 3/1 15/1 

Skew Kurtosis RB2 RB2 RB2 
0 0 1.0/1 2.5/1 11.6/1 
1 10 1.3/1 2.7/1 11.7/1 
3 50 1.8/1 

RB4 
1.2/1 
1.9/1 
3.4/1 2.8/1 

RB4 
3.2/1 
3.8/1 
4.8/1 10.7/1 

RB4 
15.1/1 
16.9/1 
17.5/1 

 
Table 4 Correlations and standard deviations used to create levels of residual variance heterogeneity. 

Residual 
Variance Ratio 

ρk for Group 1 σYk for Group 1 ρk for Group 2 σYk for Group 2 

Low X-Y Relationship 
1/1 0.3 1 0.3 1 
1/3 0.3 1 0.171871 1.679143 
1/15 0.3 1 0.080933 3.706751 

 
High X-Y Relationship 

1/1 0.7 1 0.7 1 
1/3 0.7 1 0.492773 1.421127 
1/15 0.7 1 0.24535 2.853069  
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Programming 
The programming for this study was 

done in SAS, using the CALL RANNOR (SAS 
Institute Inc., 1999a) routine for creating 
standard normal deviates and the PROC GLM 
(SAS Institute Inc., 1999b) function with Type 
III Sums of Squares for implementing the 
analysis strategies. 

 
Assessing the Type I Error Rates 
 To identify the conditions with the 
strongest influence on Type I error, ANOVAs of 
the six manipulated variables and their two, 
three, four, five and six-way interactions were 
used. These ANOVAs were conducted 
separately for the equal and unequal sample size 
conditions. For equal sample sizes, the six 
independent variables (and their number of 
levels) were analysis strategy (3), assignment 
strategy (2), nonnormality (3), residual variance 
ratio (3), sample size (2) and overall X-Y 
correlation (2). For unequal sample sizes, the six 
independent variables (and their number of 
levels) were analysis strategy (3), assignment 
strategy (2), nonnormality (3), residual variance 
ratio (3), sample size-residual variance pairing 
(direct or inverse, 2) and overall X-Y correlation 
(2). Due to the stability of the empirical error 
rates, the two ANOVAs captured 100% of the 
variation in Type I error. Representative tables 
that illustrated the most important effects from 
the ANOVAs are also provided. The Type I 
error  rates   in  these tables  were  considered  as  
 
 

 
 

meaningfully different from the nominal .05 rate 
based on the criterion of +/- 2 standard errors 
range (.046-.054). Note that the +/- 2 standard 
error range is almost identical to Bradley’s 
(1978) conservative range (.045-.055). 
 

Results 
 
Equal Sample Sizes 
 Table 5 presents the ten effects with the 
largest mean squares from the ANOVA of the 
error rates for equal sample sizes in the 
treatment groups. These ten effects accounted 
for 84.6% of the variation in Type I error rates. 
The two strongest effects were the analysis 
strategy and the analysis*normality interaction, 
accounting for 72.3% of the variation in Type I 
error. The assignment strategy’s main effect and 
interactions with analysis, analysis*normality 
were also visible, but to a much smaller extent. 
Residual variance heterogeneity, XY correlation 
and sample size had small main effects. 
 Tables 6 and 7 illustrate the results of 
Type I error effects for equal treatment group 
sample sizes. These tables present the empirical 
Type I error rates for three analysis strategies 
across normality and residual variance 
heterogeneity ratios for the treatment group 
sample sizes of 40 and the overall XY 
correlation of .3. Table 6 shows the results for 
random assignment to treatment conditions. 
Table 7 shows the results when X was used to 
assign subjects to treatment conditions. 

Table 5 The Ten Effects with the Largest Mean Squares, Equal Sample Sizes 
Source Sum of Squares  

(multiplied by 1,000) 
df Mean Square 

(multiplied by 1,000) 
Analysis 5.644 2 2.822 
Analysis*Normality 5.350 4 1.338 
Analysis*Assignment .456 2 .228 
Analysis*N .342 2 .171 
Correlation .148 1 .148 
Assignment .117 1 .117 
N .115 1 .115 
ResVarHet .204 2 .102 
Analysis*Normality*Assignment .335 4 .084 
Correlation*Normality .143 2 .072  
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 The most visible effect shown in Tables 
6 and 7 is the effect of nonnormality on the 
analysis strategies. For the analysis of 
covariance strategy, increased nonnormality 
made Type I error liberal. For the randomized 
block strategies, increased nonnormality made 
Type I error conservative. The effect of 
nonnormality on the strategies was slightly 
larger when assignment to treatments used X 
(Table 7) than when assignment to treatments 
was random (Table 6). The effect of residual 
variance heterogeneity was very small when 
subjects are randomly assigned to treatments 
(Table 6), though RB4 was significantly liberal 
in two of the four sample size-correlation 
conditions where residual variance heterogeneity 
was most extreme. When subjects were assigned 
to treatments based on X, residual variance 
heterogeneity seemed to increase the liberalness 
of the analysis of covariance test when there was 
nonnormality. The results shown in Tables 6 and 
7 were similar for the higher sample size and 
XY correlation. 
 

Unequal Sample Sizes 
 Table 8 presents the ten effects with the 
largest mean squares from the ANOVA of the 
error rates for unequal sample sizes in the 
treatment groups. The mean squares were much 
larger when sample sizes were unequal, 
indicating that variations in Type I error are 
much greater for unequal sample sizes than for 
equal sample sizes. The ten effects in Table 8 
accounted for 98.9% of the variation in Type I 
error rates. The two strongest effects were the 
residual variance-sample size pairing (direct or 
inverse) and this pairing in interaction with the 
levels of residual variance heterogeneity, 80.5% 
of the variation in Type I error. Many of the 
remaining ten effects in Table 8 also involved 
interactions with the residual variance-sample 
size pairing and the levels of residual    variance    
heterogeneity. The main effects and interactions 
with analysis strategy accounted for less than 
8% of total variability in Type I error, 
suggesting small but visible differences in the 
robustness of the three analysis strategies. The 
effects of assignment strategy, overall XY 

 
 
Table 6 Type I Error Rates for Treatment Groups of 40, an XY correlation of .3, and Random Assignment 
to Treatment Conditions. 

Residual Variance Ratio Distribution of X 
and E 

1/1 3/1 15/1 
Skew Kurtosis Slopes RB2 RB4 Slopes RB2 RB4 Slopes RB2 RB4 
0 0 .047 .048 .052 .046 .046 .051 .051 .051 .054 
1 10 .054 .046 .051 .054 .045* .051 .055* .052 .056* 
3 50 .068* .044* .044* .058* .042* .042* .066* .036* .038* 

* Outside the +/- 2 standard error range (.046 to .054). 
 
 
Table 7 Type I Error Rates for Treatment Groups of 40, an XY correlation of .3, and Assignment to 
Treatment Conditions Utilizing X. 

Residual Variance Ratio Distribution of X 
and E 

1/1 3/1 15/1 
Skew Kurtosis Slopes RB2 RB4 Slopes RB2 RB4 Slopes RB2 RB4 
0 0 .050 .050 .051 .052 .050 .051 .053 .052 .056* 
1 10 .056* .046 .043* .061* .050 .045* .071* .053 .051 
3 50 .069* .041* .034* .076* .040* .034* .088* .039* .033* 

* Outside the +/- 2 standard error range (.046 to .054). 
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correlation, sample size and normality effects 
were very small when group sample sizes were 
unequal. 
 Tables 9 and 10 illustrate the effects of 
directly-paired sample sizes and residual 
variance ratios where the overall XY correlation 
was .3 and the assignment strategy was either 
random (Table 9) or based on X (Table 10). 
With equal residual variances (a residual 
variance ratio of 1/1), the slope test became 
liberal, RB2 became conservative and RB4 was 
not seriously affected. With residual variance 
heterogeneity, all Type I error rates became 
extremely conservative. The most conservative 
strategy was RB4. The RB2 and the analysis of 
covariance strategies had similar Type I error 
rates when distributions were normal. The 
combination of nonnormality and residual 
variance heterogeneity was visibly interactive 
for the analysis of covariance strategy, which 
became slightly less conservative as 
distributions became more nonnormal. In 
contrast, the   effect  of  nonnormality  was  very 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

small for RB2 and RB4. The error rates in 
Tables 9 and 10 are similar, suggesting that the 
assignment strategy used makes little difference 
when sample sizes are unequal. 
 Tables 11 and 12 illustrate the effects of 
inversely-paired sample sizes and residual 
variances. With no residual variance 
heterogeneity, nonnormality made the analysis 
of covariance test liberal, RB2 conservative, and 
had little effect on RB4. As residual variances 
became different all three analysis strategies 
became liberal, where the randomized block 
strategy based on four blocks (RB4) was the 
most liberal and the analysis of covariance and 
RB2 strategies had similarly-liberal Type I error 
rates. The combination of nonnormality and 
residual variance heterogeneity made all three 
strategies slightly less liberal than residual 
variance heterogeneity with normality. The error 
rates in Tables 11 and 12 are very similar, 
suggesting that assignment strategy makes little 
difference when sample sizes are unequal (like 
the results of direct pairing). 
 
 

 
 
 
 
 
 

Table 8 The Ten Effects with the Largest Mean Squares, Unequal Sample Sizes 
Source Sum of Squares  

(multiplied by 1,000) 
df Mean Square 

(multiplied by 1,000) 
Pairing 340.380 1 340.380 
Pairing*ResVarHet 230.011 2 115.006 
ResVarHet 55.485 2 27.743 
Analysis*Pairing 23.954 2 11.977 
Analysis 13.601 2 6.800 
Analysis*Pairing*ResVarHet 18.513 4 4.628 
Analysis*ResVarHet 11.645 4 2.911 
Pairing*Normality .447 2 2.236 
Pairing*Correlation .622 1 .622 
Pairing*ResVarHet*Normality 2.362 4 .591  
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Table 9 Type I Error Rates for the Direct Pairing of Sample Size (80, 40) and Residual Variance, an XY 
correlation of .3, and Random Assignment to Treatment Conditions. 

Residual Variance Ratio Distribution of X 
and E 

1/1 3/1 15/1 
Skew Kurtosis Slopes RB2 RB4 Slopes RB2 RB4 Slopes RB2 RB4 
0 0 .050 .050 .050 .021* .021* .012* .008* .008* .003* 
1 10 .050 .049 .051 .025* .022* .015* .015* .006* .003* 
3 50 .060* .045* .050 .040* .020* .016* .026* .006* .002* 

* Outside the +/- 2 standard error range (.046 to .054). 
 
 
Table 10 Type I Error Rates for the Direct Pairing of Sample Size (80, 40) and Residual Variance, an XY 
correlation of .3, and Assignment to Treatment Conditions Utilizing X. 

Residual Variance Ratio Distribution of X 
and E 

1/1 3/1 15/1 
Skew Kurtosis Slopes RB2 RB4 Slopes RB2 RB4 Slopes RB2 RB4 
0 0 .046 .049 .051 .023* .019* .012* .009* .008* .004* 
1 10 .050 .047 .051 .030* .020* .013* .014* .008* .003* 
3 50 .062* .045* .052 .042* .022* .017* .032* .006* .002* 

* Outside the +/- 2 standard error range (.046 to .054). 
 
 
Table 11 Type I Error Rates for the Inverse Pairing of Sample Size (40, 80) and Residual Variance, an XY 
correlation of .3, and Random Assignment to Treatment Conditions. 

Residual Variance Ratio Distribution of X 
and E 

1/1 3/1 15/1 
Skew Kurtosis Slopes RB2 RB4 Slopes RB2 RB4 Slopes RB2 RB4 
0 0 .049 .053 .050 .099* .097* .138* .149* .149* .245* 
1 10 .049 .045* .052 .097* .094* .128* .143* .147* .238* 
3 50 .060* .043* .050 .092* .085* .114* .114* .138* .210* 

* Outside the +/- 2 standard error range (.046 to .054). 
 
 
Table 12 Type I Error Rates for the Inverse Pairing of Sample Size (40, 80) and Residual Variance, an XY 
correlation of .3, and Assignment to Treatment Conditions Utilizing X. 

Residual Variance Ratio Distribution of X 
and E 

1/1 3/1 15/1 
Skew Kurtosis Slopes RB2 RB4 Slopes RB2 RB4 Slopes RB2 RB4 
0 0 .049 .048 .052 .102* .099* .142* .160* .152* .248* 
1 10 .054 .047 .050 .097* .100* .127* .147* .153* .240* 
3 50 .061* .048 .052 .092* .081* .111* .131* .145* .215* 

* Outside the +/- 2 standard error range (.046 to .054). 
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Conclusion 
 
The purpose of the current study was to compare 
the robustness of two standard analysis 
strategies for detecting Aptitude-Treatment 
Interactions when two of their commonly-held 
assumptions were violated (nonnormal 
distributions and heterogeneous variances). The 
two strategies were the test for slope 
heterogeneity in analysis of covariance and the 
test of the Block-by-Treatment Interaction in 
randomized block analysis of variance. In 
addition, the strategies were evaluated based on 
two different assignment strategies, random 
assignment and assignment that utilized X.  

The findings supported and extended the 
findings of previous studies that considered 
either the randomized block strategy (Milligan, 
Wong & Thompson, 1987; Keselman, Carrier & 
Lix, 1995; Harwell, Rubinstein, Hayes & Olds, 
1992) or the analysis of covariance strategy 
(Conovar & Iman, 1982; Headrick & 
Sawilowsky, 2000; Klockars & Moses, 2002; 
Dretzke, Levin & Serlin, 1982; Overton, 2001; 
Deshon & Alexander, 1996; Conerly & 
Mansfield, 1988) separately. With equal sample 
sizes, the effect of nonnormality was much 
stronger than the effect of residual variance 
heterogeneity, causing the analysis of covariance 
strategy to get significantly liberal and the 
randomized block strategy to get significantly 
conservative. The effect of nonnormality was 
stronger when assignment to treatment groups 
was based on X than when assignment was 
random. With unequal sample sizes, the effect of 
residual variance heterogeneity was much 
stronger than the effect of nonnormality, causing 
the analysis strategies to get significantly 
conservative when residual variances were 
directly paired with sample sizes and liberal 
when residual variances were inversely paired 
with sample sizes. For unequal sample sizes the 
assignment strategy did not matter. Finally, for 
unequal sample sizes the combination of 
nonnormality and heterogeneous residual 
variances was interactive for the analysis of 
covariance strategy and slightly additive for the 
randomized block strategy. These findings 
suggest how the issue of robustness can 
contribute to several years of discussion on the 
relative merits of the randomized block and 

analysis of covariance strategies (Cox, 1957; 
Feldt, 1958; Cronbach & Snow, 1977; Aiken & 
West, 1991; Pedhazur, 1997; Lomax, 2001; 
Myers & Well, 1995; Klockars & Beretvas, 
2001). 
 The magnitude of the effects of 
assumption violations on the robustness of the 
analysis strategies for equal sample sizes was 
somewhat smaller than expected. While heavy-
tailed distributions did inflate the Type I error 
for the slope test, the inflation was rather small 
(up to about .09) given the extremely nonnormal 
distributions used. Two factors that kept Type I 
error from fluctuating too widely for extreme 
nonnormality were the assignment strategies, 
which made the treatment groups similar in the 
X distributions and therefore spread the extreme 
observations fairly evenly across the groups, and 
the use of a data generation method that created 
Y’s nonnormality rather indirectly through 
adding nonnormality to X and E. Consistent 
with previous studies that used a similar data 
generation method (Conover & Iman, 1982; Luh 
& Gou, 2000), nonnormality has to be extreme 
and fairly unrealistic (Micceri, 1989) in order to 
see its effects on robustness with this data 
generation method.  

The small effect of variance 
heterogeneity for the randomized block strategy 
with two blocks and equal sample sizes was 
surprising given the many studies that discuss 
the strong influence variance heterogeneity has 
on standard tests of means (Lix, Keselman, & 
Keselman, 1996) and interactions (Harwell, 
Rubinstein, Hayes, & Olds, 1992). However, 
many studies of the variance heterogeneity 
assumption focus much more on unequal sample 
sizes than on equal sample sizes (e.g. Milligan, 
Wong & Thompson, 1987; Keselman, Carriere 
& Lix, 1995), giving the impression that unequal 
sample sizes almost always accompany variance 
heterogeneity. For example, Milligan et al’s 
study focuses almost completely on the effect of 
variance heterogeneity and unequal sample 
sizes, giving only a very quick mention of 
finding a negligible effect of heterogeneous 
variances when sample sizes were equal (p. 
469). It is possible that the variance 
heterogeneity created from given levels of 
residual variance heterogeneity (Tables 1 and 2) 
was not large enough to impact the randomized 
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block strategy with two blocks and equal sample 
sizes. In contrast to the randomized block 
strategy with two blocks, the randomized block 
strategy with four blocks resulted in greater 
levels of variance heterogeneity and did get 
liberal even when sample sizes were equal. 

The explanations of the effects of the 
assumption violations on the analysis strategies 
are fairly well-known. Nonnormality makes 
treatment group slope estimates differ because 
of high-leverage observations that are extreme 
on both X and Y, resulting in inflated 
numerators of the F ratio. In addition, the 
standard errors of the slopes are smaller than 
they should be because the denominators of 
these standard errors use the sum of squares of 
X, which gets large as observations get more 
extreme. As the XY correlation increases, so 
does nonnormality’s liberal effect on the test of 
slopes. For randomized block’s tests of means, 
nonnormal Y’s inflate standard deviations and 
standard errors, resulting in conservative tests. 
Nonnormal distributions can also affect mean 
estimates as well. In general, nonnormality has a 
stronger influence on sums of squares (standard 
deviations and standard errors) and sums of 
products (covariances) than it does on sums of 
raw data (means). 

The effects of heterogeneous variances 
for equal and unequal sample sizes are also 
straightforward. The randomized block and 
analysis of covariance F tests use denominators 
that pool within-group variability across the 
groups. When sample sizes are equal, this 
pooling reasonably weights each group’s 
variance equally. When sample sizes are 
unequal, the variance of the larger group gets 
weighted more heavily than that of the smaller 
group, which can over or underestimate random 
error and lead to conservative or liberal tests, 
respectively. 
 Given the effects of the assumption 
violations on the standard analysis strategies, 
many alternative strategies have been proposed. 
In fact, this study was motivated by a view of 
the randomized block strategy as an alternative 
strategy to the analyses of covariance strategy 
that might be more robust to nonnormal 
distributions. Other alternatives to the slope test 
include parametric alternative tests for 
heterogeneous residual variances (Deshon & 

Alexander, 1996; Overton, 2001; Dretzke, Levin 
& Serlin, 1982), ranking strategies for 
nonnormality (Conover & Iman, 1982; Headrick 
& Sawilowsky, 2000; Klockars & Moses, 2002), 
and combinations of strategies designed for 
addressing combinations of assumption 
violations (Luh & Guo, 2000, 2002). Given 
researchers’ noted tendency to favor more 
familiar analysis strategies, the randomized 
block strategy was a practically-important 
method to evaluate. The findings of this study 
show that the randomized block strategy suffers 
from its own problems with respect to 
robustness. Given its relatively low power 
(Klockars & Beretvas, 2001) the randomized 
block strategy is probably best viewed as an 
overly conservative alternative to the slope 
strategy, along the same lines as ranked analysis 
of covariance. The low power of the randomized 
block test makes its recommendation difficult, 
especially given the complaints of low power in 
interaction studies (Aguinis & Pierce, 1998). 
 One interesting extension of this study 
would be to evaluate applications of alternative 
strategies that can address assumption violations 
within both the randomized block framework 
and the analysis of covariance framework. A 
combination of approaches like 
trimming/winsorizing observations or trimming 
test statistics for nonnormality and using a 
parametric alternative test that does not pool 
treatment group variances for variance 
heterogeneity has been shown to be effective for 
improving the robustness and power of tests of 
means (Keselman, Wilcox, Othman, Fradette, 
2002; Luh & Guo, 1999; Keselman, Othman, 
Wilcox & Fradette, 2004). Some of these 
combinations of alternative strategies are 
applicable to tests of interactions. Along these 
same lines, some ways to trim observations and 
test statistics for nonnormality and also to use 
similar parametric alternative tests for 
heterogeneous residual variances have been 
considered for the analysis of covariance slope 
test (Luh & Guo, 2000, 2002). The relative 
effectiveness of these combinations of 
alternative strategies for analysis of covariance 
and randomized block strategies under the same 
degrees of assumption violations would be 
interesting to evaluate. 
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Quasi-Maximum Likelihood Estimation For Latent Variable Models 
With Mixed Continuous And Polytomous Data 

 
Jens C. Eickhoff 
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Latent variable modeling is a multivariate technique commonly used in the social and behavioral 
sciences. The models used in such analysis relate all observed variables to latent common factors. In 
many situations, however, some outcome variables are in polytomous form while other outcomes are 
measured on a continuous scale. Maximum likelihood estimation for latent variable models with mixed 
polytomous and continuous outcomes is computationally intensive and may become difficult to 
implement in many applications. In this article, a computationally practical, yet efficient, Quasi-
Maximum Likelihood approach for latent variable models with mixed continuous and polytomous 
variables is proposed. Asymptotic properties of the estimator are discussed. Simulation studies are 
conducted to examine the empirical behavior and to compare it with existing methods. 
 
Key words: multivariate analysis, polytomous outcome variables, Quasi-ML estimation. 
 
 

Introduction 
 
The problem of analyzing concepts or variables 
which are not directly observable and can only 
be measured through related indicators arises 
frequently in practice. In these situations, latent 
variable modeling provides a useful statistical 
technique. Statistical methods for analyzing 
covariances and other relationships between 
latent and observed variables were historically 
originated in psychometrics in the form of factor 
analysis which has later been extended to the 
more general structural equation analysis 
(Bentler, 1995; Bollen, 1989; Jöreskog and 
Sörbom, 1996).  Today, latent variable models 
are extensively used in the behavioral and social 
sciences.  
 Most latent variable models are based 
on the assumption that the observed variables 
are continuous with a multivariate normal 
distribution.   However, in  many  studies  where 
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data are obtained based on questionnaires, some 
or all observed outcome variables are typically 
in polytomous form. For example, data are 
frequently collected based on questionnaires 
with Likert scales (e.g., ``disagree'', ``neutral'', 
``agree'') responses. Because of its importance in 
many applications, there has been much 
attention in latent variable modeling involving 
polytomous outcomes and it remains an active 
area of research. 
 Bock and Lieberman (1970) considered 
a maximum likelihood method for factor 
analysis models with dichotomous outcome 
variables and only one factor. However, direct 
maximum likelihood analysis for models 
involving higher dimensional latent variables 
becomes computationally impractical because it 
requires maximization over multiple intractable 
integrals. This led to the development of multi-
stage weighted least square estimation based on 
limited first and second-order sampling using 
polychoric and polyserial correlations (Muthén, 
1984; Lee & Poon, 1987). Multi-stage weighted 
least squares (WLS) estimation procedures for 
structural equation models with polytomous 
outcome variables have been implemented in 
popular psychometrical software packages 
including LISCOMP (Muthén, 1987), EQS 
(Bentler, 1995), LISREL/PRELIS (Jöreskog & 
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Sörbom, 1996), and Mplus (Muthén & Muthén, 
1998). These procedures, however, can 
experience problems of numerical instability, 
bias, non-convergence, and non-positive 
definiteness of weight matrices in situations of 
small sample sizes but large number of outcome 
variables (Reboussin & Liang, 1998). Sammel & 
Ryan (1997) and Shi & Lee (2000) used a Monte 
Carlo EM algorithm to perform maximum 
likelihood estimation in latent variables models 
with mixed discrete and continuous outcome 
variables. These procedures are computationally 
intensive as each E-step is approximated by 
Monte Carlo integration and no closed-form 
expressions are available in the M-steps. 
Moreover, many iterations are typically required 
to achieve convergence. 
 In this article, a computationally 
practical, yet efficient, Quasi-ML estimation 
procedure is proposed for factor analysis and 
structural equation models with mixed 
continuous and polytomous outcome variables. 
Asymptotic properties and standard error 
estimation are discussed. The Quasi-ML 
estimation can be easily implemented and does 
not require intensive computations. Simulation 
studies indicate that the proposed Quasi-ML 
estimator is substantially more efficient than 
traditional multi-stage WLS estimators, 
especially for models where the number of 
continuous outcome variables exceeds the 
number of polytomous outcomes. 
 This article is organized as follows. In 
the Methodology section, the general model and 
motivation for the proposed approach, as well as 
the Quasi-ML estimation procedure and the 
computation of asymptotic standard errors are 
described. The results of a simulation study, 
where the performance of the proposed Quasi-
ML estimation is compared with traditional 
multi-stage weighted least square estimation 
techniques, is presented in the Results section. 
Finally, a brief conclusion is given in the last 
section. 

 
Methodology 

 
Consider a multivariate mixed-type variable 
situation with 1p  continuous and 2p  
polytomous outcome variables and n 

observations. Let ),,(
11 ′= ipii yyy �  denote the 

set of continuous outcome variables and 
),,(

21 ′= ipii zzz �  denote the set of polytomous 

outcome variables, each with )(kc  categories 

),,1( 2pk �= , measured on the ith individual. 
To motivate the model, assume that the set of 
continuous and polytomous outcome variables 
can be explained by a smaller number of 

)( 21 ppqq +<  unobserved latent 

variables ),.( 1 ′= qiii fff � . For ease of notation, 

a measurement or confirmatory factor analysis 
model is considered as follows. The notation can 
be easily extended to utilize the more general 
structural equation model framework. The 
standard linear measurement model for the 
continuous outcome variables for the ith 
observation can be expressed as 

 
,,,1, nify iii �=ε++µ= Λ                (1)    

 

 
where iε  is a vector of measurement errors and 
the parameters µ  and Λ  contain some restricted 
elements. It is assumed that  
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where the elements of ,, ff Σµ and Ψ  are 

unrestricted, free parameters. Furthermore, it is 
assumed that, conditional on ,if  the elements of 

iy  are independent, i.e., Ψ  is set to be a 
diagonal matrix. Likewise, for the polytomous 
outcome variables, it is assumed that conditional 
on ,if  the elements of iz  are independent and 

that each kiz , ),,1( 2pk �=  relates to the latent 
variables through a probit response  probability 
function, i.e.,  

 
),()|( ikkijki ffczP

j
β′+α=≤ Φ          (2) 

 

 
for category jc , 1)(,,1 −= kcj �  and 

1)(1 −
α<<α

kckk � . The intercept and slope 

parameters, 
jkα  and kβ , describe the 
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measurement properties of the kth polytomous 
outcome variable. 
 The model described by (1) and (2) 
contains the factor indeterminacy inherent in this 
type of latent variable models. That is, the same 
model can be expressed using transformed 
parameters and factors. To remove this 
indeterminacy, the following standard 
identification form (Wall & Amemiya, 2000) for 
sub-model (1) is used, 
 

,,,1,
0

nif
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y ii
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where yµ  is a 1)( 1 ×− qp  vector and yΛ  is a 

qqp ×− )( 1  matrix with unrestricted parameters. 

If 1pq > , additional measurement parameters in 
sub-model (2) are restricted. Note that this is an 
interpretable and meaningful identification 
parameterization which allows for assessing 
latent variable characteristics because 
parameters corresponding to the latent variables, 
i.e.,  fµ  and ,fΣ remain unrestricted. This is 

particularly useful in multi-group analysis 
situations where the main interest lies in the 
comparison of latent variable characteristics 
between different sampling groups, e.g., sex, 
gender, etc. 

 
Quasi-Maximum Likelihood Estimation 
 Let Y ),,( 1 nyy �=  and Z ),,( 1 nzz �=  
denote the observed data matrices from a 
random sample of the underlying population. 
Furthermore, denote the model parameters as, 
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The log-likelihood function based on the 
observed data is given by 

 
( , , | Y, Z)

log (Y; , ) log (Z | Y; , ).
y z f

y f z f

l

p p

θ θ θ
θ θ θ θ= +

  (3) 

 

 
Because ),;|(log fzp θθYZ involves multiple 

integration which cannot be evaluated in closed 
form, direct maximization of this log-likelihood 
function is impractical. Various approaches have 
been proposed to overcome this computational 
burden. Sammel & Ryan (1997) and Shi & Lee 
(2000) proposed utilizing a Monte Carlo EM 
estimation approach. However, the EM 
algorithm is known to be slow and may require 
many iterations to achieve convergence. 
Moreover, the M-step in these approaches 
requires iterative procedures which might be 
time consuming, especially in models involving 
many polytomous outcomes. 
 The Quasi-ML approach (Besag, 1975) 
has become a popular tool in situations where 
the true likelihood function is computationally 
intractable but can be approximated by a 
function that is easier is evaluate. Quasi-ML 
methods may not always yield efficient 
estimators but they are usually consistent as long 
as the first derivatives of the quasi likelihood 
function has mean 0 at the true parameter values 
(Le Cessie & Houwelingen, 1994). In the 
following, a Quasi-ML approach is proposed 
where the second term of the right hand side of 
the log-likelihood function in (3) is 
approximated by a function which is 
computationally easy to evaluate. Specifically, 
the Quasi- log-likelihood for the ith observation 
is expressed as 
 

∑
=

θθ+θθ=
2

1

),,;|(),;(log
p

k
fzikifyi

p
i yzpypl  

 
where ),;( fyiyp θθ  is a multivariate normal 

density function with mean 
 

))(,(),( ′′µ+µµ′=θθµ fyyffy Λ  

 
and covariance matrix 
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Standard evaluation of the conditional 
distribution, iki yz | , leads to 
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The total Quasi log-likelihood is then the sum of 

the p
il ’s, i.e.,  
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   (4) 
 

where y  is the sample mean, and yS  is the 

empirical covariance matrix of 
),,(

11 ′= ipii yyy � . Note that for a model with 

several continuous outcomes but only one 
polytomous outcome variable, the Quasi-log-
likelihood function (4) is identical with the log-
likelihood function (3). 
 

The Quasi-ML estimator )ˆ,ˆ,ˆ( fzy θθθ  is obtained 

by solving 
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(5) 
 
Explicit solutions for solving (5) are not 
available and therefore an iterative procedure is 
required. Because the number of parameters in 
(4) is usually relatively large, a derivative free 
optimization procedure as the Nelder-Mead 
simplex algorithm may not be computationally 
efficient. On the other hand, using an efficient 
optimization procedure such as the Newton-
Raphson algorithm requires evaluation the first 
partial derivatives and the Hessian matrix which 
might be, due to the complexity of the objective 
function in (4), a tedious task. A good 
compromise is using a quasi Newton-Raphson 
algorithm with numerical derivatives which is 
easy to implement and numerically stable. 

 
Standard Errors 
 For the computation of confidence 
intervals for the Quasi-ML parameter estimates, 
standard error estimates are required. A 
sandwich estimator can be used to estimate 
standard errors of Quasi-ML parameter 
estimates. It follows from the delta theorem that, 
under mild regularity conditions (see, e.g., Stuart 
and Ord, 1991), the distribution of 

)ˆ,ˆ,ˆ( ′θ−θθ−θθ−θ ffzzyyn  converges to a 

),0( ∆N  distribution with  
11 IDI −−= n∆ , 

where 
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Estimates of D and I can be obtained by 
computing 
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and 
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(7) 
 
Expressions (6) and (7) can be obtained using 
the numerical first and second order derivatives 
in the last iteration step of the quasi Newton-
Raphson algorithm used to solve (5). 
 
Starting Values 
 As the quasi Newton-Raphson algorithm 
used to solve (5) is an iterative procedure, 
starting values for the model parameters are 
required. One way to obtain starting values is to 
treat the sub-models (1) and (2) separately. 
Specifically, starting values for the parameters 
corresponding to sub-model (1) can be 
computed using standard estimation procedures 
for fitting latent variable models with continuous 
outcomes (Bollen, 1989). These estimates can be 
used to estimate factor scores, i.e.  
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where ,
~

,
~ ΨΛ y  and yµ~  are parameter estimates 

obtained using standard estimation procedures 
for latent variables models with continuous 
outcomes. The latent variable if  of sub-model 

(2) can then be replaced by the factor scores if
~

 
and standard probit regression can be performed 
to obtain starting values for 

z
θ . 

 
Results 

 
The purpose of this simulation study is to 
compare the performance of the proposed Quasi-
ML estimation approach with the traditional 
multi-stage WLS estimation approach which is 
currently considered the gold standard of fitting 
mixed latent variable models with continuous 
and polytomous outcomes. In the following, a 
confirmatory factor analysis model models with 
three continuous outcome variables and various 

numbers of polytomous outcome variables are 
considered. It is assumed that each polytomous 
outcome variable has three categories. Sub-
model (1) is given by 
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,,1 ni �= and ,3,2,1, =ε kki  are iid with 

),0( 2ψN  distribution. The parameters 

,
2yµ ,

2yµ ,1λ ,2λ  ,2
1f

σ  ,
21 , ffσ  ,2

2f
σ and 2ψ  are 

unrestricted parameters with the true values 

1
32

=µ=µ yy , 8.021 =λ=λ , 122
21

=σ=σ ff , 

5.0
21, =σ ff , and .36.02 =ψ   

 
Sub-model (2), which corresponds to the 
polytomous outcome variables, each with three 
categories, is given by, 
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where ,,, 121 kkk βαα and 2kβ  are unrestricted 

parameters with true values 8.0
1

=αk , 

6.1
2

=αk , 6.01 =βk , and 6.02 −=βk . To 

facilitate generalization of the simulation results, 
the following three conditions on the number of 
polytomous outcome variables in the 
confirmatory factor models are considered: 
 

(C1): Number of polytomous outcomes: 1 

(C2): Number of polytomous outcomes: 3 

(C3): Number of polytomous outcomes: 6 

 



www.manaraa.com

QUASI-MAXIMUM LIKELIHOOD ESTIMATION 478 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note that under experimental condition (C1), the 
Quasi-ML estimates are equivalent to the ML 
estimates. In order to compare the Quasi-ML 
estimation approach with the multi-stage WLS 
estimation approach, the model part 
corresponding to the polytomous outcome 
variables is first re-parameterized to the 
threshold model. This can be achieved by 
standardizing the intercept parameters  

21
, kk αα  

to 11/
11

* =ββ′−α=α fkk Σ ,  21/
22

* =ββ′−α=α fkk Σ , 

and     the     slope    parameters    21 , kk ββ  

to 75.01/1
*

1 =ββ′−β=β fkk Σ  and  

75.01/2
*

2 −=ββ′−β=β fkk Σ , respectively. 

 The computation of the multi-stage 
WLS procedure was performed by using 
LISREL 8 and PRELIS 2. The Quasi-ML 
estimates were computed using R version 1.8.1. 

 
 
 
 The sample sizes considered were 

100=n , 500=n , and 000,1=n . For each n and 
experimental condition (C1), (C2), and (C3), 

000,1  simulations  on  samples  were  generated. 
The starting values for the Quasi-ML approach 
were   computed   as   described  in  the previous 
section. Non-convergence was experienced in 
some cases for the multi-stage WLS approach 
when 100=n , especially for the model with 3 
continuous and 6 polytomous outcomes (C3). 
For 500=n , the multi-stage WLS estimation 
procedure became numerically more stable. 
There were no convergence difficulties 
experienced for the Quasi-ML estimation for all 
sample sizes. 
 Figure 1 presents boxplots for the two 

estimators of the variance parameter 2
2f

σ  when 

500=n , depicting the empirical distribution 

around the true parameter value 0.12
2

=σ f  under  

Figure 1: Boxpots for Quasi-ML and Multi-Stage WLS Estimators of 2
2f

σ  under 

Experimental Conditions (C1) – (C3) ( 500=n ) 
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experimental conditions (C1) – (C3). The 
general pattern given in Figure 1 can also been 
seen in boxplots for the other parameters and 
sample sizes. Table 1 gives the empirical bias 
and root mean squared error (RMSE) of the two 
estimators for the latent variable covariance 

parameters    2
1f

σ , 
22 , ffσ ,  and  2

2f
σ .   The   cases  

where the multi-stage WLS estimator didn’t 
converge were excluded when computing the 
empirical bias and RMSE. 
 The results indicate that the Quasi-ML 
estimator and the multi-stage WLS estimator are 
both unbiased for all coefficients and sample 
sizes. Under experimental conditions (C1) and 
(C2), the Quasi-ML estimate exhibit 
considerable less variability than the multi-stage 
WLS estimates.  As the number of polytomous 
outcome variables increases this difference in 
RMSE between the two estimators becomes 
smaller. However, even under experimental 
condition (C3) (3 continuous and 6 polytomous 
outcomes), the Quasi-ML  estimates still exhibit 

 

 
 
 
slightly less variability than the multi-stage 
WLS estimates. 
 Table 2 presents the empirical coverage 
probabilities of the nominal 95% confidence 
intervals for the Quasi-ML estimates of the 

latent   variable    covariance    parameters   2
1f

σ ,  

22 , ffσ , and 2
2f

σ . The intervals were obtained by 

taking an estimate 96.1±  times the 
corresponding estimated standard error. For all 
sample sizes, the constructed intervals give an 
empirical coverage close to the nominal level. 
Similar results were obtained for the other model 
parameters. Overall, the results indicate that the 
Quasi-ML standard errors can be used for valid 
statistical inference on the model parameters. 
 

Conclusion 
 
Multivariate polytomous data are common in 
psychosocial research. Consequently, there has 
been   recently an   increased   interest  in   latent  
 

Table 1: Empirical Bias and Root Mean Squared Error for Quasi-ML and Multi-Stage 

WLS Estimators for 2
2f

σ  under Experimental Conditions (C1) – (C3) 

 
Experimental Condition n  Quasi-MLE Multi-Stage WLS 

 
 

(C1) 

100 
 

500 
 

1,000 
 

Bias 
RMSE 
Bias 
RMSE 
Bias 
RMSE 

0.044 
0.142 
0.016 
0.090 
0.010 
0.052 

0.054 
0.220 
0.015 
0.156 
0.008 
0.120 

 
 

(C2) 

100 
 

500 
 

1,000 
 

Bias 
RMSE 
Bias 
RMSE 
Bias 
RMSE 

-0.010 
0.166 
0.026 
0.110 
-0.009 
0.079 

-0.012 
0.238 
0.023 
0.165 
0.011 
0.118 

 
 

(C3) 

100 
 

500 
 

1,000 
 

Bias 
RMSE 
Bias 
RMSE 
Bias 
RMSE 

-0.081 
0.199 
0.009 
0.131 
0.003 
0.102 

0.022 
0.244 
-0.007 
0.155 
-0.001 
0.129  
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variable modeling involving polytomous 
outcome variables. 
 The parameter estimation of these types 
of models is computationally challenging. 
Traditional estimation techniques include multi-
stage WLS procedures. However, it has been 
demonstrated that multi-stage WLS procedures 
can experience serious numerical problems, 
especially in situations of low prevalence, small 
sample sizes, or when fitting models with a large 
number of outcome variables. 
 Maximum likelihood estimation 
procedures have been proposed utilizing various 
types of EM algorithms (Sammel & Ryan, 1997; 
Shi & Lee, 2000). These procedures are 
numerically stable, yet computationally very 
intensive. In this article, a Quasi-ML method is 
proposed for parameter estimation of latent 
variable models with mixed continuous and 
polytomous     variables.    The     procedure    is 
computationally practical and can be easily 
implemented into standard statistical software 
(e.g., R, Splus, etc). 
 Simulation studies indicate that the 
proposed Quasi-ML estimator tends to be more 
efficient than traditional multi-stage WLS 
estimator, especially for models where the 
number  of   polytomous   outcome   variables  is 
smaller than the number of continuous outcome 
variables. The Quasi-ML estimation of standard 
errors showed no substantial bias which 
warrants the performance of valid statistical 
inference. In summary, the proposed Quasi-ML 
estimation procedure appears to be efficient, 
computationally feasible, and a practical 
approach for latent variable models involving 
both continuous and polytomous outcomes. 
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A Bayesian Subset Analysis Of Sensory Evaluation Data 
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Worcester Polytechnic Institute 
 
 
In social sciences it is easy to carry out sensory experiments using say a J-point hedonic scale. One major 
problem with the J-point hedonic scale is that a conversion from the category scales to numeric scores 
might not be sensible because the panelists generally view increments on the hedonic scale as 
psychologically unequal. In the current problem several products are rated by a set of panelists on the J-
point hedonic scale. One objective is to select the best subset of products and to assess the quality of the 
products by estimating the mean and standard deviation response for the selected products. A priori 
information about which subset is the best is incorporated, and a stochastic ordering is modified to select 
the best subset of the products. The method introduced in this article is sampling based, and it uses Monte 
Carlo integration with rejection sampling. The methodology is applied to select the best set of entrees in a 
military ration, and then to estimate the probability of at least a neutral response for the judged best 
entrees. A comparison is made with the method, which converts the category scales to numeric scores. 
 
Key words: Bayes factor; composition method; stochastic ordering; rejection sampling. 
 
 
 

Introduction 
 
Consider the problem of selecting the best subset 
of a number of multinomial populations with 
ordinal categories. This can be accomplished by 
first converting the nominal data to numeric 
scores, and then a standard multiple comparison 
procedure can be performed on these scores. 
However, this procedure can go badly wrong 
when the conversion is made. It is, therefore, the 
purpose of this article to describe a 
straightforward method based on a stochastic 
ordering of the multinomial populations for 
selecting the best subset of populations and then 
to estimate parameters used to assess the quality 
of the best subset without conversion of the 
nominal data. A Bayesian  approach  is preferred 
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because it is natural to incorporate a priori 
information about which subset is the best. 

In sensory evaluation of food 
acceptability, judges are asked to rate several 
products on the 9-point scale with qualitative 
responses ranging from “dislike extremely” to 
“neither like nor dislike” to “like extremely” on 
an ordinal scale. Usually in the analysis these 
nominal values are converted to scores ranging 
from 1 to 9 where an attempt is made to 
associate “dislike extremely” with 1, “neither 
like nor dislike” with 5, “like extremely” with 9, 
and intermediate nominal values have graduated 
meanings. The use of scores has several 
disadvantages, which weaken the interpretation 
that can be placed on the analysis of sensory 
evaluation data. 

First, the intervals between categories 
are psychologically unequal. Second, judges 
tend to avoid the use of extreme categories by 
grouping judgments into the center of the scale, 
and sometimes avoiding even “neither like nor 
dislike” response. Third, scale values have no 
numerical relationship. Thus, it is difficult to 
make conclusions concerning ratios of    
acceptability   of   the   food products when 
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qualitative responses are converted to 
quantitative responses. 

Newel (1982) applied the method of 
McCullagh (1980) to analyze sensory data and  
was able to overcome some of the advantages in 
using scores. This method for ordinal data treats 
the response categories as contiguous intervals 
on a continuous scale with unknown cutpoints 

1θ ,… , 1−Jθ , where for the J-point scale J = 9. 

Inherent in these models is the stochastic 
ordering with the use of scores unnecessary. Let 

ijπ  denote the probability of the jth response in 

the ith population, and ∑
=

=
j

s
isij p

1

γ be the 

cumulative probability of the ith population. 
Then Newel (1982) entertained a model of the 
form 

 

iijijij τβθγγ /)()}1/(log{ −=− , ,,,1 Ii …=  

,1,,1 −= Jj …  
 
where iβ  and iτ  are relative measures of 

location and spread respectively of the ith 
population. This model incorporates the location 
of the ratings and the consistency of the 
panelists' responses directly. 
 Such a model is usually fitted using 
nonlinear iteratively reweighted least squares; 
see, for example, Green (1985). While this is an 
attractive model, besides the cell probabilities, it 
introduces 2I +J new parameters. Moreover, 
while one can choose the best population as the 
one with the largest iβ , and perhaps the 

smallest iτ , this modeling does not address the 

problem of selecting the best population directly, 
and in fact, it is difficult to assess the uncertainty 
in selecting the best population. Also as the 
analysis relies heavily on asymptotic theory, 
with sparse data this approach will provide poor 
estimates for the cutpoints jθ , and hence the 

other parameters. A more appropriate method is 
associated with ranking and selection. 

Recent Bayesian work on selection and 
ranking includes the approach of Morris and 
Christiansen (1996).  They used a simple two-
level Bayes empirical Bayes model to select the 
best mean.  They   generated samples from the 

product normal posterior distribution of the 
means, and obtained posterior probabilities that 
each of the means is the largest. Goldstein and 
Spiegelhalter (1996) described statistical issues 
in ranking institutions in the areas of health and 
education based on outcome data by using 
certain performance indicators. They obtained 
interval estimates of the ranks of these indicators 
for the different institutions, using both Bayesian 
and non-Bayesian methods. Similar to Morris 
and Christiansen (1996), Goldstein and 
Spiegelhalter (1996) did not incorporate 
uncertainty directly about the ranks of the 
performance indicators. Moreover, these authors 
did not consider the ranking of several 
multinomial populations nor did they consider 
sensory evaluation data. However, the sampling-
based approach of these authors is closest in 
spirit to the work in this article. 
 In fact, Nandram (1997) obtained the 
best multinomial population (not best subset) 
among a set of populations, converting the 
nominal data on the hedonic scale to numeric 
scores. A number of independent nonidentical 
multinomial populations with the same ordinal 
categories are considered. This approach is 
different from that in the ranking and selection 
literature because it incorporates the prior belief 
about which population is the best by assigning 
a nonzero probability to the event that any 
population could be the best population 
(Nandram, 1997). The simple tree order (see 
Robertson, Wright and Dykstra, 1988) is used to 
obtain the most probable population under a 
variation of the stochastic ordering. Consider 
two discrete random variables, P and Q, which 
take the same values ja (increasing in j) with 

probabilities jp  and jq  respectively, j = 1,…, J 

- 1, where  
 

∑∑
==

==
J

j
i

J

j
i qp

11

1 . 

 
then  
 

QP
st

≥  

 
if, and only if,  
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∑∑
==

≤
s

i
i

s

i
i qp

11

,  .1,,1 −= Js …           (1) 

   
This is the situation for two multinomial 
populations which are stochastically ordered (P 
stochastically greater than Q) with the same 
ordered categories; see, for example, Sampson 
and Whitaker (1989). This stochastic ordering is 
modified to obtain a criterion which will be used 
to select the best population or best subset of 
populations without using the values ja on the 

ordinal scale. 
The Bayesian analysis is pertinent as 

there is useful information about which is the 
best product. In the non-Bayesian approach, it is 
difficult to express uncertainty about which 
population is the best. Moreover, as the non-
Bayesian methods do not express uncertainty 
about the best population, estimation after 
selection becomes a delicate and tricky issue. In 
the Bayesian method the parameters can be 
estimated in a straightforward manner by mixing 
with appropriate weights (posterior 
probabilities); see Nandram (1997).  

The objective is to select the best 
population (or subset) among a number of 
multinomial populations, whose cell counts arise 
from sensory evaluation, and to show how to 
estimate the parameters of the selected 
population. The method is sampling based, and 
it uses Monte Carlo integration which is 
accommodated by rejection sampling. A 
methodology is described, and it is shown how 
to compute efficiently the relevant quantities. 
Next, the sensory data obtained from the Natick 
food experiment is described and the 
methodology is applied to select the best entree. 
Finally, there are conclusions. 

 
Methodology 

 
The objective is to develop a method to judge 
the best multinomial population or the best 
subset of multinomial populations without 
converting the ordinal categories to numeric 
scores by modifying the stochastic ordering. 
Estimation is performed to make inference about 
the quality of product. In general, it is assumed 
that there are I multinomial populations, and the 
best subset of size ℓ < I subsets is to be selected. 

There are )!(!/! �� −= IIT distinct subsets of 

size ℓ which are denoted by ,tI  Tt ,1…= . For 

example, with I = 3, ℓ = 2, the set of all products 
is {1, 2, 3}, T = 3, and the subsets are I1 = {1, 
2}, I2 = {1, 3} and I3 = {2, 3}. The primary 
objective is to select the best subset among the 
It.  
 
Model 
 I multinomial populations with J 
categories are considered.  For the ith population, 
the counts, denoted by ,)',,( 1

~
iJii nnn …=  

Ii ,,1…= , are taken. In many applications it is 

reasonable to assume that the 
~
in have 

independent multinomial distributions with 

probabilities ,)',,( 1
~

iJii ppp …=  ∑
=

=
J

j
ijp

1

1.  

Letting  
 

,)'',,'( 1
~~

Ippp …=  

 
the joint likelihood is 

 

.)(
11

~~
∏∏

==

∝
J

j

n
ij

I

i

ijpnpl            (2) 

A priori, without any order restriction on the pij, 
we take independent Dirichlet distributions for 
the pi, 

 

∏∏
=

=
−

=
I

i i

J

j ij

D

p
p

ij

1
~

1

~ )(
)(

1

α
π

α

,                      (3) 

 
where the )',,( 1

~
iJii ααα …=  and αij  are fixed 

quantities to be specified. Note that in 

(3)
1

1 1
~

)}()}{({)(
−

= =
∏ ∑ΓΓ=

J

j

J

j
jj aaaD and )(⋅Γ  

is the gamma function. In (3), αij = ½ is taken for 
three reasons. First, it is difficult to elicit 
information about αij even though they can be 
interpreted as cell counts in a prior sensory 
evaluation. Second, one does not want to model 
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similarity among the different products as it is 
believed that a priori some of them are better 
than others. Third, it simplifies the computation 
a lot if the αij are taken known, rather than if an 
assumption is made about their distributions a 
priori. Thus, to ensure the maximum 
heterogeneity (no preference) Jeffreys' reference 
prior is used (i.e., αij = ½), a proper density in this 
application. In classical statistics, this is 
equivalent to adding a ½ to the cell counts; a 
recommendation usually made for sparse 
categorical tables. Rather, prior information will 
be inputted through the belief about which is the 
best product. 
 
Criteria for Selection 
 One criterion that can be used is based 
on the random variable Xi representing values on 
the hedonic scale. That is, letting aj denote the 
values on the ordinal scale, 

Pr ,)(
~

ijiji ppaX ==  ,,,1 Jj …=  Ii ,,1…=  

and the mean of Xi is denoted by ∑
=

=
J

j
ijji pa

1

µ . 

First, to introduce the general criterion, suppose 
a single population is selected; let b denote the 
selected population. The best (selected) 
population is defined as the one for which  

 
{ }.,,1,max Iiib …=≥ µµ           (4) 

   
That is, the population with the largest mean is 
selected. Thus, the best population is defined by 
using the simple tree order; see Robertson, 
Wright and Dykstra (1988). Such an order 
restriction arises naturally in many situations. 
For example, if an investigator wishes to 
compare several treatments with a new one, the 
prior information that the new treatment mean is 
at least as large as the others might be 
entertained. Because of its simplicity, (4) is 
popular. 

Nandram (1997) used criteria based on 
the mean, standard deviation and coefficient of 
variation of the Xi to obtain the best multinomial 
population (not best subset) among a set of 
populations. However, he used the scores on the 
hedonic scale to construct these criteria. 

For subset selection, let Ib denote the set 
containing the ℓ best populations. (Note that Ib is 
a proper nonempty subset of the set of I 
products.) Then, based on the means, the (best) 
selected set of populations Ib is defined as the 
one for which  

 
{ } { }.;max;min bibi IiIi ∉≥∈ µµ          (5) 

   
Note that (4) is a special case of (5), and (5) can 
be viewed as an extension of the simple tree 
order. 

Unfortunately, the method of subset 
selection based on the mean, uses the category 
scales. The aj are almost always unknown and 
are usually taken as aj = j, j = 1,…, J. The thesis 
is that this is inaccurate, and an alternative 
solution based on a modification of the 
stochastic ordering is sought. However, the 
method of subset selection based on the mean 
will be used for comparison with the method 
which does not use the category scales. 

A single criterion based on a version of 
the stochastic ordering is obtained, but first, an 
explanation for why the stochastic ordering 
cannot be used directly is provided. For 
simplicity, consider selecting the best 

population. Let ∑ =
≤= s

j ijis ppA
1

:{  max 

∑ =
≠=s

j tj itItp
1

)},,,,1,( …  1,,1 −= Js … , 

and ∩
1

1

−

=
=

J

j iji AS . Then for each j the Aij are 

mutually exclusive, ∑ =
=I

i ijAP
1

,1)(  and 

≤)( iSP  min }1,,1),({ −= JjAP ij … . As the 

P(Aij) are different for each i, for some choice of 
s and some i, >)( isAP  min 

}1,,1),({ −= JjAP ij … . 

Then, ∑ ∑= =
=<I

i

I

i isi APSP
1 1

1)()( . 

That is, while the Si are mutually exclusive, they 
are not exhaustive. In fact, P (Si) is not the 
probability that the ith population is the best; the 
P (Si) could be extremely small and 

∑ =
<<I

i iSP
1

1)( . Thus, for each j {Aij, I = 

1,…,I} will be used as a partition to identify the 
best population or subset. 
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Letting 
 

∑
=

==∆
J

kj
ijik Jkp ,,,2, …  ,,,1 Ii …=          (6) 

    
these ∆ik are measures of the quality of the ith 
product. Note that ∆ik is the probability of 
getting at least response k on the ordinal scale 
(e.g., 

,i∆  
2

1+J  is the probability of getting at least 

a neutral response). To express uncertainty about 
the best subset of populations, let B denote the 
random variable indicating the best population 
and κ denote exclusively the measure of quality 
which is used. Let ≥∈∆= },min{:{ tiktk IipA  

max },,{ tik Ii ∉∆  JkTt ,...,2,,...,1 == , and 

∪
1

222 ,
−

=
−===

s

j tjtstktt AASAS  Js ,,3…= . 

Then, κ = k if ,
~

tkAp ∈  Jk ,,2…= is defined 

(However, note that κ is a nuisance parameter.). 
The criterion based on Sbk is defined as the 
modified stochastic ordering (MSO) criterion. 
Then,   
 
Pr ,),( bkkbB ωκ === ,,,1 Tb …=  

∑∑
= =

==
I

b

J

k
bkJk

1 1

1,,,2 ω… ,         (7) 

 
where the  bkω are to be specified. Letting 

,
1

1
∑

−

=
=

J

k
bkb ωλ  a priori the best population is the 

bth population for which 
},,1,max{ Tttb …== λλ . The bλ  are to be 

updated using the data. 
Incorporating prior information about 

which is the best entree through the bkω  rather 

than the αij is preferred. It should be noted that it 
is conceptually simple and convenient to use the 
random variables B and κ to model uncertainty 
about which is the best entree. On the other 
hand, it is much more difficult to add 
information about which is the best entree 
through the αij. However, unless the αij are all 
equal, their specification will give latent 
information about which is the best entree, but 
this    information    is     difficult     to    discern.  

In addition, if there is a reluctance to 
specify the αij, then in the Bayesian paradigm 
they are random variables, and the problem of 
selection and estimation becomes extremely 
difficult, especially if one wants to incorporate 
uncertainty about which is the best population. 
 For the criterion given by (5) based on 
the mean, k = 1 will be taken and define 

≥∉= },min{:{1 bib IipS µ  max 

TbIi bi ,,1},,( …=∉µ . The criterion based on 

1bS  will be called the mean response ordering 

(MRO) criterion. 
 Then the prior distribution on 

~
p in (3) 

becomes 
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where  
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Note that 
 

JkTbSpc bkbk ,,2,,,1),Pr()(
~

1

~
…… ==∈=−α . 

 
These quantities are to be updated by the data, 
and are to be used to update the bkω  which, in 

turn, are to be used to judge the best product or 
set of products. 
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Bayesian Selection and Estimation 
 Now, it is shown how to use the data to 
judge the best subset, and then to make inference 
about the best set of populations. 
Let  
 

)'',,','(',' 21
~

iJiiiijijij nnnnnn …=+= α  

 
and  
 

)},,1;,,1:'{'
~

JjIinn ij …… === . 

 
Using Bayes’ theorem, the joint posterior 
distribution of 

~
p , B and κ is 

~~
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where  
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and  
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are to be described. First, 
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where 
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For convenience, letting bkS be the complement 

of Sbk,  
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Letting 
 

,ˆˆ
2
∑

=

=
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j
bjb ωλ                        (12) 

    
in (11), a posteriori the best subset is the bth 
subset for which 

),,1,ˆmax(ˆ Tttb …== λλ .  

 
Consider testing Ho: b

th subset is the best versus 
h1: bth subset is not the best where Pr(H0) =λb 
=1–Pr(H1). Then the Bayes factor, Bf, for testing 
H0 versus H1 is  
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it follows easily from (11) and (12) that the 
Bayes factor is also given by 
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In (13) the first approximation follows because 

in many examples 1)'(
~

* >>ncb . This is true 

when there is a large number of subsets as in our 
application. Also in (13) the second 
approximation follows if the cbk(

~
α ) are 

approximately constant which is the case with a 
uniform prior on B and κ. Note that )'(

~
nrb  is the 

average of the )'(
~
nrbk in (11). Thus, it is 

interesting to observe that one might interpret 
)'(

~
nrb  as the Bayes factor, which, in turn, can 

be interpreted as the odds for H0 provided by the 
data. For a review of the literature on the Bayes 
factor and its interpretation see Kass and Raftery 
(1995).  

Inference proceeds by first picking with 
uncertainty the best subset (i.e., the subset with 

the largest bλ̂ ). Whether the frequentist method 

or the Bayesian method is used, the statistician 
will be uncertain about which is the best subset 
of populations. However, in the Bayesian 
method, as presented here the statistician can 
incorporate uncertainty about the best 
population, and this is attractive because by (11) 
the uncertainty about the best population a 
posteriori can be quantified. In addition, a 
posteriori inference about the parameters of the 
judged best population is obtained by using the 
posterior distribution 
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The elegance in the current approach is 
contained in (14), as the weakness in the 
classical approach, is that after the best 
population is obtained the methods usually 

proceed as though it is known with certainty 
which is the best population. 

The expression in (14) can be 
simplified. For 
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When the criterion based on the mean is 
used, the following is taken  
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When the criterion based on the modified 
stochastic ordering is used, the following is 
taken 
 

1,,1,,,1,/)()}1/(ln{ −==−=− JjIiiijijij ……τβθγγ , 

 
where  

∑
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s
isij p

1

γ and θ1 < θ2 <…< θJ-1 

are the unknown cutpoints. A posteriori 
inference about βi and τi can be obtained by 
using (15). Inference is made about the 
population means βi and standard deviations τi, 
i=1,…,I. 
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Computations 
 In this section, a description of how to 

compute bλ̂  in (12) and ⎟
⎠

⎞
⎜
⎝

⎛
~~

npbπ  in (15) is 

provided. 

 First, consider bλ̂ . Although it is more 

accurate to compute )'(
~
nrbk  directly rather than 

first computing )(
~
αbkc  and )'(

~
ncbk  separately, 

a simple method is proposed which first obtains 
)(

~
αbkc and )'(

~
ncbk .  How to obtain )'(

~
ncbk , or 

)'(
~
ncbk  is described, for which the simple 

method suggested by Nandram, Sedransk and 
Smith (1997) is used. The problem of estimating 

)'(
~
nrbk directly is a special case of the more 

general problem associated with estimating the 
ratio of two normalization constants; see, for 
example, Meng and Wong (1996) and Chen and 
Shao (1997) who used Markov chain Monte 
Carlo methods. (These refinements are 
unnecessary in this application.) Denoting the 
joint  unrestricted  posterior distribution of 
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p by 
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~~

I

i ij
i

J

j

n
ij

p
nD

p

npf

ij

.

1
1

otherwise

p
J

j
ij =∑

=

 

                                                          (16) 
 

N independent multivariate samples are selected 
from the unrestricted product Dirichlet 
distributions with parameters Iini ,...,1,

~

=′ in 

(16), and find the number 
N

N
in

~

′

 falling inside Sbk.  

(Note that 1

~
)'( −ncbk is estimated by the 

proportion '
~

1 nT− , falling outside Sbk.)  The 

Monte Carlo sample size, N, is obtained by 
taking, for example, 
 

Pr .95.001.1)(
~~

=
⎭
⎬
⎫

⎩
⎨
⎧ <−′ ′nbk Tnc         (17) 

 
For the examples discussed, N=10,000 is taken. 

The computations for 1

~
)'( −ncbk  or 1

~
)'( −ncbk  are 

performed for whichever requires smaller Monte 
Carlo sample size in (17). Estimates of the 

)(
~
αbkc  are obtained in a similar manner. But 

note that with a uniform prior on B and κ, it is 
unnecessary to compute )(

~
αbkc since they are 

all equal. Otherwise, )(
~
nrbk ′  are obtained by 

monitoring the estimates of the ratios of )(
~
αbkc  

and )'(
~
ncbk  for convergence. Again 10,000 

iterates suffice. 
 Samples from the posterior distribution 

of 
~
bp , ⎟

⎠

⎞
⎜
⎝

⎛
~~

npbπ  in (15), can be obtained by 

using the composition method (Tanner 1993). 
First, draw a uniform random variate, U ~ U 
(0,1). Then if U bkω̂≤ , draw 

~
bp from 

;,
~~~

⎟
⎠

⎞
⎜
⎝

⎛ ∈ bkb Spnpπ  otherwise draw 
~
bp from 

.,
~~~

⎟
⎠

⎞
⎜
⎝

⎛ ∈ bkb Spnpπ  Samples of 
~
bp  from 

⎟
⎠

⎞
⎜
⎝

⎛ ∈ bkb Spnp
~~~

,π  can be obtained simply by 

drawing 
~
bp from ⎟

⎠
⎞

⎜
⎝
⎛′′

~~
npf and then if bkSp∈

~
, 

accept it. Similarly, samples from 

⎟
⎠

⎞
⎜
⎝

⎛ ∈ bkb Spnp
~~~

,π are obtained by simply 

drawing 
~
p from ⎟

⎠
⎞

⎜
⎝
⎛′′

~~
npf  and then if bkSp∈

~
, 

accept it. However, it is still possible to obtain 
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samples from ⎟
⎠

⎞
⎜
⎝

⎛′′
~~

npbπ  more efficiently. 

 It is not difficult to show that 

,1)(
~

* ≠αλ bbc  then 1)(ˆ
~

* <′ncbbλ  if and only if 

.1)()ˆ1(
~

* >′− ncbbλ  Also, it is not difficult to 

show that if 1)(ˆ
~

* <′ncbbλ , then 

 
*

~ ~ ~~ ~

*

~ ~ ~~

ˆ ( )

ˆ(1 ( ) ) , )

b b b b

b b b b

p n c n f p n

c n p n p S

π λ

λ π

⎛ ⎞ ⎛ ⎞′ ′′= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞′− ∈⎜ ⎟
⎝ ⎠

         (18) 

 
and if  

,1)()ˆ1(
~

* <′− ncbbλ  

then  

*

~ ~ ~~ ~

*

~ ~ ~~

ˆ(1 ) ( )

ˆ(1 (1 ) ( ) ) , ) .

b b b b

b b b b

p n c n f p n

c n p n p S

π λ

λ π

⎛ ⎞ ⎛ ⎞′ ′′= − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞′− − ∈⎜ ⎟
⎝ ⎠

       (19)  

 
 Note that 

~

('' npf | )
~
n  is obtained by 

marginalization of the posterior distribution 

~
('' pf | )

~
n , in (16). Related arguments are 

given by Bhattacharya and Nandram (1996). 

Note that the application bλ̂  could be very small 

and 1

~

* )'( −ncb  very close to 1, so that it is very 

likely that (18) is the choice. 
 Thus, samples from the posterior 

distribution ⎟
⎠

⎞
⎜
⎝

⎛
~~

npbπ  can be obtained by using 

the composition method in either (15), (18) or 
(19). Notice that it is really simple to draw from 

⎟
⎠

⎞
⎜
⎝

⎛′′
~~

npf b . In practice, if )(ˆ
~

* ncbb ′λ is large but 

less than 1, draws can be made easily from (18), 

or  if  )()ˆ1(
~

* ncbb ′− λ   is  large  but  less  than  1,  

draws can be made easily from (19). In the event 

that )(ˆ
~

* ncbb ′λ and 1

~

* )( −′ncb  are small, or 

)()ˆ1(
~

* ncbb ′− λ  and 1

~

* )( −′ncb  are small, one can 

draw efficiently from (15). 
 Posterior inference of any function of 

~
bp (e.g., ∆bk) can be obtained by using samples 

from ⎟
⎠

⎞
⎜
⎝

⎛′′
~~

npbπ  in a straightforward manner. 

Noting that 
~
p is first drawn from ⎟

⎠

⎞
⎜
⎝

⎛′′
~~

npbπ , 

and the components 
~
bp are stripped off, one can 

take 
)(

~

ˆ h
bp , h=1,…,M to be M  vectors drawn 

from ⎟
⎠

⎞
⎜
⎝

⎛′′
~~

npbπ  and 

∑ =
==∆ J

kj

h
bj

h
bk Mhp .,...,1,)()(

 Then ⎟
⎠
⎞⎜

⎝
⎛∆

~
nE bk  

is estimated by ∑ =
− ∆=∆ M

h

h
bkbk M

1

)(1  and 

⎟
⎠
⎞⎜

⎝
⎛∆

~
var nbk  is estimated by 

.)()1( 2

1

)(1
bk

M

h

h
bkbk M ∆−∆−=∆ ∑ =

−  Note that in 

these estimation procedures independent 
samples are used, not dependent samples as in 
Markov chain Monte Carlo methods. 
 To make inference about βi and τi a 

random sample 
)(

~

)1(

~
,..., Mpp  is first obtained 

from ⎟
⎠

⎞
⎜
⎝

⎛′′
~~

npbπ . Then using the criterion based 

on the mean, the following is computed 
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1

1 / 2

( ) ( ) 2

1
( ) ,

1 , . . . , , 1 , . . . , .

J
h h h
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For the criterion based on the modified 
stochastic ordering, nonlinear least squares 
minimizing is used 
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to obtain )()( , h
i

h
j βθ  and )(h

iτ , h=1,…,M; see 

appendix A for the appropriate equations. (The 
iterative procedure converges quickly in less 
than 5 steps.) Then a posteriori we take  
 

∑ =
−= M

h

h
ii M

1

)(1ˆ ββ  

 
and  
 

∑ =
−= M

h

h
ii M

1

)(1ˆ ττ  

 
with corresponding standard deviation given by 
 

( ) ( )
2/12

1

)(1 ˆ1
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧
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−
M

h
i

h
iM ββ  

 
and 
 

( ) ( )
2/12

1

)(1 ˆ1
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−− ∑
=

−
M

h
i

h
iM ττ . 

 
Analysis of the Military Data 
 In this section, the methodology is 
applied to the Natick Food Experiment.  The 
Meal, Ready-To-Eat (MRE) has twelve meals 
(menus), each consisting of four to six food 
items. The system contains 39 distinct foods. 
Some of these items occur in more than one 
meal and are regarded as different items in 
different meals, so the total number of items 
studied is 52. These items can be classified into 
five principal types: entrees, pastries, vegetables, 
fruits and miscellaneous. Chen, Nandram and 
Ross (1996) analyzed these data to predict shelf 
lives of the entrees, and they classified the 
entrees according to whether their shelf lives are 
short, medium or long. 

Meals were purchased through the 
military supply procedures of the armed-forces 
procurement system, and the taste testing was 
carried out at the Natick Laboratories (NLABS). 
On arrival at NLABS they were inspected for 
completeness, immediately tested at room 
temperature (21ºC) and stored at four different 
temperatures. Those stored at room temperature 

were withdrawn and tested at 12, 24 36, 48, 60 
months' storage. 

The meals were opened by test 
monitors, and each item served to a panel of 36 
untrained subjects who judged its acceptability 
on a 9-point hedonic rating scale. At a session, 
each consumer evaluated all the items in one 
meal which consists of four to six items 
(including an entree) served one at a time in 
random order with a mouth-rinsing between 
items. 

Each item in the entire meal, which 
consists of the entree and the other items, was 
rated on the 9-point hedonic scale by each 
panelist (Only one storage temperature was 
tested for that particular meal, and other 
temperatures for the same meal were judged 
mostly by other panelists.). The panelists were 
chosen from a pool of volunteers comprising 
both military and civilian staff at NLABS. At 
most, two meals were tested each day, one in the 
morning session and one in the afternoon.  Care 
was taken so that no panelist was used twice in 
the same day. Thus, it is not unreasonable to 
entertain the assumption that the responses 
across meals and storage temperatures are 
uncorrelated. 

The samples were coded alphabetically 
when presented to the test-subjects. The items 
were all served at room temperature as they 
came from the package, except for the 
dehydrated items, which were re-hydrated with 
water at 60ºC before serving. The tests took 
place in semi-isolated booths at NLABS under 
standard fluorescent lighting conditions. At any 
withdrawal period as many as 48 sessions 
(twelve menus at four temperatures) were 
required, which means that the tests went up to 5 
weeks, and individual panelists were used about 
ten times during that period. Thus, it is natural to 
assume that the responses on each item in a meal 
follow a multinomial distribution, with different 
distributions for different entrees. 

For each of the 23 combinations of time 
and temperature, there were sensory ratings for 
each of the 36 panelists, and so the data for each 
item consisted of 828 scores. The results were 
studied for 12 entrees: pork sausage (1), ham-
chicken loaf (2), beef patty (3), barbecued beef 
(4), beef stew (5), frankfurters (6), turkey (7), 



www.manaraa.com

A BAYESIAN SUBSET ANALYSIS OF SENSORY EVALUATION DATA 
 

492 

beef in gravy (8), chicken (9), meat balls (10), 
ham slices (11) and beef in sauce (12). 

Our contact at NLABS suggested, of 
course with uncertainty, that among the best 
entrees are 5, 9 and 11. In fact, Chen, Nandram 
and Ross (1995) found that at room temperature 
the shelf lives of 5, 9 and 11 are very long (12, 8 
and 14 years respectively) making these 
estimates less useful. 

In Table 1 the responses of the 36 
panelists for each entree are presented for the 
entrees withdrawn after 12 months' storage; the 
last two columns contain the average (avg) and 
standard deviation (std) of the 36 scores. Here, 
chicken (entree 9) has the largest average and 
the smallest standard deviation, and beef stew 
(entree 5) seems to be a good competitor. 

Further, a Bonferroni multiple 
comparison procedure was performed using the 
ANOVA procedure of SAS on the raw data. Of 
course, this procedure assumes that the 36 scores 
are normally distributed. At 12 months' storage, 
the procedure indicated no significant 
differences between the means of the entrees, 
suggesting that there is no best entree at 12 
months' storage. Thus, a procedure which is 
more sensitive than classical multiple 
comparison is needed. 
 
Numerical Results 
 The data on the sensory evaluation of 
the twelve entrees withdrawn after twelve 
months' storage was used. Selection and 
estimation were studied in turn. The best subset 
of entrees with t entrees, t = 1,…, 4 were 
considered. First, a uniform prior on all subsets 
of size t was considered. That is, λb 

= TbT ,,1,1
…=−  was taken. To make 

comparisons a much larger prior probability λb = 
.25 for a pre-assigned best subset and the 
remaining probability split equally among the (T 
- 1) subsets was also studied. To further assess 
difference between the criteria based on the 
mean response ordering (MRO) and the 
modified stochastic ordering (MSO) the 
observed data was perturbed by replacing each 
of the last two cell counts by the average of the 
observed cell counts for the last two cells for 
each entree. 

In Table 2, the posterior probability bλ̂  

and the Bayes factor Bf associated with the 
presumed best subsets which are {9} {5, 9} ,{ 5, 
9, 11} , { 5, 7, 9, 11} by criterion, data and prior 
weight λb is presented. For the observed data 
when uniform prior weight is used, except for 
the best entree which is {9} when the MRO is 
used and {11} when the MSO is used, the 
determined subsets of size 2, 3 and 4 are the 
same, being exactly the presumed best subsets. 

The best subsets with prior λb = .25 are 
the same as the presumed best subsets. The 
posterior probabilities increase as the number of 
subsets increase for both MRO and MSO, but 
much more rapidly for the MRO. For the 
perturbed data, there are substantial differences 
between the MRO and the MSO with the 
uniform prior. The posterior probability 
decreases with the number of subsets for the 
MRO and less rapidly for the MSO. But in both 
cases the Bayes factor increases rapidly with the 
number of subsets, more rapidly for the MRO.  

Note that the best subsets of sizes 1, 2, 
3, 4 with the MRO are {5}, {5, 9} {5, 9, 11}, {1, 
5, 9, 11} respectively as compared with {11}, 
{9, 11} {5, 9, 10}, {5, 7, 9, 10}. The best 
subsets with the perturbed data and λ= .25 are 
the same as those for the observed data for both 
the MRO and the MSO. Thus, the two criteria 
can lead to different judged best subsets. 
However, if the prior probability on the best 
subset is substantial, the two criteria provide the 
same best subsets, the evidence with the MRO is 
slightly larger than with the MSO. 

In Table 3, a sensitivity analysis to 
investigate misspecifications with the presumed 
best subsets is presented. A prior probability of 
λb = .25 is assigned to the possibly worst subsets 
{2}, {2, 4}, {2, 4, 6} and {2, 4, 6, 12} with a 
probability of .75 assigned equally to the 
remaining T – 1 subsets. Again, the observed 
and the perturbed data are considered. With the 
MSO the evidence for the presumed best subsets 
is very weak, and in fact, the best judged subsets 
are the ones expected. However, with the MSO 
the best subsets are the same as assigned for 
sizes 1, 2, 3 with very weak evidence, and for 
size 4 the best subset is {5, 7, 9, 10} rather than  
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{5, 7, 9, 11} as specified by the MRO (Note that 
the evidence is substantial.). Although the 
judged best subsets for the perturbed data and 
the observed data are the same, there are 
substantial differences between the MRO and 
the MSO for the perturbed data. The determined 
subsets are different at every size and 
interestingly the best subset of size 4 has 
associated with it fairly large Bayes factors (82.5 
versus 29.2). Thus, it is important to specify the 
correct subset a priori especially if a large prior 
probability is placed on such a subset. Note that 
the determined subsets are different for the four 
scenarios. 

Thus, the best subsets of any size are 
likely to be different for the two criteria, 
suggesting that it is risky to use the category 
scales when selecting the best subsets. 

Next, consider estimation of the mean 
response βi and the measure of variability τi for 
which the posterior mean and standard deviation 
are obtained. Letting δ denote either βi or τi, we 

take AVGC = )(ˆ
~
nE δ  and STDC = 

2/1

~
)}(r̂{va nδ  under criterion based on C (MRO 

or MSO). Then, consider the ratio Ravg = AVGmso 
/AVGmro and Rstd = STDmso /STDmro. 

In Table 4, results are presented for the 
observed  data  by  prior weight for the modified 
 
 

stochastic ordering (MSO) for subsets of size 4. 
Columns 3 and 4, and 7 and 8, show there are 
minor differences between posterior means for βi 
and τi respectively for λ = T -1 and λ=.25. In 
addition, columns 5 and 9 show minor 
differences between the point estimates when 
the MRO and MSO are used. However, columns 
6 and 10 show substantial differences between 
the MRO and MSO. Rstd under the MSO is at 
least twice as large under the MRO for the βi and 
at least one and a half times as large for the τi. 
Note also that there are differences for Rstd 
between λ = T -1 and λ=.25 (e.g., compare the 
values for entrees 7 and 10 in column 6). Thus, 
for estimation when little difference is expected 
between the posterior means with the MRO and 
MSO, there are substantial differences between 
the standard deviations. 

In Table 5, ranges are considered for the 
ratios Ravg and Rstd for subsets of sizes 1-4 λ = T -

1 and λ=.25 and for the observed data sets and 
the perturbed data sets for the βi and the τi. The 
ranges for Ravg are very similar for both βi and τi 
for all scenarios (i.e., the posterior means are 
very similar under MRO and MSO). The 
standard deviations are much larger under the 
MSO for βi, but not so large for the τi, and there 
is a slight increase in the ranges of Rstd from T -1 
to λ=.25. In addition, as expected, note that there 
are virtually no differences in estimation for 
various sizes of the subsets. 

 

 
Table 1: Panelists’ responses for the military sensory evaluation Response Categories 

 
Entree 

 
1 

 
2 

 
3 

 
4 

 
5 

 
6 

 
7 

 
8 

 
9 

 
avg 

 
std 

 
1 

 
2 

 
0 

 
1 

 
5 

 
4 

 
6 

 
8 

 
8 

 
2 

 
6.08 

 
2.01 

2 0 4 1 7 4 8 6 5 1 5.50 1.93 

3 2 1 3 7 3 8 8 4 0 5.33 1.94 
4 0 2 1 3 5 10 8 7 0 6.00 1.64 
5 0 0 1 3 7 6 8 10 1 6.42 1.50 
6 0 3 4 7 4 8 8 2 0 5.17 1.75 
7 0 1 0 5 4 10 10 5 1 6.14 1.50 
8 1 3 2 3 4 12 7 4 0 5.50 1.86 
9 0 0 1 5 0 9 14 6 1 6.44 1.40 
10 0 0 2 5 4 7 11 7 0 6.14 1.51 
11 2 1 2 1 1 5 17 6 1 6.25 1.98 
12 2 2 5 3 0 13 6 3 2 5.42 2.16 

 
Note: Meals were withdrawn after twelve months’ storage. 
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Table 2: Posterior probability, Bayes factor and the judged best subset (b) of entrees with a prior probability on the 
presumed best subset by data, criterion and prior weight 

 
Observed Data 

 
Perturbed Data 

 
 

MRO 
 

MSO 
 

MRO 
 

MSO 

 

bλ̂  

 

fB  

 

bt  

 

bλ̂  

 

fB  

 

bt  

 

bλ̂  

 

fB  

 

bt  

 

bλ̂  

 

fB  

 

bt  

 
 

(a) 1−= Tbλ  

 
.36 5.1 9 .21 2.9 11 .32 5.2 5 .21 2.9 11 
.72 22.7 5, 9 .34 4.7 5, 9 .20 16.6 5, 9 .10 7.5 9, 11 
.85 50.2 5, 9, 11 .59 12.8 5, 9, 11 .13 31.3 5, 9, 11 .06 14.7 5, 9, 10 
.88 64.4 5, 7, 9, 11 .69 20.1 5, 7, 9, 11 .11 62.0 1, 5, 9, 11 .04 22.0 5, 7, 9, 10 

 

(b) 25.=bλ  

 
.63 5.1 9 .38 1.9 9 .59 4.3 9 .41 2.1 9 
.88 22.7 5, 9 .61 4.7 5, 9 .85 16.6 5, 9 .62 4.9 5, 9 
.94 50.2 5, 9, 11 .81 12.8 5, 9, 11 .91 31.3 5, 9, 11 .80 11.7 5, 9, 11 
.96 64.4 5, 7, 9, 11 .87 20.1 5, 7, 9, 11 .94 44.9 5, 7, 9, 11 .88 21.7 5, 7, 9, 11 

 

NOTE: The presumed best subsets are {9}, {5, 9}, {5, 9,11}, {5, 7, 9, 11}; a probability bλ  is assigned to each of these subsets 

and 1)1)(1( −−− Tbλ  is assigned to each of the remaining )1( −T subsets; mean response ordering (MRO), modified 

stochastic ordering (MSO) 
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Table 3: Posterior probability, Bayes factor for the judged best subset (b) of entrees under 
misspecification of the presumed best subset by data, criterion and prior weight 

 
Observed Data 

 
Perturbed Data 

 
 

Preassigned 
 

Determined 
 

Preassigned              Determined 

 

bλ̂  

 

fB  

 

bλ̂  

 

fB  
 

bt  

 

bλ̂  

 

fB  
 

bλ̂  

 

fB  

 

bt  

 
(a) Mean Response Ordering (MRO) 

 
.24 0.3 .25 6.9 9 .10 0.3 .30 5.8 5 
.02 0.0 .25 43.8 5, 9 .01 0.0 .20 21.8 5, 9 
.00 0.0 .19 100.2 5, 9, 11 .00 0.0 .13 41.6 5, 9, 11 
.00 0.0 .12 128.7 5, 7, 9, 11 .00 0.0 .11 82.5 1, 5, 9, 11 

 
(b) Modified Stochastic Ordering (MSO) 

 
.39 0.6 .39 0.6 4 .20 0.7 .20 0.7 4 
.25 0.3 .25 0.3 2, 4 .16 0.6 .16 0.6 2, 4 
.37 0.6 .37 0.6 2, 4, 6 .19 0.7 .19 0.7 2, 4, 6 
.05 0.1 .07 69.2 5, 7, 9, 10 .01 0.0 .04 29.2 5, 7, 9, 10 

 

NOTE: The presumed worst subsets are {2}, {2, 4}, {2, 4, 6}, {2, 4, 6, 12}; a probability 25.=bλ  is assigned to 

each of these subsets and 1)1)(1( −−− Tbλ  is assigned to each of the remaining )1( −T subsets. 
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Table 4: Posterior mean and standard deviation of µ and τ under MSO, and ratios of 
posterior means and standard deviations for all entrees based on the judged best four 
entrees using the observed data by prior weight 

 
                                                        µ 

 
               τ 

 
λ 

 
Entree 

 
AVG 

 
STD 

 
Ravg 

 
Rstd 

 
AVG 

 
STD 

 
Ravg 

 
Rstd 

 
1 6.52 0.77 1.09 2.38 2.47 0.41 1.20 1.90 
2 5.76 0.64 1.06 2.05 1.83 0.35 0.93 2.07 
3 4.71 0.69 0.89 2.21 1.83 0.38 0.93 2.16 
4 5.82 0.68 0.99 2.46 1.49 0.31 0.86 1.60 
5 6.95 0.60 1.11 2.28 1.68 0.33 1.01 1.86 
6 4.91 0.65 0.95 2.27 1.48 0.30 0.82 2.04 
7 6.49 0.60 1.08 2.28 1.69 0.31 1.03 1.64 
8 4.94 0.68 0.91 2.25 1.74 0.35 0.91 1.86 
9 6.91 0.60 1.10 2.39 1.65 0.32 1.04 1.65 

10 6.11 0.67 1.02 2.56 1.42 0.29 0.85 1.76 
11 6.25 0.78 1.02 2.42 2.33 0.40 1.15 1.59 

T-1 

12 
 

5.37 0.76 1.00 2.22 2.51 0.41 1.16 2.21 

1 6.28 0.71 1.08 2.80 2.47 0.41 1.18 1.99 
2 5.69 0.64 1.05 2.18 1.83 0.35 0.93 2.07 
3 4.67 0.67 0.88 2.18 1.82 0.38 0.93 2.13 
4 5.65 0.65 0.98 2.85 1.51 0.32 0.85 1.73 
5 7.11 0.58 1.12 2.69 1.66 0.32 1.01 1.91 
6 4.89 0.65 0.95 2.29 1.48 0.31 0.82 2.08 
7 6.73 0.56 1.09 3.00 1.68 0.31 1.06 1.80 
8 4.85 0.66 0.89 2.28 1.74 0.36 0.91 1.93 
9 7.02 0.57 1.11 2.73 1.65 0.31 1.05 1.74 

10 5.90 0.64 1.01 3.09 1.43 0.31 0.84 1.82 
11 6.44 0.75 1.03 3.37 2.28 0.38 1.18 1.78 

.25 

12 5.28 0.74 0.99 2.25 2.51 0.41 1.16 2.22 
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Conclusion 
 

The method for how to obtain the best subset of 
a set of multinomial populations and how to 
estimate the parameters of any of the selected 
population has been shown. In addition, it has 
been shown that the judged best subset can be 
different under the modified stochastic ordering 
and the mean response ordering. The 
methodology applies generally to many sensory 
data problems when a nonparametric approach 
might be desirable and when there are small cell 
counts. For an alternative nonparametric 
Bayesian approach to estimate several similar 
multinomial populations see Quintana (1998). 
He used a Dirichlet process prior to obtain a 
more robust specification of exchangeability. 
The method to obtain the best subset of entrees 
that was outlined in this article is much simpler. 

Specifically, five tasks were 
accomplished. First, a more formal framework 
for selection than Morris and Christiansen 
(1996) and Goldstein and Spiegelhalter (1996) 
has been obtained. The main feature of the 
estimation method is that it weighs the different 
subsets according to which one is believed to be 
best. As there is a joint posterior distribution of 
the     best     population    and    its    parameters, 
estimation proceeds in a simple manner. Second, 
most non-Bayesian procedures in ranking and 
selection, use the normality assumption. A 

normal approximation was not used in this 
analysis; instead work was done directly with 
the multinomial assumption. Third, work was 
done with all the categories in the multinomial 
table (i.e., collapsing to remove sparseness has 
not been done). Fourth, this method is sampling 
based, facilitating a complete probabilistic 
analysis of the best subset of multinomial 
populations. Fifth, the method for how to 
estimate the average response score and standard 
deviation for each food without actually using 
the numeric scores has been shown. 

With respect to the application 
discussed, future work will address more 
complicated issues associated with different 
storage temperatures, and the other items 
including the entrees in each meal. It will be 
useful to obtain the best subset at all 
temperatures for all rated items in each food. 
More generally, a number of items is usually 
rated in accordance with a number of different 
characteristics. Then, one might wish to find the 
best subset of items when all the characteristics 
are taken simultaneously. 
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Table 5: Ranges of ratios of posterior means and standard deviations of µ and τ based on the judged 
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                                                        µ                                                         τ 

 
λ 

 
Ravg 

 
Rstd 

 
Ravg 

 
Rstd 
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T-1 
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0.82-1.21 

 
1.54-2.21 

.25 0.88-1.13 2.05-3.37 0.82-1.21 1.61-2.22 
 
(b) Perturbed data 

 
T-1 

 
0.92-1.13 

 
1.78-2.23 

 
0.83-1.21 

 
1.68-2.26 
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Appendix A 
 
For the iterative nonlinear least squares, one 
would take 
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Then, the normal equations, obtained by 
minimizing 
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An Estimator Of Intervention Effect On Disease Severity 
 

David Siev 
USDA Center for Veterinary Biologics 

 
 
When a medical intervention prevents a dichotomous outcome, the size of its effect is often estimated 
with the prevented fraction. Some interventions may reduce the severity of an outcome without entirely 
preventing it. To quantify the effect of a severity-moderating intervention, a measure termed the mitigated 
fraction (MF) is proposed. MF has broad applicability, because it measures the overlap of two empirical 
distributions based on their stochastic ordering. It is also useful in the specific context of medical 
interventions, because it shares certain structural and functional features with the prevented fraction. The 
two measures may be applied together in a single semiparametric model with components for outcome 
prevention and for severity conditional on the presence of the outcome. 
 
Key words: mitigated fraction, prevented fraction, vaccine efficacy 
 
 

Introduction 
 

When a medical intervention is intended to 
prevent a dichotomous outcome, such as the 
presence or absence of disease, an estimator 
known as the prevented fraction (PF) is 
commonly used to measure its effect. Vaccine 
efficacy, for example, is often estimated using 
some form of prevented fraction. Some 
interventions are, however, intended to reduce 
disease severity without entirely preventing 
disease. It would be valuable to have an 
estimator that is broadly applicable for 
evaluating vaccine efficacy in reducing disease 
severity (Mehrotra, 2004). An estimator that has 
proved useful in animal vaccine studies is the 
mitigated fraction (MF). The mitigated fraction 
is a new incarnation of an old statistic with a 
number of salient attributes. It is both analogous 
in function and homologous in structure to the 
prevented fraction.  
 
 
David Siev acknowledges helpful comments of 
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Dixon, T. Katz, D. Sweeney, J. Zimmerman. 
Email him at David.Siev@aphis.usda.gov. 
 
 
 
 
 

 For vaccination, PF is the relative 
decrease in the probability a vaccinate will 
become a case, while MF is the relative increase 
in the probability that a vaccinate’s disease will 
be less severe than a nonvaccinate’s disease. 
This article shows its origin, describes some of 
its features, and illustrates how PF and MF may 
be components of a nested model.  
 
Example 
 A swine respiratory disease vaccine 
study included groups of pigs treated with either 
vaccine or placebo. All subjects were exposed to 
the pathogen and subsequently sacrificed. At 
postmortem examination, the extent of gross 
lesions in the lungs of each subject was 
estimated by visual approximation. Two 
observers independently sketched on a grid the 
dorsal and ventral surfaces of each of the seven 
lung lobes. The fraction of each lobe was taken 
as the average of the two surfaces and two 
observers. The lobe fractions were weighted (by 
their standard relative mass) and summed to 
arrive at the fraction of the lungs consisting of 
gross lesions. They are shown in Figure 1.  
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Figure 1. Fraction of lungs consisting of gross 
lesions. Number of subjects – placebo: 21, 
vaccine: 22. Points are jitter vertically to aid 
visualization. 
  

 
 
 How then should one analyze and 
summarize the findings of this study? The 
subjects could be divided into unaffected (0% 
lesions) and affected (more than 0% lesions). 
The prevented fraction could then be estimated, 
using methods for binary data. Important 
information is lost, however, if one only 
considers whether the response was present or 
absent and ignores its severity, particularly 
because most subjects were affected, and there 
was a wide range of response. 
 An approach often seen with this type of 
data is to calculate the average percent in each 
group and compare the group averages by their 
difference or relative difference. Taking 
averages is not the soundest way to summarize 
data that are highly skewed and border a 
boundary of the parameter space. The resulting 
summary measure also does not illuminate the 
vaccine’s impact on individual subjects, as does 
PF, which is the relative decrease in the 
probability a vaccinate will become a case. A 
measure analogous to PF is MF, the relative 
increase in the probability that a vaccinate’s 
disease will be less severe than a nonvaccinate’s 
disease. An interesting question is whether to 
estimate MF for the entire set of data, or only for 
those affected by challenge. That point will be 
considered further when the example is 
revisited. 
 
 

Mitigated Fraction  
 Prevented fraction has the general 
form 2 11PF p p= − , where, say, p1 is the 
expected fraction of nonvaccinates affected by 
disease, and p2 is the corresponding expectation 
among vaccinates.  As the usual estimator of 
vaccine effect, PF is often simply termed 
vaccine efficacy (VE) in vaccine studies. Besides 
binomial expectations, VE may be constructed 
from other parameters that are related in some 
way to the probability of disease transmission 
(see Table 1 of Halloran et al., 1997, for an 
overview). 
 Suppose that all subjects in a vaccine 
trial become sick, whether vaccinated or not. 
Rather than looking at the effect of vaccination 
on the relative probability of contracting the 
disease, one might now wish to consider the 
effect of vaccination on the relative probability 
that the disease is milder. An estimator may be 
constructed that is both analogous to PF in 
function (summarizing subject probabilities) and 
homologous to PF in structure (difference 
relative to nonintervention). 
 To highlight these features, it is called 
the mitigated fraction (MF). That is, 

2 01MF t t= −  where t2 is the estimated 
probability that a vaccinate’s disease is more 
severe than that of a nonvaccinate, and t0 is the 
probability of greater severity in the absence of 
vaccination. MF may range from -1 to 1, unlike 
PF, which can take any real value no greater 
than 1. The difference in their ranges is related 
to the fact that the constituent probabilities in 
MF are relative (more or less severe than the 
other treatment group), while those in PF are not 
(presence or absence of disease). In practice, if a 
vaccine does not actually cause disease, both 
MF and PF will take values from 0 to 1.  
 If disease severity can be graded by 
some continuous measure or discrete assessment 
in a way that results in unambiguous ranks, the 
mitigated fraction is estimated by 
 

{ }1 1 1 2 1 22 (1 )M F W n n n n n= − + +  

 
where W is the familiar Wilcoxon rank sum 
statistic, n is the number of subjects in a group, 
and the subscripts are 1 for nonvaccinates and 2 
for vaccinates.  
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Background 
 A general problem is how to distinguish 
between samples of two populations in some 
quantifiable way that avoids all parametric 
assumptions. A useful approach is to consider 
the stochastic ordering of the two empirical 
distributions. Figure 2 illustrates two estimators 
that do so, 

1
2P rob( ) P rob( )i i j i jT Y Y Y Y= > + = . 

 For continuous random variables 
Prob(Yi = Yj) = 0, of course, and the second term 
is omitted from the figure label for simplicity, 
but without loss of generality. If two 
distributions are stochastically identical, the 
probability that a realization from one of them is 
greater or lower than a realization from the other 
is one half. Consequently, iθ  rescales Ti to range 
from –1 to 1, with 0 corresponding to the null 
probability, ½. 
 
 
 
 
 
 
 
 
 

 
 

Figure 2. Because Ti and Tj are complementary 
probabilities, summing to one and equidistant 
from ½, iθ  may be reformulated as 

 

( ) ( )

i i j

j i j i

T T

P Y Y P Y Y

θ = −

= < − >
 

 
 In other words, iθ  is a measure of the 
overlap between the two distributions based on 
their stochastic ordering. A general measure of 
the overlap of two distributions is simply θ , the 
absolute value of either iθ . ( )1

22i Tθ θ= = − , 

where  
 

{ }1 2 1 2sup Prob( ), Prob( )T y y y y= > < . 

 

θ  is used when comparing distributions that 
have no particular relative ordering. iθ , on the 
other hand, is useful when the distributions arise 
in a particular setting that establishes an ordered 
relationship. For example, population 2 may be 
manifesting the effect of a medical intervention 
that is being compared to population 1, 
representing placebo treatment. 
 These estimators are generalizations of 
known statistics. For example, mean ridits 
(Bross, 1958) are Ti, and Somers’ d statistics 
(Somers, 1962) are iθ . (Vigderhous (1979) 
noted the connection between ridits and Somers’ 
d). Somers’ d was conceived as a measure of 
association between two ordinal variables, in 
contrast to ridit analysis, which was designed to 
compare the distributions of an ordinal variable 
in each of two distinct populations. Here, they 
are generalized to encompass data of all types 
that are not necessarily categorical and may arise 
from independent or correlated distributions. 
This general approach has been advocated by 
other authors (Wolf & Hogg, 1971). 
 It is well known that an estimate of T 
may be recovered from the Wilcoxon-Mann-
Whitney statistic (Wolf & Hogg, 1971, equation 
1). That may be done as follows.  
 

( 1) 2i i i i
i

i j i j

U W n n
T

n n n n

− +
= =  

 
where 

 
Wi = sum of the ranks in group i (the 
Wilcoxon rank sum statistic), and Ui = 
number of times a yjk precedes a yih (the 
Mann-Whitney U statistic), i.e., 
 

1 1

H( , )
j i

n n

i jk ih
k h

U y y
= =

=∑∑ , 

 
where 

 
1
2( , ) 1if ; 0if ; and ifa b a b a b a bΗ = < > = , 

and yih is the response of subject h (h = 1 ... 
ni) in group i (i = 1, 2). 
 

 

–1 0 1

0 1½

–1 0 1

0 1½

( )Probi i jT y y= >

( )1
22i iTθ = −
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Substituting ( )1
22i iTθ = −  gives  

 

{ }2 (1 )i i i i j i jW n n n n nθ = − + +  

 
Stratified Design  
 To estimate θ  from stratified data use 

i ir ir jr
r r

T U n n=∑ ∑ , where r indexes the strata. 

For matched pairs, this reduces to a simple 
binomial fraction I( )i jr ir

r

T y y R= <∑ , where 

R is the number of pairs and I( )i  is the indicator 
function. In that case, interval estimation can 
proceed by familiar methods for binomial 
fractions. 
 
Subject Components  

MF may be decomposed into the 
contribution of individual subjects. The 
component for a vaccinated subject j is 

1

2 1
11

2
H( , ) 1

n

j j k
k

s y y
n =

= −∑ , which is its 

contribution to 
2

12

1 n

j
j

MF s
n =

= ∑ . MF is thus the 

mean of the individual subject components.  
 
Confidence Intervals 
 Confidence intervals using normal 
approximations can be derived from the 
asymptotic variance for W or the asymptotic 
variance for Somers’ d provided by popular 
software packages. Such intervals depend on 
assumptions are preferably avoided and may 
even contain inadmissable values. An alternative 
is to calculate confidence intervals for MF by 
one of the bootstrap methods (Efron & 
Tibshirani, 1993); this is an area of ongoing 
investigation. 
 
 
 

 
 
 
 
 
 
 

Graphical Representation (Example) 
 Figure 3 shows the empirical cumulative 
distribution function of the difference 
distribution, 2 1( )F Y Y− , obtained from taking all 
pairwise differences between the groups in our 
example: 2 1ij i jd y y= − , where 21,...,i n=  and 

11,...,j n= . The arrow leading from the 50% 
quantile indicates the median difference (the 
Hodges-Lehmann estimator), which gives some 
idea of the amount of shift between the two 
distributions. The quantile corresponding to a 
difference of zero is the probability that a 
vaccinate’s disease is less severe than that of a 
nonvaccinate (T1). Rescaling the difference 
between T1 and the median gives MF, shown in 
the right hand y axis. MF is thus a rescaled 
quantile of the difference distribution.  
 In contrast to the median difference, 
which is in the original units of measurement on 
the abscissa (x axis), MF reflects probabilities on 
the ordinate (y axis). In this example, T1 = 0.69 
means that 69% of the nonvaccinates are 
expected to be more severely affected than the 
vaccinates,  ( )1

212 0.39MF T= − = , (95%  boot- 

strap CI: 0.06 to 0.68). The vaccine benefited an 
estimated 39% of the 50% of vaccinates who, in 
the absence of vaccination, would have been 
more severely affected than nonvaccinates. 
 
Interpretation and application of MF 

MF is the increase due to vaccination of 
the probability that a vaccinate’s disease will be 
less severe than a nonvaccinate’s disease, 
relative to the probability that it would have 
been less severe had the individual not been 
vaccinated. It is important to avoid direct 
comparison between PF and MF, which have 
somewhat different implications. Many of the 
usual estimators of vaccine efficacy are 
concerned with the prevention of outcomes that 
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are links in the chain of disease transmission, 
such as infection or infectivity, and in this 
respect MF is not like them. PF also relies on 
explicit case definitions, while MF is intended 
for situations where disease severity need only 
be clearly graded.  
 MF is analogous to PF in that it is based 
on estimated subject probabilities. Some relative 
difference measures that attempt to mimic PF in 
formulation may not necessarily have an 
analogous implication and should be interpreted 
cautiously. For example, a formulation that is 
often used to emulate PF is the relative 
difference of means ( 1 2 1( )y y y− ). This is, at 
best, a comparison of population averages rather 
than subject distribution. It is rarely appropriate 
as the sole assessment of vaccine efficacy when 
the outcome is continuous rather than 
dichotomous (and it is particularly misleading 
when the data may not have arisen from a 

location-scale distribution). Although such 
estimators may be devised to emulate the 
configuration of PF, they fail to capture a 
similar meaning, since what is important about 
the constituent parameters in PF is not that they 
are means but that they are category 
probabilities. In this respect, MF is an estimator 
that is analogous to PF.  
 The use of mean based estimators may 
also arise from an understandable desire to 
quantify the amount of severity reduction. 
Unfortunately, such estimators are sensitive to 
the form and scale of the response measurement, 
which may vary substantially between similar 
studies. MF, on the other hand, is invariant to 
order-preserving transformations of the data. 
The price for such invariance is that MF gives 
no information about the magnitude of disease 
severity reduction, and a large value of MF may 
result from a small but highly probable reduction 

 
 
 

 

Difference (y2 – y1) in Lung Fraction 

Median = –0.07 

T1 = 0.69 
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Figure 3.  Empirical difference distribution showing MF as a rescaled quantile. 



www.manaraa.com

SIEV 505 

in severity. That is why it is a good idea to 
accompany MF with an estimator in the original 
units of measurement, such as the empirical 
quartiles illustrated in Figure 1. 
 MF may also be estimated under a range 
of parametric assumptions, thereby offering a 
common approach to studies of various types. 
The example illustrates its most general 
application, where there are no assumptions 
other than that the data are legitimately ranked. 
MF could just as readily be estimated from 
ordinal categories or continuous data. With 
categorical data, the estimator based on W 
corresponds to the ridit estimator. In parametric 
analyses, the probabilities are obtained from the 
estimated cumulative distribution functions. For 
example, the frequency table shows the number 
of subjects of a drug trial in categories of 
increasing disease severity. (The data are a 
subset of those analyzed by Poon (2004).) By 
the formula, estimated MF = 0.08 (95% 
bootstrap CI: -0.07, 0.23). By Poon’s latent 
normal model, estimated MF = 0.10 (95% 
profile likelihood CI: -0.11, 0.30). Regardless 
how the probabilities are estimated, the meaning 
of MF remains the same. 

 

 
 
 
Conditional MF in Nested Models 
 
Nested Model 1 
 Consider a model with a component for 
the presence or absence of disease and a 
component for disease severity among only 
those who become sick. Suppose resistance to 
the pathogen is dichotomous, while the immune 
response to vaccination among those susceptible 
to challenge follows some discrete or continuous 
distribution. Such a model may be formulated 
 

[ ]1
( ) (1 ) ( | 0)

ddf y f y yπ π −= − > , 

 
where I( 0)d y= = (i.e. d is an indicator taking 
the value 1 if y=0 and 0 otherwise) and 

( )E dπ = , its expectation. The likelihood is then 
factored into a Bernoulli likelihood and a 
conditionally independent part which contributes 
to the total only for responders. This is a nested 
model with conditionally independent 
components. Since participation in the second 
part is conditional on crossing the hurdle of the 
first part, this type of nested model is sometimes 
termed a hurdle model (Mullahy, 1986).  
 If ( | 0)f y y >  were completely 
specified, say as a beta density, maximum 
likelihood estimation could be used to assess 
how the treatment groups differed with respect 
to prevention, conditional severity, or both. If 
complete specification is not warranted, PF may 
be estimated from the first part and MFC , the 
conditional mitigated fraction among those 
affected, from the second part. To do so, let  
 

1i ip π= −  
 
and 
 

| 0, 0C
i i i jT T y y= > > . 

 
Then, 
 

2 11PF p p= − and 12 1C
CMF T= − . 

 
 The conditionally independent nature of 
the nested components distinguishes the nested 
model from more complex mixture models. For 
example, continuous data with many zeros 
would, in some cases, be analyzed with a zero-
inflated model. In contrast to a nested model, the 
nonresponse portion of a zero-inflated model 
describes a latent mixture of two populations, 
one which may be incapable of response and 
another capable of response but with response 
zero according to distribution ( )Yf y , leading to 
the formulation  
 

{ } [ ]1
( ) (1 ) (0) (1 ) ( | 0)

dd

Y Yf y f f y yλ λ λ −= + − − > , 

 
where λ  is the population mixture parameter.  
 An example of a nested model for 
categorized data is the well-known continuation-
ratio factorization of the multinomial likelihood 

increasing disease severity → 
placebo 2 22 54 29 3 

drug 4 23 45 22 2 
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into conditionally independent binomial 
components. It may be parameterized 

1

( ) (1 )j j

J
y n r

j j
j

L π δ δ −

=

∝ −∏ , where, for the jth of 

J categories, jy is the category count, jπ  is the 

category probability, 1
j
k kjr y== ∑  is the 

cumulative category count, and 1
J
j jn y== ∑ is the 

total. 
 The continuation ratios are 

J
j j kk jδ π π== ∑ , the probability of being in 

category j given not in any previous category. 
Continuation-ratio models are useful for 
tabulated health events that occur in a natural 
sequence. For example, the impact of a pathogen 
on reproductive health may be seen by the 
presence of normal conception, gestation, 
parturition, and neonatal vigor, and a subject’s 
inclusion at any stage depends on successfully 
passing the previous stage. Continuation-ratio 
models may also be applied to ordinal 
categories, such as disease severity, if they are 
similarly considered to be nested. In some 
situations they may offer an alternative to the 
more common cumulative probability models.  
 Suppose disease is categorized as 
absent, mild, moderate, and severe, and the 
counts for the two groups are arrayed in a 4 x 2 
contingency table. MF could be estimated from 
the entire table, or separate estimates could be 
obtained for PF and MFC. PF would be 
estimated from the 2 x 2 table collapsing over 
categories 2 through 4, while MFC would be 
estimated from the 3 x 2 table that excludes the 
first category. A similar rationale could be 
applied to ranked data if each rank were thought 
to represent a discrete category. 

 
Implications of Nested Model   
 What are the implications of the nested 
model for prevention and conditional severity? 
Suppose all nonvaccinates are sick while some 
vaccinates are unaffected ( 1 21, 1p p= < ), and 
disease severity is reduced among the 
vaccinates. MF is then a simple function of its 
components: 1 (1 )(1 )CM F M F PF= − − − . 
Otherwise, in most practical situations where the 
vaccine both prevents disease ( 0PF > ) and 

reduces its severity among those affected 
( 0CMF > ), the relationship would be 

1 (1 )(1 )CMF MF PF< − − − . If the vaccine 
reduces disease severity among the affected but 
has no effect on disease prevention, although 
resistant individuals are found among both 
nonvaccinates and vaccinates ( 1 2 1p p= < ), the 

inequality reduces to CMF MF< . In both latter 
situations, MFC and PF provide illuminating 
information and may be examined separately 
from MF. On the other hand, in the unlikely but 
not impossible case that the vaccine were to 
prevent disease but increase severity among 
affected vaccinates ( 0CMF < ), MF could be a 
useful summary which balances the benefit of 
prevention against the detriment of increased 
severity. 
 
Nested Model 2 
 Nested models may also be constructed 
when the first component is at the end, rather 
than the beginning, of the disease process. For 
example, suppose participation in the evaluation 
of disease severity depends on whether or not a 
subject survives. The model would then be 
 

[ ] 1( ) ( | 0 ) (1 )
x xf y f y x π π −= = − , 

 
where each observation consists of the pair 

{ },y x , y is the measurement of disease severity, 

and x takes the values 0 if the subject has died 
and 1 otherwise. 
 

Implications of Nested Model 2 
 What are the implications of the nested 
model for severity given that a terminal outcome 
has not occurred? Suppose a subject dies. Is its 
prior disease severity relevant? There are several 
possibilities. For example, in an established 
clinical model where the severity of gross 
lesions predicts a possibly fatal disease, it may 
be valid to include the observations of all 
subjects, surviving or not, to assess disease 
severity. On the other hand, there may be no 
clear association between the observation and 
disease. Acute death may occur in response to 
pathogen challenge without any clinical signs at 
all. Retaining the observations of the dead 
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subjects when the severity measure is unrelated 
to a primary clinical outcome perpetuates an 
incoherent clinical model. In such cases, rank 
based methods are sometimes applied after 
assigning the dead subjects a common value 
greater than the maximum value of the surviving 
subjects. This approach treats death as simply 
the severest manifestation of disease, ignoring 
the qualitative difference between death and 
survival. A third position is that death is a 
critical event, but the prior disease severity of 
dead subjects is of no practical interest, leading 
us to exclude them from the evaluation of 
disease severity, but including all subjects when 
considering mortality. Since participation in 
disease severity evaluation is conditional on 
survival, a nested model may be constructed in 
which each observation consists of the pair 

{ },y x , where x indicates whether or not the 

subject has died, and y is the measurement of 
disease severity (nested model 2). 

 
Example revisited 

In the swine vaccine example, an 
estimate of the mitigated fraction is 

0.39MF = (95% bootstrap CI: 0.06 to 0.68). 
(The asymptotic approximation is 0.07, 0.71.) A 
number of subjects in the study did not succumb 
at all to pathogen challenge. Suppose resistance 
to the pathogen is dichotomous, while the 
immune response to vaccination among those 
susceptible to challenge follows some 
continuous distribution. The dichotomous 
response may be described by PF, and the 
continuous response by MFC , the conditional 
mitigated fraction among those affected. PF and 
MFC would be derived from the conditionally 
independent components of a hurdle model 
(nested model 1). 

The value of nested models is that they 
allow simultaneous inference on two 
components that are conditionally independent. 
In the example, one would estimate PF by 
categorizing all observations as disease positive 
if the pathological lung fraction is greater than 
zero and disease negative otherwise. MFC is then 
estimated using only the nonzero observations. 
Taking that approach, point and interval 
estimates are 0.21PF =  (-0.15, 0.49), and 

0.42CMF =  (0.01, 0.49). Apparently, the study 

is insufficient for conclusive inference on either 
one alone. 

 
Conclusion 

 
Although it is easily calculated from the 
Wilcoxon statistic, MF is aimed at estimation 
rather than hypothesis testing. Consequently, it 
helps focus attention on the clinical relevance of 
the outcome. Nonparametric tests are sometimes 
abused by those who seem to think that avoiding 
certain parametric assumptions also eliminates 
the need for forethought in study design. Care is 
particularly needed when observations are 
recorded in the form of derived ratings such as 
complex scoring schemes which, unlike simple 
grading scales, often do not preserve a clear 
correspondence of score with disease severity. 
Unless one is confident in the scores' validity 
when ranked, the methods shown here should 
not be used. Nonparametric analysis will not 
salvage a poorly designed scoring scheme. 
 Estimation requires an outcome that is 
quantitatively meaningful as well as clinically 
relevant. The study protocol should explicitly 
specify the outcome variable and describe how it 
will be recorded. Outcome specification should 
also aim to highlight the random structure of the 
data rather than conceal or ignore it by appeal to 
rank based methods. 
 For this reason, the use of nonparametric 
techniques in pivotal confirmatory studies has 
been discouraged (e.g. Longford and Nelder, 
1999). Critics point out that reliance on 
nonparametric methods may simply postpone 
the search for a suitable scale of measurement 
and clarification of its stochastic nature, which 
are prerequisites for planning a study able to 
yield informative estimates of the size and 
uncertainty of relevant effects. Full 
distributional specification of a germane 
response variable is certainly ideal. 
Nevertheless, the basis of MF on ranks gives it 
the very qualities that are valuable in certain 
types of studies, particularly where a measure 
based on subject probabilities is preferable to an 
alternative measure formed from averages.  
 Because the mitigated fraction is 
comparable in structure and function to the 
prevented fraction, it is a useful method of 
estimating the benefit of an intervention that 
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reduces disease severity. Like PF, MF evaluates 
the intervention’s effect by the probability a 
subject will benefit from the intervention. For 
this reason, MFC and PF may illuminate 
different aspects of the same intervention when 
they are components of a nested model, and MF 
may be useful in comparisons between studies. 
For example, animal vaccine studies typically 
entail challenging all subjects with the virulent 
pathogen. The response to challenge often varies 
in magnitude between studies, and, when the 
response is an uncategorized measure of disease 
severity, the relative difference between mean 
group responses often varies, as well. While it is 
difficult to completely standardize the evaluation 
of such studies, MF estimates the probability of 
a beneficial response to vaccination, offering a 
way to assess the degree of vaccine effect at 
different times or locations. 
 

References 
 

Bross, I. D. J. (1958). How to use ridit 
analysis. Biometrics, 14, 18–38. 

Efron, B. & Tibshirani, R. J. (1993). An 
introduction to the bootstrap. Chapman & Hall: 
New York. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Halloran, M. E., Struchiner, C. J., & 
Longini, I. M. (1997). Study designs for 
evaluating different efficacy and effectiveness 
aspects of vaccines. American Journal of 
Epidemiology, 146, 789–803. 

Longford, N. T. & Nelder, J. A. (1999). 
Statistics versus statistical science in the 
regulatory process. Statistics in Medicine, 18, 
2311-2320. 

Mehrotra, D. V. (2004). Vaccine clinical 
trials: A statistical primer. Biopharmaceutical 
Report, 12(1), 1-7. 

Mullahy, J. (1986). Specification and 
testing of some modified count data models. 
Journal of Econometrics, 33, 341–365. 

Somers, R. H. (1962). A new 
asymmetric measure of association for ordinal 
variables. American Sociological Review, 27, 
799–811. 

Vigderhous, G. (1979). Equivalence 
between ordinal measures of association and 
tests of significant differences between samples. 
Quality and Quantity, 13, 187–201. 

Wolfe, D. A. & Hogg, R. V. (1971). On 
constructing statistics and reporting data. 
American Statistician, 25(4), 27-30 
 



www.manaraa.com

Journal of Modern Applied Statistical Methods   Copyright © 2005 JMASM, Inc. 
November, 2005, Vol. 4, No.2, 509-513                                                                                                                   1538 – 9472/05/$95.00 

509 

Estimating The Slope Of Simple Linear Regression In The Presence Of Outliers   
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In this article, an estimation procedure to simple linear regression in the presence of outliers is proposed. 
The performance of the proposed estimator, the AM estimator, is compared with other traditional 
estimators: least squares, Theil type repeated median, and geometric mean. A numerical example is given 
to illustrate the proposed estimator. Simulation results indicate that the proposed estimator is accurate and 
has a high precision in the presence of outliers. 
  
Key words: Least squares, geometric mean, Theil-type estimators, simple linear regression, outliers 
 
 

Introduction 
 
Regression analysis was first developed by Sir 
Francis Galton in the later part of the 19th 
century. Galton had studied the relation between 
heights of parents and children and noted that 
the heights of children of both tall and short 
parents appeared to revert or regress to the mean 
of the group. Galton developed a mathematical 
description of this tendency, the precursor of 
today’s regression models (Neter, et. al., 1996). 
 Consider the simple linear regression 
model: 
 

iii xy εβα ++= , i = 1,2,…,n                       (1)                                                                        

 
where yi is the response variable in the ith trial, 
α (intercept) and β(slope) are parameters. Xi is a 
known constant, namely; the value of the 
predictor variable in the ith trial. iε is a random 

error term with mean zero and variance 2σ .   
 
 
Mohammed Al-Haj is an Assistant Professor in 
the Department of Statistics. His research 
interests are is in reliability, accelerated life 
testing, and non-parametric regression models. 
E-mail: m_hassanb@hotmail.com. Email Amjad 
D. Al-Nasser at amjadn@yu.edu.jo. 
 
 
 

 Most of the methods used in the 
literature to estimate the model parameters are 
based on the normality assumption. However, in 
some situations it is unreliable to use the 
normality assumption to identify the model; 
instead one may use non-parametric estimation 
approach. Moreover, if the data contains outlier 
observations, then robust methods are needed to 
polish the effect of the outliers. More details can 
be found in Montgomery and Peck (1992), 
Rousseeuw and Leroy (1987), Davies (1993), 
Fernandez (1997), and Olive (2005). A new non-
parametric procedure is proposed in order to 
estimate the slope of model (1).  
 
Estimation Methods for Simple Linear 
Regression Model 
 The various estimators that have been 
suggested for the slope are as follows: 
 
(1) Method of Least Squares (LS) 
 The least square criterion requires that 
one consider the sum of n squared deviations; 
this criterion is denoted by Q 
 

( )
2

1
∑

=
−−=

n

i
ii xyQ βα  

 
According to the method of least squares, the 
estimates of  α (intercept) and β(slope) are those 

values lsα̂ , lsβ̂ respectively, that minimize the 

criterion Q for the given sample observations 
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),(),...,,(),,( 2211 nn yxyxyx , using the 

analytical approach it can be shown that the 
estimate values of  α (intercept) and β(slope) are 
 

Sxx

Sxy
ls =β̂  and xy lsls βα ˆˆ −=  

 
where 
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n

i
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and    

n

y
y

n

i
i∑

== 1  

Note that lsβ̂ is unbiased estimator of β. 

However, regression outliers (either in x or in y) 
pose a serious threat to least squares analysis.  
 
(2) The Geometric Mean Functional 
Relationship (GM) 
 This estimator was proposed by Dent 
(1935). This estimator has been widely used, 
especially in fisher’s researches:  

2/1
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⎟
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⎞

⎜
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⎝
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−
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∑

∑
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yy
yxCovSign

i

i
GMβ  

 
It can be noted that this estimator is symmetric 
in x and y. Where Cov(x,y) is the covariance of 

x and y. )(ˆ
ijT Bmedian=β  

 
(3) Repeated Median Theil-Type Method (T) 
 Theil (1950) proposed this method. The 
data are ordered either to the x variable or the y 
variable. Find all possible pairs of observations, 
assuming that all ix ’s are distinct,  

 

njji
xx

yy
B

ij

ij
ij ,...,3,2,1,...,2,1;

)()(

][][ =−=
−
−

=   

which yields ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

2

n
slope values, then where m 

can be chosen to be  the maximum divisor of  n 
such that rm ≤ . For example, when n = 20 then 
m = 4 and r =5 are selected. 
 
(4) Proposed Method (AM) 
 This method consists of ordering the 
observed pairs ),( ii yx ’s, i = 1,2,…,n;  by the 

magnitude of  ix ’s , assuming that all ix ’s are 

distinct, then divide the observation into some 
groups and find all possible paired slopes. The 
procedure can be described as follows:  
a) Arrange the observations in ascending order 
on the basis of the values of ix ; i.e., 

)()2()1( ... nxxx ≤≤≤  and the associated 

][]2[]1[ ,...,, nyyy of the original data are taken; 

then the new pairs will be ),( ][)( ii yx  

 
b) Divide the data into m-subgroup each of size r 
such that m*r = n; then the sample can be 
rewritten in the form in Figure 1 on the 
following page. 
 
c) Find all possible paired slopes 
 

[ ] [ ]

( ) ( )

( ) ; 1,2..., 1; 2,3,..., ;

1,2,...,

j i
ij

j i

y y
b k i j j r

x x

k m

⎧ ⎫−⎪ ⎪= = − =⎨ ⎬−⎪ ⎪⎩ ⎭

=

 

 
d) Then the estimated value of the slope can be 
defined as follows:  
 

{ }ˆ ( ) , 1,2..., 1; 2,3,..., ;

1,2,...,

AM ij
k

Median b k i j j r

k m

β = = − =

=
 Note that the suggested estimator is in 

the form of Theil’s estimator with ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

2

r
m paired 

slopes to be evaluated. If the sample size n is a 
prime number, then the estimates leads exactly 
to the repeated median Theil type estimator. 
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However the advantage of the proposed one is in 
abstracting the number of paired slopes to be 
evaluated, for example when n = 100, 4950 
paired slopes are needed to be evaluated by 
using T method.  By using the suggested method 
(AM), where r = m = 10, only 450 paired slopes 
are needed, which is a good advantage for this 
method. 
 
Numerical Example 
 In order to compare various estimation 
methods, the so-called Pilot-Plant data from 
Daniel and Wood (1971) is considered. The 
observed (y) corresponds to acid content 
determined by titration and the observed (x) is 
the organic acid content determined by 
extraction and weighing. Moreover, Rousseeuw 
and Leroy (1987) analyzed this data further by 
assuming that one of the observations is wrongly 
recorded, i.e. the x-value of the sixth observation 
might   have   been   wrongly  recorded   as   370 
instead of 37. Based on the data which consist of 
20 observations, and for the fact the x’s data 
point should be distinct, x20 is substituted to be 
168 instead of 167. The various estimated slopes 
yielded the results as shown in Table.1.  
 In this example, for the proposed 
method, the original sample is divided into 4 
sub-samples, each of size 5. The results showed 
that traditional LS and GM methods have been 
strongly affected by the single outliers. On the 
other hand, AM and T are hardly affected by the 
wild observation. 

 
 

 
Simulation Study 
 To illustrate the performance of the 
proposed method in the presence of outliers, a 
simulation study was carried out as follows: it 
begins by generating 100 observations according 
to the model; iii xy ε++= 1 , where 

n

i
xi 10=  and )1,0(~ Niε . Then, the data is 

contaminated; at each step a certain percentage 
of the observations are deleted and replaced with 
outliers’ observations. The contaminated data 
point was generated according to the given 
relationship where )25,20(~ Niε . Table.2 

presents the values of the estimated slopes: 
The properties of these methods were 

investigated further by looking at the mean 
square of error (MSE) in 10000 trials. For each 
10000 trials, samples of size 20 and 50 were 
generated, the simulation results are represented 
in Table.3. 

 
Table.1 The slope estimates using different 
methods for Pilot-Plant data 

 
Slope 3706 =x

 

376 =x  

Least Squares 
(LS) 

0.0808 0.3211 

Geometric Mean 
(GM) 

0.2148 0.3220 

Theil (T) 0.3170 0.3194 
Proposed method 

(AM) 
0.3273 0.3480 
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Figure 1 
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                         Table.2. Slope Estimates with n= 100 and β =1 
 

Contamination (%) LS GM T AM 
0 0.9977 1.0590 0.9906 0.8491 

10 -0.1176 -1.9339 0.8585 0.7911 
20 -0.9760 -2.4261 0.6003 0.7675 
30 -1.6041 -2.7429 -.05473 0.7574 
40 -1.9215 -2.7781 -1.4783 0.5783 
50 -2.0421 -2.8190 -1.7236 0.5214 

 
                   Table.3. MSE of the Slope in the presence of outliers 
 

Contamination 
(%) 

Sample Size 
 

Slope 

20 50 

0 LS 6.0016E-03 2.3847E-03 
 GM 8.4800E-03 5.4053E-03 
 T 6.5697E-03 2.5118E-03 
 AM 1.2690E-01 7.1048E-02 
    

10 LS 1.2115E+00 1.1850E+00 
 GM 6.1172E+00 6.5467E+00 
 T 2.7433E-02 2.1701E-02 
 AM 2.7372E-01 1.9499E-01 
    

20 LS 3.7599E+00 3.7167E+00 
 GM 1.1129E+01 1.1212E+01 
 T 1.8782E-01 1.7369E-01 
 AM 2.3882E-01 1.0105E-01 
    

30 LS 6.4511E+00 6.3880E+00 
 GM 1.3218E+01 1.3285E+01 
 T 2.4676E+00 2.2527E+00 
 AM 3.2630E-01 3.0625E-01 
    

40 LS 8.4146E+00 8.3348E+00 
 GM 1.4609E+01 1.4647E+01 
 T 5.8036E+00 5.6501E+00 
 AM 2.1543E-01 1.5468E-01 
    

50 LS 9.12418E+00 9.04105E+00 
 GM 1.52952E+01 1.53539E+01 
 T 7.13609E+00 7.00981E+00 
 AM 5.62811E-01 3.85401E-01 
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Conclusion 

 
Our simulation results from Table.3 indicate 
that, in terms of MSE the performance of the 
four estimators in the absences of outliers are 
comparable. However, as the degree of 
contamination increases LS and GM methods 
became very sensitive to the presence of 
outliers. Theil-Type estimator (T), clearly 
affected with the outliers when the 
contamination became 30% or more. It is very 
clear that the proposed estimator (AM) is very 
robust in the presence of outliers. As a 
conclusion, the AM estimator can be consider as 
a good alternative to the traditional methods 
because it is able to produce satisfactory results 
even in the presence of a large amount of 
outliers.  
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Comparison Of Statistical Tests In Logistic Regression: 
The Case Of Hypernatreamia 
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The logistic regression has become an integral component of any medical data analysis concerning binary 
responses. The main issue rising after the adaptation of the final model is its goodness-of-fit. The fit of 
the model is assessed via the overall measures and summary statistics and comparing them in the case of 
hypernateamia. 
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Introduction 
 
The use of overall summary measures of 
goodness-of-fit has become an important and 
easily performed step in building logistic 
regression models. Pearson chi-square sum-of-
squares statistics and the Score test are 
recommended due to their superior power in the 
simulations, but one must keep in mind that in 
small sample cases there is lack of detecting 
subtle deviations from the model (Hosmer, 
1997). When it comes to sparse data, a non-
significant result of a goodness-of-fit test does 
not tell that the model is correct, it just tells that 
the lack-of-fit is not large enough for the model 
to be rejected (Kuss, 2002).  

In general, there are two different 
approaches to assessing goodness-of-fit in 
logistic regression models (e.g., Cook, 1979; 
Pregibon, 1981). The first one, residual analysis, 
investigates the model on the level of 
individuals and looks for those observations 
which  are   not   adequately   described   by   the 
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model or which are highly influential on the 
model fit. The second approach seeks to 
combine the information on the amount of lack-
of-fit in a single number. Statistical tests, so-
called goodness-of-fit tests, are then calculated 
to judge if this lack-of-fit is significant or due to 
random chance and can be distinguished to 
specific and global. Global tests do not evaluate 
specific alternatives, rather test unspecific 
hypotheses of the form ‘the model fits’ versus 
the alternative ‘the model does not fit’. 

The goal is to investigate the choice of 
statistic test for assessing the coefficients of 
parameters as well as the goodness of fit by 
examining the medical disorder called 
hypernatreamia. For this purpose, three well 
known statistic tests will be used: the Likelihood 
Ratio statistic (LR), the Wald test (W) and the 
Score test (Scr) (Hosmer, 1989), although some 
authors warn that for large coefficients, standard 
error is inflated, lowering the Wald statistic (chi-
square) value (Hosmer, 1989) and the 
likelihood-ratio test is more reliable for small 
sample sizes than the Wald test (Argesti, 1996). 
Methods for checking goodness-of-fit, are less 
developed, which may be due to the relative 
youth and enhanced mathematical complexity of 
the logistic regression model compared to, for 
example, the linear regression model (e.g., 
Bendel, 1977; Cook, 1977). 

The study includes 314 patients treated 
at the Surgery Intensive Care Unit of a central 
hospital in Athens during 1996 - 2003. All data 
have been extracted from the Central Data Base 
of the Unit in which are recorded all 
demographic information (ID, age, sex, disease, 
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APACHE II score), daily biochemical indication 
and medical treatment and mortality. These 
patients have been chosen, excluding some from 
the 364 recorded, due to their staying in the ICU 
less than 3 days, which is thought to be a 
cutpoint for the ones who enter only for after 
surgery treatment. In addition, the patients under 
examination have not been transported to other 
hospital in order to be aware of the final 
condition of their health. 

To compare the groups of patients 
having expressed the disorder hypernatreamia, 
with a control group, there were 35 patients from 
the first one with at least one indication of the 
electrolyte Na >147mmol/l   during their staying 
in the ICU and 279 from the second group. With 
the aim of studying their behaviour, possible risk 
factors, sepsis criteria, Apache II score, medical 
treatment and mortality were examined. 

In this article, the case of  
hypernatreamia with a multiple logistic 
regression model is considered. 
 
The Logistic Regression Model 
 Logistic regression is part of generalized 
linear models (McCullagh, 1983), which allows 
one to predict a discrete outcome, from a set of 
variables that may be continuous, discrete, 
dichotomous, or a mix of any of these. 
Dichotomous (binary) outcome is the most 
common situation in biology and epidemiology, 
standing for the presence or absence of a 
disease, success or failure etc. Although 
discriminant analysis may also predict group 
membership (e.g., Costanza, 1979; Efron, 1975), 
it can be used only with two groups, so in the 
cases of categorical, or a mix of continuous and 
categorical covariates, logistic regression is 
preferred (e.g., Cook, 1979; Fleiss, 1979; 
Furnival, 1974; Mickey, 1989). 

What seems to distinguish logistic 
regression to linear is conditional 
mean ( )xYE / , the mean value of the outcome 

variable, given the value of the independent 
variable. In linear regression, it is assumed that 
this mean may be expressed as an equation 
linear in x, which implies that ( )xYE /  may 

take any value as x ranges between -∞ and +∞, 
but with dichotomous data conditional mean 
must be greater than or equal to zero and less 
than or greater to one. The second important 

difference concerns the conditional distribution 
of the outcome variable. In the linear regression 
model, it is assumed that an observation of the 
outcome variable may be expressed as 

( ) ε+= xYEy / , where the error ε follows a 

normal distribution [ε ~N( 2,σµ )], whereas in 
logistic ε follows the binomial one. 

Logistic regression makes no 
assumption about the distribution of the 
independent or predictor variables, that is they 
do not have to be normally distributed (Lawless, 
1978), linearly related or of equal variance 
within each group so the relationship between 
the predictor and response variables is not a 
linear function. 
 
 Let ( )xf = ( )xYP

�
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xxxx ,...,
21

=�

 

 
denotes a collection of  p  covariates. Then the 
logistic regression function, in form of the logit 
transformation  
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During model creation, variables can be 

entered into the model in the order specified by 
the researcher or logistic regression can test the 
fit of the model after each coefficient is added or 
deleted, called stepwise regression. Stepwise 
regression is used in the exploratory phase of 
research but it is not recommended for theory 
testing. Forward variable selection enters the 
variables in the block one at a time based on 
entry criteria and backward stepwise regression 
appears to be a preferred method of exploratory 
analysis, where the analysis begins with a full or 
saturated model and variables are eliminated 
from the model in an iterative process. 

Backward selection is sometimes less 
successful than forward or stepwise selection 
because the full model fit in the first step is the 
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model most likely to result in a complete or 
quasi-complete separation of response values. 
The fit of the model is tested after the 
elimination of each variable to ensure that the 
model still adequately fits the data. When no 
more variables can be eliminated from the 
model, the analysis has been completed. The 
process by which coefficients are tested for 
significance for inclusion or elimination from 
the model involves several different techniques 
(e.g., Bendel, 1977; Costanza, 1979). Some of 
these tests are described in the next section. 

 
Assessment of the Coefficients of the Model 
 A Wald test is used to test the statistical 
significance of each coefficient iβ  in the 

model. A Wald test calculates a z statistic, which 
is: 

( )i

i

SE
z

β
β

= . 

 
This z value is then squared, yielding a 

Wald statistic with a chi-square distribution with 
p+1 degrees of freedom, where p is the number 
of covariates.  The likelihood-ratio test uses 
the ratio of the maximized value of the 
likelihood function for the saturated model (L1) 
over the maximized value of the likelihood 
function for the current model (L0). The 
likelihood-ratio test statistic equals:  
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This log transformation of the likelihood 

functions yields a chi-squared statistic with p 
degrees of freedom equal to the number of 
covariates of the model. This appears to be the 
recommended test statistic to use, when building 
a model through backward stepwise elimination.  

The score statistic is a quadratic form 
based on the vector of partial derivatives of the 
log-likelihood function with respect to the 
parameters of interest, evaluated at the values 
postulated       by       the     null     hypothesis.  

 
 
 
 
 

Let 
         

∏∏
∈∈

− −⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
−−=

Si

w
i

Yw

i

i

Si

Yw
i

Yw
i

i

ii

iiii P
P

P
PPYL )1(

1
)1()|( )1(β  

 
be the weighted likelihood function and  
 

∑ ∑

∑

∈ ∈

∈

+−=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−
=

Si i

X
ei

T
iii

Si
iei

i

i
eie

T
iewXYw

Pw
P

P
wYL

)1(log

)1(log
1

log)|(log

 

  

ββ

β
 

 
be the log likelihood function. Then, the (p + 1) 
x 1 score vector, S(β), is given by  
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Testing the Fit of the Model 
 For a particular covariate pattern, the 
Pearson residual is defined as follows:                                      
 

( ) ( )
( )jjj

jjj
ji

m

my
yr

ππ
π

π
ˆ1ˆ

ˆ
ˆ,

−

−
=  

 
The summary statistic based on these 

residuals is the Pearson chi-square statistic  
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 The distribution of the statistics X2 and 
D under the assumption that the fitted model is 
correct in all aspects is supposed to be chi-
square with degrees of freedom equal to J-p-1. 
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 The Hosmer-Lemeshow goodness-of-fit 
statistic is obtained by calculating the Pearson 
chi-square statistic from the 2×g table of 
observed and expected frequencies, where g is 
the number of groups. The statistic is written as: 

 

( )
( )

2

2

1 1

g
i i i

HL
i i i i

O N

N=

− π
χ =

π − π∑  

 
where Ni is the total frequency of subjects in the 
ith group, Oi  is the total frequency of event 
outcomes in the ith group, and 

i
π  is the average 

estimated probability of an event outcome for 
the ith group. The Hosmer-Lemeshow statistic is 
then compared to a chi-square distribution with 
(g-n) degrees of freedom, where the value of n 
can be specified in the lackfit option in the 
model statement. The default is n=2. Large 

values of 
2

HL
X  (and small p-values) indicate a 

lack of fit of the model. 
 
Comparison of the Coefficients-Results 
 The data set used to compare the 
statistical tests contains 24 covariates for each of 
the two groups of patients under examination 
(hypernatreamic-control patients). At a brief 
description it is observed that both groups have 
statistically comparable ages (t290, 0.025=-0.753, 

p=0.452), the sepsis score ( ( )05.02
4X =6.979, 

p=0.137) as well as the Acute Physiology And 
Chronic Health Evaluation, 

( ( ) WailesKruskallX 05.02
1  = 1.174, p = 0.279), 

which both estimate the condition of health of 
each patient at his entrance in the ICU, does not 
seem to differentiate between two groups. 
 It is of interest now to explore the 
relationship between the covariates and the 
presence or absence of hypernatreamia. Using a 
univariate model containing the intercept and 
every time the variable of interest, it seems to 
exist strong relationships with the binary 
outcome indicating that patients with high 
values of Na differentiate from the control 
group. But can this univariate result be used to 
confirm, for example, that hypernateamia is 
associated with mortality - taking under 
consideration all possible risk factors? That is 
one of the questions generated and concerns a 

set of covariates that can be partly answered 
with a multivariable logistic regression analysis. 
 For this purpose, variables are included 
in the model that has been shown to be 
associated with hypernatreamia. Covariates of 
interest included age, gender, evaluation of the 
stage of the patients condition (APACHE, sepsis 
score), resuscitation fluids and antibiotics 
containing Na. The multivariate logistic 
regression model also included the interactions 
of plasma (FFP) with the antibiotics containing 
furosemide, teicoplanin and humanxlasix to 
examine if their combination is mischievous, 
that is they lead to hypernatreamia. 
 The analysis was conducted with the 
SAS program and the method used for the 
binary model was the full one. 31 observations 
were deleted due to missing values for the 
explanatory variables so the number of 
observations that finally contributed to the 
analysis was 283 (30 patients who expressed the 
disorder and 253 control patients). The 
importance of a variable is defined in terms of a 
measure of the statistical significance of the 
coefficient of the model (p<0.05), which denotes 
the fixed decision rule for the inclusion of 
variables at the procedure used. However there 
seems to be an indication of the influential role 
for some covariates (p<0.10) that needs to be 
taken under consideration and are therefore 
illustrated.  
 The results for the logistic regression 
model to be assessed are presented in table 1. 
Initially the model contained all the possible 
interaction factors, which have already been 
discussed, with no statistically significant 
results; therefore only the main effects were 
used. With the exception of the design variable 
sepsis, there is clear evidence that each of the 
variables has some association with the 
outcome. This observation is based on an 
inspection of the 95% Wald confidence interval 
estimates which, either do not contain 1 or just 
barely do. At this point, a decision concerning 
the variable age had to be made, as it is known 
to be a biologically important variable, yet is not 
statistically significant in this model. For this 
reason the covariate’s estimate and the Wald 
test’s value at the Analysis of Maximum 
Likelihood Estimates table were included. In 
search of a confounding effect, it was found that  
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Table 1: Analysis of Maximum Likelihood Estimates 
P aram eter D F E stim ate Standard  E rro r W ald  C hi-Sq uare P r> C hiSq 
Intercept 1  -5 2 .186  35 3.70 0 0 .022  0 .883  

A P A C H E  1  0 .121  0 .073  2 .748  0 .097  
daysofst 1  2 .356  0 .624  14 .245    0 .000  

age 1  0 .035  0 .037  0 .884  0 .347  
q furosem ide 1  -0 .145  0 .050  8 .462  0 .004  

qffp  1    -0 .590          0.25 3            5 .4 27     0 .0 20  
q im ipenem e 1     0 .8 44          0.29 2            8 .3 86     0 .004  
q teicop lanin  1  1 .024  0 .527  3 .776  0 .052  

qso d . h lo pideam p 15%  1  -0 .389  0 .109  12 .877 0 .000  
sex  (0 ) 1  1 .177  0 .597  3 .887  0 .049  

death  (0 ) 1  -3 .782  1 .068  12 .549 0 .000  
sepsis (0 ) 1  15 .483 8 .240  3 .531  0 .060  
sepsis (1 ) 1  14 .758 8 .298  3 .163  0 .075  
sepsis (2 ) 1  12 .958 7 .949  2 .658  0 .103  
sepsis (3 ) 1  15 .469 8 .276  3 .494  0 .062  

ffp  (0) 1    -1 .099          0.63 0            3 .0 43     0 .081  
im ipenem e (0) 1  -3 .514  1 .646  4 .559  0 .033  
teicop lanin (0) 1  -1 6 .705  6 .381  6 .854  0 .000  

  
 
 

 
 

Table 2: Odds Ratio Estimates 
Effect Point Estimate 95% Wald Confidence Limits 

APACHE 0.886 0.767            1.022 
daysofst 0.095 0.028            0.322 

age 1.035 0.963            1.114 
qfurosemide 1.156 1.049            1.275 

qffp 1.804          1.098            2.963 
qimipeneme 0.430          0.243            0.761 

qsod. Chlopideamp 15% 0.359 0.128            1.009 
sex (0 vs 1) 0.095 0.009            0.986 

death (0 vs 1) >999.999 29.340           >999.999 
sepsis (0 vs 4) <0.001 <0.001           290.589 
sepsis (1 vs 4) <0.001 <0.001           689.112 
sepsis (2 vs 4) <0.001  <0.001            >999.999 
sepsis (3 vs 4) <0.001 <0.001            337.138 

ffp (0 vs 1) 9.006   0.762             106.412 
imipeneme (0 vs 1) <0.001       <0.001             0.562 
teicoplanin (0 vs 1) <0.001 <0.001            <0.001  
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the absence of age indeed acts as a confounder 
changing remarkably the significance status of 
the model. Assessing the reduced model for that 
case, the LR and Score Tests  
 

(
)()(

2
26 )05.0(

agefLRX
−

=126.486, 

 

)()(
2
26 )05.0(

agefScrX
−

=123.824, p<0.0001) 

 
agrees with the saturated one  
 

(
fLRX )(

2
27 )05.0( =141.465,

fScrX )(
2
27 )05.0( =12 

 
0.634, p<0.0001) and there is a small change  
 

( )(
2
277 )05.0( PearsonX =217.715 (p=0.997), 

 

))(05.0(2
8 HLX =3.322, (p=0.913) 

 
in the Pearson and Hosmer-Lemeshow 
goodness-of-fit tests  
 

( )(
2
255 )05.0( PearsonX =128.107 (p=1.000), 

 

))(05.0(2
8 HLX =2.333, p=0.969) 

 
reflecting the reduction of effectiveness in 
describing the outcome due to the absence of 
age.     
 Examining the results, it was also 
observed that the estimated coefficients for a set 
of variables in the model changed significantly 
when gender was deleted. Hence, there is clear 
evidence of a confounding effect due to gender 
describing that it is associated with both the 
outcome variable of interest, hypernatreamia, 
and the risk factors. Comparing the LR and 
Score tests of that model with the full one, it was 
found that although the LR and Score tests don’t 
seem to denote that the absence of the variable 
produces an alteration in the model  
 

(
)()(
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genderfLRX
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genderScrX )(
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p<0.0001,
fLRX )(

2
27 )05.0( =141.465, 

 

fScrX )(
2
27 )05.0( =120.634,p<0.0001), 

 
the goodness-of-fit statistics seem to ascertain a 
small one  
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)()(
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genderfPearsonX
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(p=0.998),
)()(

2
8 )05.0(

genderfHLX
−

=2.127 

 

(p=0.977), 
fPearsonX )(

2
255 )05.0( =128.107 

 

(p=1.000),
fHLX )(

2
8 )05.0( =2.334 =0.969). 

 
 The confounding status of sepsis score 
has also been examined, confirming that it is 
interactively associated with both the disorder 
and the covariates. The results of the comparison 
are very interesting since the absence of the 
polytomous covariate sepsis score produces 
remarkable changes to the model fit. In specific, 
although the saturated model seems to fit well, 
the null hypothesis for the reduced model is 
rejected  
 

(
)()(

2
259 )05.0(

sepsisfPearsonX
−

=591.935 

 

(p<0.001), fLHX )(2
8 − =20.167 (p=0.0097)). 

 
 Considering that the overall goal is to 
obtain the best fitting model while minimizing 
the number of parameters, the next step is to fit a 
reduced model containing only those variables 
thought to be significant, and compare it to the 
full model containing all the variables. The 
results fitting a model with intercepts only and 
for fitting a model with intercepts and 
explanatory variables,  show that  the overall 
statistic  tests  reject  the  global  null  hypothesis  
 
 
 



www.manaraa.com

COMPARISON OF STATISTICAL TESTS IN LOGISTIC REGRESSION 520 

 
BETA=0 in the case of both the reduced and the 
full model.  
 

(
rLRX )(

2
7 )05.0( =65.395,

rScrX )(
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7 )05.0( =94.37 

 

7,p<0.0001)
fLRX )(

2
27 )05.0( =141.465, 

 

fScrX )(
2
27 )05.0( =120.634, p<0.0001). 

 
However examining the Pearson and Hosmer-
Lemeshow statistics  
 

( )(
2
8 )05.0( HLX =17.756 (p=0.023), 

 

)(
2
278 )05.0( PearsonX =1316.375 (p<0.0001) 

 
a remarkable change demonstrating a better fit 
of the full model is observed 
 

( )(
2
8 )05.0( HLX =128.107 p=1.000, 

 

)(
2
278 )05.0( PearsonX =2.333, p=0.969)). 

 
During model assessment, it was observed that 
deviance does not seem to alter  
 

( =
fDevianceX )(

2
255 )05.0( 49.891 

 

(p=1.000), =
− )()(

2
277 )05.0(

agefDevianceX 78.103(p 

 

=1.000), =
− )()(

2
256 )05.0(

genderfDevianceX 54.58 

 
(p=1.000)), 

 
placing all models containing confounders or 
other reduced models in the same goodness-of-
fit status with the full model. That happens even 
in the last case of the confounding of sepsis 
score when Pearson and Hosmer-Lemeshow 
tests agree in rejecting the goodness-of-fit but 
deviance fails to identify such alteration  
 
 
 

 

( =
− )()(

2
255 )05.0(

sepsisfDevianceX 88.531, p=1.000). 

 
 The estimated coefficients and odds 
ratio show that women are 10.6 times more 
likely to express the disorder (p<0.05) than men,  
mortality increases to hypernatriemic patients 
(p<0.01) and the ones with sepsis score 4 are 
much less likely to get hypernatreamic 
compared to any of the other 3 sepsis levels (0, 
1, 2, 3). In the case of the design variables of 
sepsis, although between levels 2 and 4 there 
seems to be a marginal relationship at the 10% 
level (p=0.103), the variable was included 
because the W statistics for all relative 
coefficients exceed 2 (Hosmer & Lemeshow, 
1989). 
 There is great interest to the influential 
part that the antibiotics and resuscitation fluids 
containing Na, play during patients treatment in 
ICU. Especially, patients that were treated 
intravenously with furosemide increased the risk 
of getting hypernatriemic 15% every time they 
accepted 20mg as long as getting FFP they 
increased the risk 9 times from those who didn’t 
(an increase of 1 point led to a 80% increase of 
risk). 

 
Conclusion 

 
During or after model creation, there seems to be 
efficiency and applicability of the proposed 
Wald Test, Likelihood Ratio Test, and Score 
test, because they agree in refining the 
significance of the coefficients. Our comparison 
of the proposed goodness-of-fit statistics 
Pearson chi-square and Hosmer-Lemeshow, 
showed small deviations between them at the 
omission of important confounders, but both are 
much more powerful from deviance in detecting 
the fit of the model. That leads to an important 
association between the behaviour of the logistic 
regression model through the application of 
different assessment statistics, in representing 
best the biological mechanism, hence correctly 
logistic regression is a significant tool in any 
medical data analysis of an ordinal response 
model with both categorical and continuous 
covariates. 
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A general simulation procedure is described to validate model fitting algorithms for complex likelihood 
functions that are utilized in periodic cancer screening trials. Although screening programs have existed 
for a few decades, there are still many unsolved problems, such as how age or hormone affects the 
screening sensitivity, the sojourn time in the preclinical state, and the transition probability from disease-
free state to the preclinical state. Simulations are needed to check reliability or validity of the likelihood 
function combined with the associated effect functions. One bottleneck in the simulation procedure is the 
very time consuming calculations of the maximum likelihood estimates (MLE) from generated data. A 
practical procedure is presented, along with results for when both sensitivity and transition probability 
into the preclinical state are age-dependent. The procedure is also suitable for other applications.  
 
Key words: periodic screening, breast cancer, early detection, sensitivity, sojourn time, transition 
 probability, mammogram, clinical breast examination, incidence 
 

 
Introduction 

 
According to a recent report of the National 
Institute of Health (NIH 2000), breast cancer is 
the most common form of cancer among women 
in the United States and the second leading 
cause of cancer deaths among women. One of 
the  procedures to manage the disease is periodic  
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cancer screening, which has been utilized for a 
few decades. The motivation for screening is to 
detect the disease early even before clinical 
symptoms come up. The benefit for early 
detection is obvious. People in whom cancer is 
detected earlier usually have a better prognosis. 
Early treatments hopefully will lead to more 
cure and prolonged survival of cancer patients.  

In a screening program, a large group of 
asymptomatic individuals are enrolled in the 
program to detect the presence of a specific 
disease. The natural history of the disease for an 
individual is assumed to follow a progressive 
stochastic model, which consists of three states, 
denoted by cp SSS →→0 , corresponding, 

respectively, to the disease-free state; the 
preclinical disease state, in which an 
asymptomatic individual unknowingly has 
disease that the screening exam can detect; and 
the clinical state when the disease manifests 
itself in clinical symptoms. The screening 
sensitivity is the probability that the screening 
exam is positive, given that the individual is in 
the preclinical stage. The sojourn time refers to 
the time beginning when the disease first 
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develops until the manifestation of clinical 
symptoms, that is )( pc SS − . The transition 

probability into the preclinical stage is the 
probability density function of making transition 
from the disease-free to the preclinical state. 
Knowledge of the sensitivity of the screening 
modality is necessary for evaluating the 
predictive performance of a screening exam. The 
screening sensitivity may depend on a variety of 
factors, including age, position, location and size 
of the tumor, and the experience of the 
radiologist, etc. For example, recent studies 
indicate that the sensitivity of mammography 
increases with age at diagnosis (Shapiro, et. al., 
1988; Miller, et. al., 1992a, 1992b), attributable 
to the fact that breast tissue tends to be more 
dense and fibrous in younger women, and more 
soft and fatty in older women (Kerlikowske, et. 
al., 1996).  

There is great interest in determining the 
properties of the sensitivity, the sojourn time 
distribution and the transition probability density 
function into the preclinical state. Much work 
has been done in this area (Shen & Zelen, 1999; 
Shen, et. al., 2001; Wu, et. al., 2005). The 
research is still ongoing because many 
researchers are trying to explore how age or 
hormone changes may affect the sensitivity, the 
sojourn time, and the transition probability. One 
of the common features in the research is to 
derive the correct likelihood function and to 
propose correct age effect (or hormone effect) 
functions based on the stochastic model and the 
screening data. However, it is imperative to 
validate the reliability of the likelihood function 
and the associated effect functions before these 
can be applied to real data. This validation may 
be accomplished through simulation, which has 
become an acceptable procedure to check that 
the model fitting and the complex algorithms 
work well with this complicated likelihood. 

The remainder of the article is organized 
as follows. A generalized stochastic model and 
its likelihood function in a periodic cancer 
screening program is introduced, as well as the 
age-dependent sensitivity and transition 
probability density. The simulation procedure, 
the corresponding algorithm and results of 
applying it to a sample scenario are then 

presented. It will conclude with a discussion of 
the results of the research. 
 
The Model 
 Consider a cohort of initially 
asymptomatic individuals who enroll in a 
screening program. The sensitivity is denoted by 
β(t), where t is the individual’s age at the 
screening exam. Define w(t)dt as the probability 
of a transition from S0 to Sp during (t, t+dt). Let 
q(t) be the probability density function of the 
sojourn time in Sp. Finally, let 

,)()( ∫
∞

=
z

dxxqzQ  that is, Q(z) is the survivor 

function of the sojourn time in the preclinical 
state Sp. Throughout this article, the time 
variable t represents the participating 
individual’s age. If random variables T and S are 
the duration times in S0 and Sp respectively, then 
an individual will enter the clinical state Sc at 
age T+S, the probability density function of T+S 
is  

∫ −=
t

dxxtqxwtI
0

)()()( , 

which is the observable incidence of clinical 
cases.  

Consider a cohort of women in the study 
group who are all aged t0 at study entry, and a 
protocol calls for K ordered screening 
examinations occur at ages 

,110 −<<< Kttt � where itti += 0 for annual 

screening exams. Define the i-th screening 
interval as the time interval between the i-th and 
the (i+1)-th screening exams ),,( 1 ii tt −  i=1,2,…, 

K-1. The i-th generation of individuals consists 
of those who enter Sp during this interval. The 0-
th generation includes all who enter Sp before 
the initial screening exam; let .01 ≡−t   

For each screening exam, let 
0,tin  be the 

total   number   of   individuals   in   this   cohort 
examined at the i-th screening; 

0,tis  is the 

number of cases detected at the i-th screening 
exam; and  

0,tir is the number of cases diagnosed 

in the clinical state Sc within the interval 
),( 1 ii tt − . The latter cases are called interval 

cases. 
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Let 
0,tkD  be the probability that an 

individual will be diagnosed at the k-th 
scheduled exam (at which her age is 

101 −+=− kttk ) given that she is already in the 

preclinical state. Let 
0,tkI  be the probability of 

being incident in the k-th screening interval. In 
Wu,  et. al., 2005, these two probabilities were 
derived as: 

0
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1 2
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The likelihood function for this cohort of women 
is 
 

, , , , , , ,0 0 0 0 0 0 0

0 0 0 0

0

, , , ,
1

( | )

(1 )k t k t k t k t k t k t k t
K s r s r n s r

k t k t k t k t
k

L t

D I D I
− −

=

⋅

= − −∏
                                                                     (1) 

   
The full likelihood for the study group across all 
ages is 

, , , , , , ,0 0 0 0 0 0 0

0 0 0 0
0

, , , ,
1

(1 )k t k t k t k t k t k t k t
K s r s r n s r

k t k t k t k t
t k

L

D I D I
− −

=
= − −∏∏

                     (2) 
The age effect was modeled in the sensitivity 
and the transition probability simultaneously in 
the following way. The sensitivity β is 
associated with age t by a logistic link, 
 

,
))(*exp(1

1
)(

10 ttbb
t

−−−+
=β  

Where t is the average age at entry in the whole 
study group. If )(,01 tb β> will be a monotone 
increasing function of age t. 

The transition probability density 
function w(t) is the instantaneous probability of 
a transition from S0 to Sp. The integral 

∫
∞

0
)( dttw represents a lifetime risk for a healthy 

female to transit into the preclinical state. 
According to the NCI’s SEER database (Ries et 
al. 2002), a woman’s lifetime risk of being 
diagnosed with breast cancer is 15.7%, which is 
less than a women’s lifetime risk of entering the 
preclinical disease state. Hence, 20% was 
chosen as a reasonable upper bound. The 
following was chosen 

  

}
2

)(log
exp{

2

2.0
)(

2

2

σ
µ

πσ
−−= t

t
tw , 

 
which is the pdf of lognormal(µ, σ2) multiplied 
by 20%. That is, w(t) is a sub-density function, 
where µ and σ2 are parameters to be estimated.  

The loglogistic distribution was adopted 
to model the sojourn time in the preclinical state, 

 

,0,
])(1[

)(
2

1

>
+

=
−

x
x

x
xq κ

κκ

ρ
ρκ

 

 
where x is the sojourn time, and κ and ρ are 
positive parameters, represent the scale and 
location in the loglogistic family. An advantage 
of this family over the exponential is that it has 
two parameters and is more robust in the tails. 
Another advantage of this family is that its 
relatively simple form achieved for the survivor 
function and the hazard function. Its first 
moment    can    be    calculated    directly   from  

.csc ⎟
⎠

⎞
⎜
⎝

⎛=
κ
π

ρκ
π

EX  

 
For the r-th moment to exist, r>κ is needed. 
For justifications on how these age effect 
functions are chosen, see Wu et. al., 2005. 
 
Simulation Procedure and Results 
 The purpose of the simulation is to 
check the reliability of the likelihood function as 
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screening sensitivity and transition probability 
are both age-independent. The key steps were 
summarized in the non-routine simulation study 
here. In fact, based on the steps here, one can 
explore other possible associated functions 
between age and sensitivity, age and transition 
density, age and sojourn time, etc. 

In the proposed model, there are six 
unknown parameters, that is, 

).,,,,,( 2
10 ρκσµθ bb=  Theoretically the 

parameters have a domain of either ),( ∞−∞  or 

),0( ∞ . The practical meaning of these 
parameters will limit them to a finite range. The 
range for each of them was identified as: 

50 0 << b , 2.02.0 1 <<− b , 5.45.3 << µ , 

10 2 << σ , 0.21.0 << ρ , and 51 << κ . For 
justifications of these ranges, see Wu, et. al., 
2005. 

This simulation consisted of two stages. 
First, age-dependent screening data based on 

input values of ),,,,,( 2
10 ρκσµθ bb=  were 

generated, assuming that initially there are about 
100,000 individuals in each age group from age 
40 to 64 who will take part in the periodic 
screening exams. For the input values of θ, the 

values for κσµ ,,,, 2
10 bb and ρ was randomly 

chosen from the valid range above. Second, the 

MLE θ̂  was computed from our likelihood 
function using the simulated data. This 
procedure was repeated n = 1,000 times, then the 
sample mean and the sample standard deviation 
of the MLE were collected, and were compared 
with the input values of θ. If the MLE is close to 
the true input value of θ, then our likelihood 
function and the age- dependent functions work 
well in the modeling. 

Here are more details in Step 1: Suppose 
there are M= 100,000 women who were born in 
the same year, and who will take part in the 
screening exam at age t0. Their duration time 
spent in the disease-free state (S0) and in the 
preclinical state (Sp) can be generated by the 
density functions w(t) and q(t) correspondingly. 
Since w(t) is a sub-density function, it is not 
obvious how to generate random variables 
directly from its density. The number of incident 
cases from disease-free into preclinical state age 

by age will be generated, using the probability 
w(t)dt which is binomially distributed. Then, for 
women in the preclinical state at age t, their 
incident time can be generated uniformly in (t, 
t+1). See Appendix for programming details. 

For details in Step 2: The log likelihood 
function can be implemented in C language. 
Then, taking the negative value of the log 
likelihood and calling the S-PLUS routine 
“nlminb” will provide a local minimum. This 
local minimum corresponds to a local maximum 
in the log likelihood. However, computer 
software has not been found that can find the 
global minimum (maximum) for a general 
function. To overcome this problem, the initial 
point of θ was chosen randomly and the 
procedure was repeated 5 times for each 
simulated data and find the global maximum. 

The simulation programming code, 
written in C++ and S-PLUS, is attached in the 
Appendix. It runs well in a PC environment. 
Eight simulation results are listed in Table 1. For 
each true value of θ, the sample mean and 
sample standard error (S.E.) of the MLE of θ 
from 1000 simulations are listed. The 
consistency between the sample mean of the 
MLE and the input parameters is clearly shown.  
 

Conclusion 
 

The purpose of this article is to provide a 
simulation procedure in periodic cancer 
screening trials, with the computer programming 
code in C++ and S-PLUS. A practical issue 
encountered in the simulation is that it is very 
time consuming when MLE was calculated from 
the simulated data. The procedure for each MLE 
calculation usually takes about 20 minutes if the 
code is written in S-PLUS, making it impractical  
to repeat the procedure for 1000 times. To 
decrease the computation time, the likelihood 
part was implemented in C++, which resulted in 
the whole 1000 simulation procedure finishing 
in two or three days. The simulation and 
programming code can be slightly modified to 
fit other age effect or hormone effect models as 
well. Hopefully this will help other researchers 
in this area to carry out their simulation studies. 
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For more details on how to combine C++ and S-
PLUS code, see S-PLUS manual. Current efforts 
are  in  transporting  this  procedure  to  run on a 
cluster of Linux workstations. If this effort is 
successful, the simulation time will be shortened 
to a few hours.  
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Supervised classification into c mutually exclusive classes based on n binary features is considered. The 
only information available is an n×c table with probabilities. Knowing that the best d features are not the 
d best, simulations were run for 4 feature selection methods and an application to diagnosing BSE in 
cattle and Scrapie in sheep is presented.  
 
Key words: Feature selection, classification, independent features, binary features, veterinary medicine. 
 
 

Introduction 
 
Consider the differential diagnosis of BSE in 
cattle based on the probabilistic description of 
BSE and 56 alternative diseases with similar 
symptoms. There are many possible disease-
related signs that may be observed as 
present/absent on an animal. For example, over 
240 signs related to BSE and the 56 other 
diagnoses can be listed (Brightling et al., 1996; 
White, 1984). To build a diagnostic system, a 
data set is needed with observations for a 
number of cattle with their verified diagnoses. In 
the lack of such a data set, one must rely on 
estimates of the individual class-conditional 
probabilities that sign xi is present, given disease 
ωj,  where  },...,2,1{ ni ∈   and  },...,2,1{ cj ∈ .  
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The information available in this problem is 
organized as shown in Table 1. 
 
Table 1. Class-conditional probabilities for the 
individual features (the only information 
available) 
 

 ω1 ... ωi ... ωc 
x1 

… 
 …  

xk … )|1( ikxP ω=  … 

… 
xn 

 …  

 
 
 It is unrealistic to     expect     that      a     
system      based on these probabilities will fare 
well in practice because no relationship between 
the diagnostic signs (features) has been taken 
into account. In an ideal scenario, a data set will 
be collected using all features and the 
relationships between the features will be 
estimated from it. In reality, measuring only a 
small number of relevant features may be 
feasible. 

The goal is to select d features (d < n), 
which form a subset with the smallest 
classification error. Denote by x the binary 
vector with the n features. The features are 
assumed to be conditionally independent, that is, 

∏
=

=
n

i
jij xPP

1

)|()|( ωωx                       (1)                     
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The assumption of independence is 
enforced upon this study because only (some 
estimates of) the individual class-conditional 
probabilities are available. Pattern recognition 
literature in the 1970s abounds with analyses of 
the case of independent binary features. Perhaps 
the most curious result is due to Toussaint 
(1971). If there are three independent binary 
features, the best combination of two features 
may not include the single best feature. Thus, 
the most desirable selection criterion – the 
probability of error – will not guarantee the 
optimal solution if applied in a stepwise manner 
as in stepwise linear regression.  

In this article, four procedures for 
selecting a subset of features are examined and 
the results are compared with those obtained 
with the whole feature set. The feature selection 
methods are illustrated on two problems taken 
from veterinary medicine: differential diagnosis 
of BSE in cattle and Scrapie in sheep. 

 
Methodology 

 
Feature selection is one of the oldest topics in 
pattern recognition and machine learning 
(Stearns, 1976; Van Campenhout, 1982; Jain 
and Chandrasekaran, 1982; Patrick, 1972). 
Surveys on more recent state-of-the-art and 
comparisons between feature selection 
procedures can be found in (Dash & Liu, 1997; 
Blum & Langley, 1997; Jain & Zongker, 1997; 
Aha & Bankert, 1995).  
 
Evaluation of the Feature Subsets 

The most intuitive measure of quality of 
a feature subset is the error of a classifier built 
on these features. In theory, one can calculate 
the error under the assumption that the 
probabilities are equal to their expert estimates. 
The optimal classifier for independent features is 
the Naïve Bayes classifier. Denote by Pj the 
prior probability for class ωj. Let x = [x1,…,xn]

T 
be a binary vector to be labeled into one of the c 
mutually exclusive classes. A discriminant 
function is calculated for each class, 

  

1

( ) ( | )

( | ),   1, ...,

j j j

n

j i j
i

P P

P P x j c

µ ω

ω
=

=

= =∏

x x

   (2)       

 
x is labeled in the class with the largest 
discriminant value. There are 2d possible binary 
vectors x for a candidate subset S with d 
features. The (probability for the) minimum 
classification error for the subset can be 
calculated as  

( , error)

 = 1 max ( | )

e

j i j
j

i S

P P

P P x ω
∈

=

⎡ ⎤− ⎢ ⎥
⎣ ⎦

∑

∑ ∏
x

x

x

             (3) 

Equation (3) shows the difficulty in calculating 
the error for large d. Every x must be visited to 
decide which class label to assign to it. There are 
indirect criteria related to the error which may 
be faster to calculate, but direct calculation of 
the error in some form is preferable (Dash & 
Liu, 1997). Monte Carlo simulations were 
chosen for estimating the error of the selected 
feature subset. The probabilities for each class 
were available and it was therefore possible to 
generate randomly a sample from each class 
with n independent features. Using the selected 
feature subset, the Naïve Bayes classifier was 
applied for the objects in this sample.  
 
The Single-Best Method (SB) 

It is known that the individually best d 
features do not necessarily form the best subset 
of d features (Toussaint, 1971). Nonetheless, the 
method is quick and sometimes surprisingly 
efficient. The error for each feature is calculated 
separately using (3) (note that there are only two 
possible x’s for each feature: present or absent), 
the errors are sorted in ascending order and the 
top d features are retained. In this method, one 
can pick a desired value for d. 

The complexity of a feature selection 
algorithm is typically measured by the number 
of calculations of the classification error needed 
to select d out of n features. Thus the single-best 
method needs just n evaluations regardless of the 
number d.  
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Sequential Forward Selection (SFS) 
This is the method traditionally used in 

stepwise regression. To start, there is an empty 
set, S, of chosen features. Each feature must be 
evaluated separately as in the single-best method 
and the best individual feature is placed in S. At 
the next step, all pairs of features which contain 
the feature selected already and one other feature 
are evaluated. The pair with the smallest error is 
retained as S. Then, one must check all triples of 
features, and so on, until the desired cardinality 
d of S is reached. This procedure does not 
guarantee finding the optimal set of d features 
even in this simple case of independent binary 
features. The reason for this can be explained 
again with the Toussaint’s counter example: the 
best set of two does not necessarily contain the 
single best feature.  

Below, an example illustrating both the 
non-optimality of the sequential feature selection 
(SFS) and the calculation of the error though 
equation (3) is shown. 

Consider three features, x1, x2, and x3, 
and two classes, Ω ={ω1, ω2}. The non-
traditional data considered in this study is given 
in the form of probability estimates 

)|1( jixP ω= , as shown in Table 2. 

 
Table 2. An example of a set of probabilities for 
3 features and 2 classes 
 

 ω1 ω2 
x1 0.1 0.5 
x2 0.6 0.1 
x3 0.8 0.4 

 
Denote )|1( 1ω== kxPa  and 

)|1( 2ω== kxPb  for some xk. Assuming 

equal prior probabilities for the two classes, the 
probability of correct classification for feature xk 
is  

 
{ })1,1max(),max(21)( babakP −−+=     (4)  

 
Using (4), the individual errors for the features 
are  ε1  =  1 – ½ [max (.1,.5) + max (.9,.5)]  =  0.30,  
ε2 = 0.25 , and ε2 = 0.30 . Consider a pair of 
features, (xk,xj), and denote the probabilities for 

xj as )|1( 1ω== jxPp  and 

)|1( 2ω== jxPq . Substituting again in 

equation (3), the probability of correct 
classification for the pair of features is  
 

{

}

( , ) 1 2 max( , )

max[(1 ) , (1 ) ]

max[ (1 ), (1 )]

max[(1 )(1 ),(1 )(1 )]

P k j a p bq

a p b q

a p b q

a p b q

=
+ − −
+ − −
+ − − − −

            (5) 

 
The errors for the three pairs of features 

for the example in Table 2 are 
 

ε12 = 1–½(max(.1×.6,.5×.1) 
+  max(.9×.6,.5×.1) 
+  max(.1×.4,.5×.9) 
+  max(.9×.4,.5×.9)) 

     = 0.25, 
 
ε13 = 0.24, and ε23 = 0.25. 

 
As ε13 is the smallest pair-wise error, 

and ε2 is the smallest individual error, the best 
pair of independent features, (x1,x3), does not 
include the single best feature x2. 

SFS is probably the most widely used 
procedure because it has both reasonable error 
and reasonable complexity for “traditional” data 
sets (Aha & Bankert, 1995; Jain & Zongker, 
1997).  

At the first step, SFS evaluates all n 
features, at the second step, n-1 evaluations are 
needed as there are n-1 possible pairs. For 
selecting d features, SFS needs the following 
number of evaluations of the error 

 

∑
−

=
−

1

0

)(
d

i

in                                     (6) 

 
However, the complexity calculation is not that 
simple when the features from probabilistic data  
 
as shown in Table 1 are selected. For the 
calculation of the theoretical error, the algorithm 
has to visit every x in the possible feature space, 
find out which is the maximum discriminant 
function, and add the contribution of the error 
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for x based on the class label decision. The fact 
that the features are treated as independent does 
not make the task any easier. The complexity of 
SFS will depend heavily on the number of 
features in the evaluated subsets.  

Complexity of feature selection 
algorithms for probabilistic data can be 
evaluated by the total number of x’s visited in 
the process of selecting d out of the n features. 
The  complexity  for  the  single-best  method  is  
CSB = 2n, and for the SFS, 

∑
−

=
+−= 1

0

12)(
d

i

i
SFS inC . 

 
Class-Pairs Feature Selection (CP) 

Ji and Bang (2000) proposed the 
following feature selection method. A single 
feature is selected for each pair of classes.  

Table 3 shows the data structure used by 
the algorithm, where Cij = class pairs, ( i ≠ j ), xk 

= k-th feature, (k = 1,..,n), Pij(k) = discriminatory 
power of feature k for Cij. Using (4), the values 
of Pij(k) are calculated as the probability of 
correct classification between classes ωi and ωj 
for feature xk.   

 
Table 3. The table for the class-pairs method for 
feature selection (Ji and Bang, 2000). 
 

  Cij   
  …   

xk … Pij(k) … Tk 
  …   
  Eij   

 
 

The following values are then calculated 
 

• ∑=
k ijij kPE )( , the relative ease of 

classifying the pair Cij , and 

• ,)(∑=
ij ijk kPT the relative 

discriminatory power of feature xk.  
 

 
 
 
 
 

The algorithm begins with an empty set 
of features. The class pair that is the hardest to 
discriminate (has the smallest Eij) is identified 
from the table. The feature with the highest 
discriminatory power for this pair is added to the 
subset, if not already selected. If more than one 
feature  has   the   highest  Pij(k)   in  the   chosen  
column, then the feature with the highest value 
of Tk is selected.. The hardest pair is removed 
from the table and the process continues with the 
next hardest pair of classes (Note that the classes 
are not removed altogether, only the column of 
the table is removed.). The process stops once 
all class pairs have been covered. 
 The maximum number of features this 
method will select is max{(c(c-1)/2, n}. 
However, Ji and Bang (2000) claim that the 
number selected will be much less than either of 
these. This method may also be restricted at any 
point to pick only d features. The complexity of 
the class-pair method (measured again by the 
total number of x’s visited) is CCP = c (c-1) n. 
This calculation reflects only the preparation 
phase  (setting  up  Table 3), and  does  not  take  
into account the actual procedure which 
constructs the feature subset. 
 
Feature-Pairs Feature Selection (FP) 

The selection methods considered above 
are either overly simplistic but scale well with n, 
c, and d (single-best) or they are 
computationally demanding but more accurate 
(SFS). Optimality of the selected feature subset 
is not guaranteed in any case. The class-pairs 
method is one possible method that scales well 
and may be accurate. Here, another method is 
proposed for feature selection from probabilities, 
called feature-pairs method.  

The process is started with an empty set 
of features. All pairs of features are evaluated 
and the best pair is added to the set. While the 
desired number of features is not reached, add 
the features from the next best pair which are not 
already among the selected features. Suppose 
that d-1 features are already in the set, and there  
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is a pair of features such that neither of the two 
members of the pair is in the set. One may either 
take both features and exit with d+1 features or 
randomly select one member of the pair to make   
up the total of d features in the set. The 
complexity of the feature-pairs method (using 
the number of visited x’s) is CFP = n (n-1). 

All four methods are based on a true 
calculation of the classification error plus some 
heuristic about how one forms the feature 
subset. The experimental results in the next 
section help to evaluate the assets and 
drawbacks of the four methods. 

 
Results 

 
A Small-Scale Simulation Study 

To include SFS in the comparisons, a 
relatively small example with n = 20 features 
was chosen and the number classes, c, was 
varied from 3 to 10. The number of selected 
features, d, was varied from 2 to 10. 

For each c, 50 random matrices of size 
20×c were generated from uniform random 
distribution. Each matrix represented the 
probabilities for the features and classes as 
shown in Table 1. For each such matrix and each 
d, the four feature selection algorithms were 
applied and the best subset of size d was found.  

To evaluate the selected subsets, a 
traditional data set was generated randomly for 
every pair (c,d). One hundred data points were 
generated from the distribution of each class and 
the Naïve Bayes classifier was used to label 
these points. The error was estimated as the 
percent mismatch with the true class label. 

An example of the simulation algorithm 
is given below. Consider the problem presented 
in Table 2. Suppose that Method X picked 
features (x1, x3). Set a misclassification counter 
to 0. The steps below are repeated 100 times for 
each class. 

(Step 1) Generate a data point from class 
ω1. To do this, pick a vector of 3 random 
numbers, one for each feature, e.g. [0.2736, 
0.9241, 0.7102]T. Compare this vector with the 
first column of Table 2 (corresponding to ω1). If 
the generated number for xi is smaller than the 
corresponding probability in the table, set xi to 1; 
else set xi to 0. For this example, the generated 
data point is x = [0, 0, 1]. 

(Step 2) Classify the data point using 
Naïve Bayes and only the chosen features. For 
this example (x_1=0, x_3=1), the two 
discriminant functions for x are 

  

10.0)4.05.0(21)(

36.0)8.09.0(21)(

2

1

=×=
=×=

x

x

µ
µ

 

 
(Step 3) Choose a class label by the 

maximum discriminant function and note 
whether there is a mismatch with the class label 
whose distribution is currently being used. In the 
example, label ω1 is chosen so the 
misclassification counter remains unchanged. 

Figure 1 shows the probability of error 
versus the number of selected features, d, for     
c = 10 classes. Each point on the figure is the 
average error over the 50 random matrices. 

As expected, SFS gives the lowest error. 
The single-best and the feature-pairs methods 
are approximately the same with a slight 
preference to feature-pairs, and the class-pairs 
method is the worst. For d=2 selected features, 
SFS is the second best method because feature 
pairs selects the true best pair features.  
   
Figure 1. Probability of error versus the number 
of selected features (n=20, c=10). 
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 Table 4 gives the classification error 
averaged across the 50 random matrices of 
probabilities for 2 and 10 selected features (out 
of 20), for c = 3,…, 10 classes. 
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Table 4. Classification error (in %) with 2 and 
10 features for c = 3,…, 10 classes. CP stands 
for class-pairs method, SB for the single-best 
method and FP for the feature-pairs method. 
 
(a) 

d = 2 selected features 
c CP SFS SB FP 
3 21.2 17.9 22.7 16.8 
4 40.1 31.7 36.1 30.3 
5 49.6 42.9 47.2 41.1 
6 57.9 51.0 54.2 49.4 
7 62.6 56.2 60.3 54.3 
8 67.5 61.3 64.3 59.4 
9 70.2 65.1 67.8 63.8 
10 72.8 67.8 70.6 66.8 

(b) 
d = 10 selected features 

c CP SFS SB FP 
3 14.4 4.2 4.4 4.5 
4 16.8 7.3 7.9 8.0 
5 16.1 9.8 10.8 11.2 
6 21.2 13.7 15.0 15.1 
7 25.0 15.5 17.2 17.3 
8 29.1 18.4 20.4 19.8 
9 31.2 20.8 23.0 22.8 
10 33.6 22.3 24.3 23.9 

 
 The results in Table 4 confirm the 
superiority of SFS for more than 2 features and 
it also shows that the class-pairs method gives 
the largest error. There is an interesting turn 
about the single-best and feature-pairs methods. 
For small number of classes (3 to 7) SB was 
slightly better whereas for larger number of 
classes (8 to 10) FP was the better of the two 
methods. This behavior is an indication that for 
larger scale problems FP may be the more 
accurate method. 
 
A Larger-Scale Simulation Study 

SFS was excluded from this experiment 
because of its large computational time. The 
same experiments, as in the previous section, 
were run with a total number of features n = 100 
and number of classes c = 50. The number of 
selected features was d ∈ {5, 10, 15,…, 50}. 
Figure 2 shows the error versus the number of 
selected features for SB, CP and FP.  The curves 
are close together but the errors for all d are  

related as EFP < ESB < ECP. The differences 
between EFP  and ESB are not statistically 
significant.  
 
Figure 2. Probability of error versus the number 
of selected features (n = 100, c = 50). 
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Figure 3 shows the histogram of the 50 

differences ESB – EFP for 50 and 25 selected 
features. For 50 features, ESB – EFP was positive 
in 64% of the runs, the same in 6% of the runs 
and negative in 30% of the runs. For 25 selected 
features, ESB – EFP was positive in 94% of the 
runs and negative in 6% of the runs. This 
suggests that there may be optimal ratios c:d:n 
for which FP is distinctly better than SB. 
 
Figure 3. Histograms of the 50 differences ESB – 
EFP for d = 50 selected features (a) and d = 25 
selected features (b). 
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The computational time ratio for the 

three methods was approximately CSB:CCP:CFP = 
1:8:23. 

The above simulations do not assume 
any relationship between the classes. The 
matrices are generated uniformly which means 
that the correlations between the columns will be  
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close to 0, as will be the correlations between 
the rows. In real problems, the class profiles will 
rarely  be  uncorrelated.  Below, the four 
methods are explored on two real diagnostic 
problems where only probabilistic data is 
available. 
 
An Application to Diagnosis of BSE in cattle 
and Scrapie in Sheep 
 The above feature selection methods 
were applied for selecting diagnostic signs in 
two problems coming from veterinary medicine. 

BSE and Scrapie are fatal neurodegene-
rative diseases. Both are notifiable diseases 
which have no known cure. There is currently no 
ante-mortem test for the diseases that can be 
used routinely in the field. Notifiable diseases 
have a major impact on human health, welfare 
and economics. There was a BSE epidemic in 
Britain in the 90’s and with the first ever BSE 
case diagnosed in the USA at the end of 2003, 
the problem of these diseases is global. 
Therefore, the recognition of the clinical 
presentations of the two diseases and the need to 
differentiate them from other diseases is 
important. In veterinary medicine, prevalence of 
disease, the conditional dependencies of clinical 
signs, and the sign frequencies within diseases 
are rarely, if ever available; demonstrating the 
need to work with probability data.  

Table 5 shows the results from the 
feature selection experiments with the BSE data. 
SFS was applied to select 10 of the 242 features 
and simulated data from the distributions of the 
57 classes. The three selection methods SB, CP, 
and FP, which have lower capacity  than SFS 
were run for d = 10 features too. The first 4 rows 
in Table 4 show the classification error for d = 
10.  
 Next, the class-pairs method was run 
letting it stop when all class pairs have been 
accounted for. CP selected a total of 58 features. 
Leaving SFS aside, the other two low-
complexity  methods   were  run  for 58 features. 
The classification error is displayed in rows 5-8 
in Table 5. Finally, the error with using all 
features was estimated as a tight lower bound on 
the classification error. 
 
 

 

Table 5. Results from feature selection on the 
BSE probabilities. 
 

Method (d) Error 
SFS (10) 0.4258 
SB (10) 0.6432 
CP (10) 0.5865 
FP (10) 0.5482 
CP (58) 0.0172 
SB (58) 0.0309 
FP (58) 0.0256 

ALL (242) 0.0049 
 
The results show that the closest rival to 

SFS for small number of features is the FP 
method proposed here. Contrary to the results in 
the previous section though, CP is better than 
SB. This shows that in real-life problems when 
there is dependency between the classes, CP 
may be a better solution than SB. When run all 
the way, CP provides the smallest classification 
error of the three low complexity methods 
followed by FP and then SB.  

Note the large differences between the 
error probabilities for small number of features. 
These differences strongly suggest that SFS 
should be applied as long as the computation 
time is acceptable. To illustrate the differences 
between the selected sets of features, Table 6 
shows the signs selected by SFS (a) and SB (b) 
in the order they entered the set. 
 The same pattern of experiments was 
repeated for the data containing the probabilities 
for Scrapie and 62 alternative diseases. Twelve 
features were selected by SFS. The 3 lower-
complexity methods were run for d = 12. The 
errors are shown in Table 7. The class-pairs 
method (CP) was run again until all class pairs 
were covered. The number of selected features 
was 77. SB and FP were then run for the same 
number of features. Table 7 ranks the feature 
selection methods exactly in the same way as 
Table 5. Again, the discrepancies with the 
simulation study in the previous sub-section can 
be attributed to the fact that the classes here are 
not independent. The CP method manages to 
capture some dependency between the classes 
and, if run all the way, it selects better subsets of 
features than SB and FP. Table 8 mirrors table 6 
by showing the signs selected for diagnosing 
Scrapie and the 63 alternative diseases.  



www.manaraa.com

KUNCHEVA, HOARE, & COCKCRAFT 535 

Table 6. Signs selected by SFS and SB for 
diagnosing BSE and 56 other diseases in cattle  
 
(a) Signs selected by SFS 
Gait abnormal, unspecified 
Circling in one direction 
Hypo-responsive to external stimuli 
Milk yield less than normal (individual) 
Rumen rate nil, (0 per 2min) 
Eye menace response absent 
Hyper-responsive to external stimuli 
Dyspoena, unspecified 
Posture recumbency 
Temperature >39.5 degrees Celsius 
 
 
(b) Signs selected by SB 
Gait abnormal, unspecified 
Dyspoena, unspecified 
Dyspoena, rate increased shallow 
Diarrhoea, unspecified 
Gait uncoordinated\exaggerated 
Rumen rate slow (1 per 2min) 
Diarrhoea, acute, profuse 
Circling in one direction 
Gait stiff 
Head rotated, tilted or deviated 
 
 
 
Table 7. Results from feature selection on the 
Scrapie probabilities. 
 

Method (d) Error 
SFS (12) 0.5975 
SB (12) 0.7635 
CP (12) 0.6930 
FP (12) 0.6610 
CP (77) 0.0625 
SB (77) 0.0992 
FP (77) 0.0649 

ALL (285) 0.0252 
 

 
 
 
 

 
 

Table 8. Signs selected by SFS and SB for 
diagnosing Scrapie and 63 other diseases in 
sheep 
 
(a) Signs selected by SFS 
Foul odour skin 
Mastitis 
Exercise intolerance 
Paraparesis 
Weight Loss 
Generalized weakness 
Anorexia 
Generalized lameness or stiffness 
Ataxia 
Underweight, thin etc 
Dullness 
Reluctant to move 
 
(b) Signs selected by SB 
Foul odour skin 
Mastitis 
Matted \ dirty wool \ hair 
Moist skin\wool \hair 
Skin necrosis 
Exercise intolerance 
Hyperkeratosis 
Lymphadenopathy 
Alopecia 
Pruritus 
Weight loss 
Dullness 
 

 
Conclusion 

 
The problem of selecting a subset of n binary 
features to discriminate between c mutually 
exclusive classes was explored. The information 
available here is in the  form of an  n×c table 
with class-conditional probabilities    for    the    
n binary    features,  i.e., P(xi=1|ωj), i = 1,…,n, j 
= 1,…,c. Selecting the best subset of features 
seems    easy    because    all   the     probabilistic       
 
 
 
 
 
 



www.manaraa.com

SELECTION OF INDEPENDENT BINARY FEATURES USING PROBABILITIES 536 

information is available and the features are 
assumed to be independent. The difficulty comes 
from the complexity of the evaluation of the 
theoretical classification error for a subset of 
features. 
 An easy way out would be to generate a 
sample and run it through the Naïve Bayes 
classifier using only the features in the subset. 
Three methods were applied from the literature 
(SFS, SB and CP) and a method was proposed 
based on features pairs (FP) for feature selection 
using probabilities. It was found that SFS was 
the most accurate but also the most 
computationally demanding of the four methods. 
The simulation experiments with generated 
random distributions suggested that CP was 
inferior to SB and FP, but did not favor strongly 
any of SB or FP. The experiments with two real 
data matrices from veterinary medicine 
demonstrated that CP is also a valuable method 
when larger subsets of features are acceptable. 
FP was found to be the best alternative to SFS 
for small and medium subsets. 

There are at least two caveats that need 
to be mentioned. First, features are rarely 
independent in real life problems. By assuming 
independence, one runs the risk of missing an 
important feature which does not have a 
reasonable predictive value on its own, but is 
highly important in combination with others. 
However, in the absence of any further 
information, the independence assumption is the 
only option. Second, the estimates of the 
probabilities given as the information to work 
upon (Table 1) might not be very close to the 
true probabilities. A sensitivity study can be run 
by perturbing the probability estimates and 
observing how the selected feature subset 
changes.  

The acid test for the quality of the 
selected subset of features would be the error on 
real data. However, the aim of this study is a 
preliminary feature selection so that a real data 
set can be collected using these features. 
Therefore, at this stage, a reasonably large 
feature set should be provided. The hope is that 
highly discriminative combinations of features 
will be discovered within using systematically 
collected data. 
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Kim And Warde’s Mixed Randomized Response Technique For Complex Surveys  
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The randomized response (RR) technique introduced by Warner (1965) was found to be an effective 
method for reducing answer bias and ensuring better respondent cooperation in estimating the proportion 
of people in a community bearing a sensitive attribute. Chaudhuri (2001a, 2001b, 2002, 2003) extended 
Warner’s method and several other well-known RR devices to complex surveys adopting a varying 
probability sampling design. Kim and Warde (2004) proposed an RR model assuming that the sample is 
selected with simple random sampling (SRS) with replacement (SRSWR). Here, the method of estimation 
is presented when sample is chosen with varying selection probabilities and Kim and Warde’s RR 
procedure is applied for estimating a sensitive proportion. Also illustrated is a numerical example that 
unequal probability sampling performs better than SRS. 
 

Key words: Answer bias; randomized response; sensitive attribute; simple random sampling; varying 
probability sampling 

 

 
Introduction 

 
Warner (1965) proposed a method called 
randomized response (RR) to ensure better 
respondent cooperation and honest responses in 
surveys involving collection of information on 
certain sensitive attributes. It has been found that 
Warner’s technique is capable of reducing 
answer bias and refusals considerably in surveys 
where a question of sensitive nature is involved. 
This method has been studied extensively and as 
a consequence, numerous modifications of it as 
well as several other methods have emerged in 
the literature of RR. Among many others, 
Horvitz et al. (1967), Greenberg et al. (1969), 
Kuk (1990), Christofides (2003), Mangat and 
Singh (1990) made notable contributions.  

Most of the works cited here have been 
done assuming that the sample is selected with 
simple random sampling (SRS) with 
replacement (SRSWR). But in practice, in the 
socio-economic surveys, the respondents are 
usually   selected     with     varying    probability  
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sampling. Thus, to meet the demand of the 
social surveys, Chaudhuri (2001a, 2001b, 2002, 
2004) extended some of the RR procedures to 
complex survey situations. 

Most of the works cited here have been 
done assuming that the sample is selected with 
simple random sampling (SRS) with 
replacement (SRSWR). But in practice, in the 
socio-economic surveys, the respondents are 
usually selected with varying probability 
sampling. Thus, to meet the demand of the 
social surveys, Chaudhuri (2001a, 2001b, 2002, 
2004) extended some of the RR procedures to 
complex survey situations. 
 Kim and Warde (2005) proposed a 
mixed RR model in an attempt to improve 
Moors (1971) model after taking due 
consideration of the inherent privacy problem of 
Moors (1971) RR device. They have also 
discussed how their method may be applied 
when stratified sampling design is used. But the 
entire development of Kim and Warde (2005) is 
based on the assumption that the sample is 
selected with SRSWR. Since in large-scale 
sample surveys equal probability sampling is 
rarely used, necessary modifications need to be 
developed for adopting this method to complex 
sample surveys where varying probability 
sampling designs are often used. Here, Kim and 
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Warde’s (2005) procedure is presented when a 
varying probability sampling design is adopted 
rather than SRSWR.  As well, a numerical 
illustration of the performance of the extended 
procedure under varying and equal probability 
sampling is presented.  
 
Kim and Warde’s (2005) Device in Complex 
Surveys 
 Kim and Warde’s (2005) method for 
complex surveys is described in section 2. A 
numerical study for comparing the relative 
performances is reported in section 3. 
 Let ( )NiU ���� ,,,1=  be a finite 
population of N individuals and yi be the value 
of a variable of interest, say, y on the ith 
individual such that yi = 1 if i bears a sensitive 
attribute A =  0 if i bears the complementary 
attribute AC. The problem is to estimate the 
proportion of people in U bearing the character 

A, i.e., NYNy
N

i
iA =
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
= ∑

=1

π  where 

∑
=

=
N

i
iyY

1

on choosing a sample, say, s of size n 

from U according to any arbitrary sampling 
design p. 
 It is also assumed that xi be the value of 
a variable x on the ith individual in U such that 
xi  =  1  if   i   bears   a    non-sensitive    attribute  
B  =  0 if i bears BC , the complement of  B. Kim 
and Warde (2004) proposed a method for 
estimating Aπ when a sample of size n is drawn 
from U by SRSWR. However, in this article it is 
assumed that instead of selecting the individuals 
by SRSWR only, they are chosen following any 
arbitrary sampling design p. 
 In Kim and Warde’s (2005) device 
every sampled person is requested to answer a 
direct question about his/her possession of a 
non-stigmatizing or innocuous character, say, B 
and on receiving a ‘yes’ reply to this non-
sensitive question the individual is instructed to 
use an RR device R1 where a pack of cards 
marked A and B in proportions 

10),1(: 111 <<− ppp  is kept. The respondent is 
then requested to draw a card at random from 
this pack, unnoticed by the interviewer and to 
report the true value of y or x according as A-

marked or B-marked card is drawn. If a 
respondent answers ‘no’ to the initial direct 
question, he/she is requested to go to another RR 
device, R2, in which there is another pack of 
cards marked A and AC in proportions 

21,10),1(: 2222 ≠<<− pppp . The respondent 
is then instructed to choose a card randomly 
from this pack and to report the true value of y, 
i.e., either ‘1’ or ‘0’, if there is a match 
(mismatch) between his/her true y character and 
the card type drawn. Here, it is assumed that the 
sensitive and the innocuous questions are 
unrelated and also that the RR devices R1 and R2 
are independent. 
 Suppose that out of the n selected 
persons n1 reply ‘yes’ to the direct question and 
the remaining 12 nnn −= persons provided a ‘no’ 
answer to it. Now, the following are defined: 
 

Ii = 1 if the ith selected individual bears the 
sensitive character and draws an A – 
marked card or if the individual bears the 
non-sensitive character and chooses a B – 
marked card 

= 0 else on using R1. 

Then ( ) 1pyIP ii ==  and ( ) 11 pxIP ii −==  and 
writing RR VE ,  as the expectation and variance 
operators with respect to any arbitrary RR 
device it is easy to check that, 

( ) iiiR xpypIE )1( 11 −+=  

)1( 11 pyp i −+= . 

 This is because a respondent using the 
device R1 has already responded ‘yes’ to the 
initial direct innocuous question. Thus, it 
follows that for 

[ ] 10,)1( 111 <<−−= pppIr ii , ( ) UiyrE iiR ∈∀= ,  

and           

( ) ( )
i

iiR
iR V

p

yp

p

IV
rV 1

1

2

2
1

)1)(1( =−−== . 

 It may be seen that ir  is an unbiased 
estimator for yi and also an unbiased estimator 

for V1i is given by 
1

2

1
)1)(1(

p

rp
v i

i
−−= . Further, 
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let Ji = 1 if ith selected individual bears the 
sensitive attribute A and draws an A-marked card  
= 0 else, on applying R2. Then, 

( ) 2pyJP ii ==  and  ( ) 211 pyJP ii −=−=  

and  

( ) 2 2 2 2(1 )(1 ) (2 1) (1 ),R i i i iE J p y p y p y p= + − − = − + −
( ) )1( 22 ppJV iR −= . 

 For [ ] 21,)12()1( 222 ≠−−−= pppJu ii , 
there is ( ) UiyuE iiR ∈∀= , and 

( ) ( )
( ) iiR V

p

pp
uV 22

2

22

12

1 =
−

−= , say. Thus, ui is also 

unbiased for yi and an unbiased estimator of V2i 
is given by ii Vv 22 = . 

 Let 1s  and 2s be respectively the sets of 
sampled individuals offering ‘yes’ and ‘no’ 
responses to the initial direct innocuous question 
such that sss =∪ 21  and write 

pp VE , respectively to denote the operators for 

expectation and variance with respect to the 
probability design p. Suppose that 

∑
=

=
N

i
iisisk yIbt

kk

1

 where )0(1=is k
I , if 

2,1),( =∉∈ kssi kk  and isk
b ’s are constants 

free of ( )NyyY ,,1 ����=  such that 
( ) UiIbE isisp kk

∈∀= ,1 be a homogeneous 

linear unbiased estimator for ∑
=

=
N

i
iyY

1

. The 

following is written as: 

( ) ∑∑
≠=

+=
ji

kijji

N

i
kiikp cyycytV

1

2  

where  

( ) 12 −= isispki kk
IbEc  

and 

( )( )11 −−= jsjsisispkij kkkk
IbIbEc  

and an unbiased estimator of ( ) 2,1, =ktV kp  as  

( ) ∑∑
≠=

+=
ji

ijsijsji

N

i
isisikp kkkk

IcyyIcytv
1

2  

where jsisijs kkk
III =  and ijsis kk

cc , are Y -free 

constants satisfying ( ) kiisisp cIcE
kk

=  and  

( ) kijijsijsp cIcE
kk

= , 2,1=k . 

Because yi’s are unascertainable, two unbiased 
estimators for Y based on s1 and s2 are obtained 

∑
∈

=
1

111
si

iisis rIbe  

and  

∑
∈

=
1

222
si

iisis uIbe  

and accordingly, two unbiased estimators for 
NYA =π  are given by  

Nee 11 =  and Nee 22 = . 

 Now, following Raj (1968) and Rao 
(1975), two unbiased estimators for ( )1eV  and 

( )2eV  are obtained as:  

( ) ( ) ∑
=

=
+=

N

i
iisisRYp vIbtvev

1
1111 11

 

( ) ( ) ( )∑
=

=
−+=
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i
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222 222

. 

 Since both e1 and e2 are unbiased 
estimators for Y, an unbiased estimator of Y 
based on e1 and e2 is given by 

2
2

1
1 e

n

n
e

n

n
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and   
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 Also, an unbiased estimator of Aπ is 

given by 2
2

1
1ˆ e

n

n
e

n

n
A +=π . Again, as the two 

RR devices are independent, unbiased variance 
estimators for ( )eV  are derived as  

( ) ( ) ( )21

2
2

11

2
1

1 ev
n

n
ev

n

n
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⎠
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and similarly, the unbiased estimators for ( )AV π̂  
are given by 
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A Numerical Example 
 Artificial data relating to a community 
of N = 129 individuals is considered.  As well, 
the problem of estimating the proportion of 
individuals evading income tax during the last 
financial year in the said community on 
choosing a sample of n = 37 individuals is 
considered. The individuals from this population 
were selected according to three different 
sampling schemes, namely, simple random 
sampling with replacement (SRSWR), simple 
random sampling without replacement 
(SRSWOR) and Rao-Hartley-Cochran (RHC, 
1962) sampling scheme as a representative of 
varying probability sampling. 
 Here, yi = 1(0) is defined if the ith 
individual evades (does not evade) income tax 
during the last financial year and xi = 1(0) if the 
ith individual prefers (does not prefer) football 
to basketball. The amount of expenditure 
incurred in a particular month in the household 
to which an individual belongs to is considered 
as the size-measure for selection of the 
individuals by RHC sampling strategy. 
 In the RHC scheme, first the population 
of N units is randomly divided into n random 
groups, the ith group having Ni units such that  
 

∑ =
n i NN , where ∑n

denotes the sum over 

the n random groups. Then, denoting 

iNiii aaA ++= ����

1
as the sum of the 

normed size-measures ai’s for the units 
belonging to the ith group, one unit is chosen 
from the ith group with a probability 
proportional to Ai divided by it’s a-value. This 
process is repeated for all the n groups. Now, 
writing for simplicity ),( ii ay as the ),( ay -value 
for the unit selected from the ith group, an 
unbiased estimator for Y is given by  
 

( ) in ii yaAt ∑=  

 
along with an unbiased variance estimator for 

)(tV  as 

∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

n
i

i
i t

a
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where  
 

( ) ( )∑∑ −−=
n in i NNNNB 222 . 

 
Here, yi’s are unknown and so are to be 
estimated. Suppose that wi be an unbiased 
estimator for yi and vi be an unbiased estimator 
for )( iR wV . Then, one may employ the unbiased 
estimator 
 

( ) in ii waAt ∑=  

 
for estimating Y and an unbiased variance 
estimator of )(eV , following Chaudhuri, 
Adhikary and Dihidar (2000) is given by 
 

∑
=

= +=
N

i
isisiWY

vIbtvev
1

)()(  

 
where ( )NwwW ,,1 ����= . Let e be any point 
estimator for the parameter θ  and v(e) be an 
unbiased estimator of V(e). Then, assuming 

( ) )(eve θδ −=  to be a standard normal 

deviate, the following two criteria are 
considered: 
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Table 1: Comparative performances of alternative procedures 

RHC SRSWOR SRSWR 

p1 p2 

Aπ̂  CV Length 
of CI Aπ̂  CV Length 

of CI Aπ̂  CV Length 
of CI 

n1 = 30           

0.98 0.47 0.65 11.4 0.366 0.40 16.9 0.264 0.59 18.5 0.265 

0.92 0.48 0.74 15.0 0.397 0.37 17.4 0.281 0.46 18.9 0.313 

0.93 0.76 0.68 14.9 0.475 0.32 17.3 0.276 0.40 18.1 0.315 

0.81 0.84 0.85 17.9 0.466 0.34 21.6 0.319 0.34 24.9 0.362 

0.89 0.68 0.65 16.4 0.491 0.32 19.4 0.290 0.42 22.1 0.327 

           

n1 = 25           

0.98 0.47 0.44 13.9 0.362 0.48 15.8 0.222 0.43 18.7 0.264 

0.92 0.48 0.43 17.1 0.351 0.41 19.7 0.253 0.44 20.8 0.273 

0.93 0.76 0.41 17.5 0.345 0.47 19.7 0.234 0.41 23.1 0.278 

0.81 0.84 0.49 19.7 0.375 0.39 23.9 0.294 0.38 26.8 0.332 

0.89 0.68 0.43 18.2 0.379 0.37 20.1 0.267 0.36 22.2 0.297 

           

n1 = 20           

0.98 0.47 0.33 15.1 0.282 0.35 18.9 0.217 0.32 20.3 0.242 

0.92 0.48 0.39 18.6 0.229 0.39 21.2 0.210 0.32 23.7 0.258 

0.93 0.76 0.32 19.4 0.260 0.31 22.6 0.235 0.30 24.6 0.260 

0.81 0.84 0.29 21.7 0.206 0.24 24.1 0.275 0.24 27.6 0.297 

0.89 0.68 0.27 21.6 0.257 0.36 24.2 0.230 0.30 26.8 0.267 

           

n1 = 15           

0.98 0.47 0.27 17.8 0.193 0.27 20.7 0.192 0.27 23.4 0.204 

0.92 0.48 0.28 20.7 0.237 0.20 24.7 0.217 0.26 27.4 0.217 

0.93 0.76 0.25 21.9 0.178 0.32 25.1 0.172 0.24 27.7 0.227 

0.81 0.84 0.20 23.2 0.162 0.17 27.5 0.246 0.17 29.7 0.261 

0.89 0.68 0.23 23.6 0.240 0.28 26.2 0.198 0.28 28.4 0.210 
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(i) the coefficient of variation (CV) 

defined as ( ) 100)( ×= eevCV ; 

and 
(ii) the length of the confidence 

intervals (CI’s) 

( ))(96.1,)(96.1 eveeve +−  given 

by )(96.12 ev×  

 
for comparing the relative performances of the 
alternative sampling procedures. 
 For the artificial population 

6202.0=Aπ . Table 1 outlines the performances 
of the alternative estimators for different choices 
of n1, p1 and p2. 

 
Conclusion 

 
Irrespective of the values of n1, SRSWOR 
performs better than SRSWR in terms of the two 
criteria for comparison considered here and the 
RHC scheme turns out to be the best sampling 
scheme in terms of the criterion CV. As the 
values of n1, i.e. the number of individuals 
replying ‘yes’ to the initial direct question 
increases, improvement in the efficiency level of 
the estimator is observed for all three sampling 
designs. 
 This implies that for producing efficient 
estimators by applying the method discussed 
above, one has to choose the direct innocuous 
question judiciously so that more numbers of 
interviewees answer ‘yes’ to the initial direct 
question. Thus, the extended method of 
estimation as discussed here may be effectively 
used in complex sample surveys for collection of 
information on sensitive attributes. 
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Nonparametric Pooling And Testing Of Preference Ratings For 
Full-Profile Conjoint Analysis Experiments 

 
         Rosa Arboretti G.           Marco Marozzi       Luigi Salmaso 
                  University of Ferrara                 University of Padua 
 
 
The problem of pooling customer preference ratings within a conjoint analysis experiment has been 
addressed. A method based on the nonparametric combination of rankings has been proposed to compete 
with the usual method based on the arithmetic mean. This method is nonparametric with respect to the 
underlying dependence structure and so no dependence model must be assumed. The two methods have 
been compared using Spearman’s rank correlation coefficient and related test. Moreover, a further 
nonparametric testing method has been considered and proposed; this method takes both correlation and 
distance between ranks into account. By means of a simulation study it has been shown that the NPC 
Ranking method performs better than the arithmetic mean. 
 
Key words: conjoint analysis, nonparametric inference, nonparametric combination, ranking. 
 
 

Introduction 
 
In recent years, there has been a growing level 
of competitiveness in the offer of products. 
From a company point of view, one of the 
conditions of competitive success is a product’s 
high level of correspondence to the varying 
requirements of the customer (Porter, 1998). 
Indeed, successful companies invest 
considerable resources and skills into planning 
and designing their products in order to 
incorporate the various requirements of 
customers into the product itself. The most 
competitive companies are currently those which 
use   approaches   and  instruments   designed  to  
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capture the so-called voice of customer (VOC). 
In order to do so, companies describe the 
product idea in terms which the customer can 
actually perceive. After its definition, the newly 
developed concept is tested by means of surveys 
in the field which aim to highlight which 
characteristics are most important to the 
customer and what his/her true intentions are in 
terms of purchasing/fruition. In this way, it is 
possible to modify the product concept before 
fully implementing it, in order to maximize 
adherence to the needs and expectations of 
potential customers by identifying specific 
segments of customers. The methods used are 
generally based on Conjoint Analysis (Dolan, 
1993; Gustafsson, Herrmann, & Huber, 2001).  

The term Conjoint Analysis refers to a 
set of predominantly statistical methodologies 
which aim to study customer choice models 
starting with opinions and preferences expressed 
by customers on various profiles of a product 
which is going to be developed. Even recent 
literature on such methodologies is rather 
fragmented and presents some critical elements, 
both in terms of the procedure for the definition 
of the survey design and in terms of the 
subsequent statistical analysis of gathered data 
(Gustafsson et al., 2001; Green, Krieger, & 
Wind, 2001). In particular, it should be noted 
that the arithmetic mean (whether weighted or 
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not) is mainly used for pooling preference 
ratings.  

One problem that may arise when 
customer preference ratings are averaged is the 
so-called majority fallacy (Moore, 1980). This 
problem occurs when the item chosen by the 
average customer is not the item chosen most 
often. For example, if half of the people like 
large cars and the other half like small ones, the 
average person would like medium-sized cars, 
even if no real person wants one. In this article, 
the problem of pooling preference ratings is 
addressed. In particular, the Nonparametric 
Combination of Rankings method (NPC 
Ranking; Lago & Pesarin, 2000; Arboretti, 
2003) is used and extended. A simulation study 
is performed to show that the NPC Ranking 
method performs generally better than the 
arithmetic mean. To this end, Spearman’s rank 
correlation coefficient is considered and a new 
nonparametric test Tp for ranking comparison is 
proposed. Furthermore, to study the power of 
Spearman’s Ts and Tp test in detecting ranking 
shifts, a further simulation study is performed. 
 
The pooling of preference ratings using the NPC 
Ranking methodology 
 In developing a new product/service a 
company may take K≥2 attributes (factors) with 
P1,P2, ...,PK values (levels) into consideration. 

Let ∏
=

=
K

k
kPM

1

 be the number of possible 

combinations of levels (treatments). For each 
treatment (product/service profile) a 
hypothetical dummy variable is defined as 
dmkp=1, if the level of factor k is p for treatment 
m, otherwise dmkp=0. It is assumed that 
customers assess the overall utility (worth) of a 
product/service by combining the separate utility 
value of each attribute. The additive model for 
total worth of profile m is therefore: 

m

K

k

P

p
mkpkpm

K

dvY ε+= ∑ ∑
= =1 1

, m=1, ..., M, 

where the coefficient vkp denotes the part-worth 
for level p of factor k and ε1, ..., εm are iid 
random residuals with 0 mean and σ2 variance. 
 The full-profile method of treatment 
presentation is considered. Each treatment is 
described on a profile card. Let us consider n 

customers who are asked to rate each of M 
profiles on a scale of 1 to 10. The problem of 
how to obtain this ranking, i.e. how to pool 
customer preferences, is addressed in the article. 
Let Xmi be the rate of profile m given by 
customer i (i=1, ..., n). Of course, if immi XX '> , 
then customer i rates profile m better than profile 
m’. In the literature this problem is solved by 

averaging customer ratings ∑
=

=
n

i
imm X

n
X

1

1
, 

m=1, ..., M, and profile m~  such that 

( )Mm XXX ,...,max 1~ =  is then the best profile 

MRmA =~  (first rank position), profile m̂  such 

that 
{ }

( )M
mmMi

m XXX ,...,max 1~,,...,1
ˆ

≠=
=  is the profile 

with the second rank position 1ˆ −= MRmA , and 
so on. For simplicity’s sake, it is assumed that 
there are no ties in ranking positions. 
 An alternative way to pool preferences 
is based on the NPC ranking method (Lago & 
Pesarin, 2000). The procedure consists of three 
steps. In the first step, a score for profile m is 
computed as follows: 
 

( )
1

5.0# '

+
+≥=

M

XX immi
miλ , 

 
where ( )immi XX '# ≥  indicates the rank 
transformation of Xmi. This step is repeated for 
each customer i and profile m. With respect to 
relative rank transformation ( ) MXX immi '# ≥  
of Xmi, 0.5 and 1 have been added respectively to 
the numerator and the denominator to obtain λmi 
varying in the open interval (0, 1). The reason 
for such corrections is merely computational, in 
order to avoid numerical problems with 
logarithmic transformations later on. Note that 
the scores λmi  
are one-to-one increasingly related with the 
ranks ( )immi XX '# ≥ . By considering λmis after 
the first step, it is straightforward to obtain a 
(partial) ranking of the M profiles for each 
customer, but it is the global profile rank that is 
of interest. 
 In the second step, the scores that 
customers have assigned to profile m are 
combined as follows: 
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( )∑
=

−−=
n

i
mimC

1

1ln λ . 

 
This step is repeated for the remaining M-1 
profiles and it performs a nonparametric 
combination of customers’ scores. In the last 
step, the (global) ranking for profile m is 

computed as ( )'#B m m mR C C= ≥ . Of course 

profile m~  with MRmB =~  is the first rank 

position profile, m̂  with 1ˆ −= MRmB  is the 
second one, and so on. 
 It should be noted that Fisher’s omnibus 
combining function is used in the second step. 
Other possible combining functions are Liptak’s 

( )∑
=

−Φ
n

i
mi

1

1 λ , where Φ is the cumulative 

distribution function of a standard normal 
distribution, Tippett’s 

{ }
( )mi

ni
λ

,...,1
max
∈

, the logistic 

function ∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−

n

i mi

mi

1 1
ln

λ
λ

 and the additive 

function ∑
=

n

i
mi

1

λ  (Lago & Pesarin, 2000). These 

combining functions (say ψ) satisfy three 
properties: 
 
(i) ψ is continuous in all λmi arguments; 
(ii) ψ is non-decreasing in each λmi 
argument: ( ) ( ),...'...,,......, mimi λψλψ ≥  if 

1'0 <<< mimi λλ  for whatever i∈{1, …, n}; 

(iii) ψ is symmetric with respect to 
permutations of the arguments: if u1, …, un is a 
permutation of 1, …, n then 

( ) ( )
nmumumnm λλψλλψ ,...,,...,

11 ≥ . 

  
 It should also be noted that a central 
feature of NPC Ranking is the possibility of 
assigning different degrees of importance to 
different types of customers. If the company 
developing the new product/service is more 
interested in a certain group of customers, it can 
assign them a weight of 0.5<w<1 (and weight 1-
w to the remaining ones). This weighted 
approach is taken into account in step two of the 

procedure by computing ( )∑
=

−−
n

i
miiw

1

1ln λ  

instead of ( )∑
=

−−
n

i
mi

1

1ln λ , where wi=w if 

customer i belongs to the group of interest and 
wi=1-w if he does not. It is straightforward to 
consider more than two weights. 
 
A comparison of preference pooling methods: 
Spearman’s Is and Ip indicators  
 To show that NPC Ranking generally 
performs better than the arithmetic mean in 
pooling preference ratings, a new indicator Ip is 
presented and Spearman’s rank correlation 
coefficient is also considered. Spearman’s well-
known correlation coefficient is defined as: 
 

( )
( )1

3

2
1

2

−

−
=
∑

=

MM

R
I

M

m
mm

s

π
, 

 
where Rm is the observed rank for profile m and 
πm is the reference rank. Is takes values in [0, 1] 
and small values of Is are associated with similar 
values of Rm and πm. Another indicator is 
considered: 
 

( )[ ]∑
<

++=
'

''' 1
mm

mmmmmmp hlkI , 

 
where 1' =mmK  when ( )( ) 0'' <−− mmmm RRππ  

otherwise 0' =mmK , 1'' −−= mmmml ππ  and 

1'' −−= mmmm RRh . 'mmK  takes into account 

whether or not the observed and reference 
rankings are coherent (i.e. positive correlated), 

'mml  ( 'mmh ) and it takes into account how far 
observed (reference) ranks are from each other. 
Values of Ip close to 0 indicate that the observed 
ranking is very similar to the reference ranking. 
It is straightforward to show that  
 

( )( )⎥⎦
⎤

⎢⎣

⎡ −−≤≤ 121
6

1
0 MMMI p  

and so 
 

 
( )[ ]

( )( )121

16
'

'''

−−

++∑
<

MMM

hlk
mm

mmmmmm

 takes values in [0, 1]. 
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 A simulation study has been performed. 
More precisely, a conjoint analysis experiment 
with three factors (I, II and III) each with two 
levels (+ and -) is considered. There are 23=8 
different profiles. It is assumed that the true 
profile ranking (reference ranking) is known. 
Consider table 1, where profile 8 is the best and 
profile 1 is the worst. Assume the eight profiles 
are presented to five customers. 
 
 

Table 1 Reference ranking of profiles 

Profile Factors 
Preference 

Rating 
 I II III  

1 - - - 1 
2 - - + 2 
3 - + - 3 
4 - + + 4 
5 + - - 5 
6 + - + 6 
7 + + - 7 
8 + + + 8 

 
 
 Customer profile ratings are simulated 
by adding to the reference ranking a random 
error taken from continuous distributions such as 
normal N(0,1), exponential exp(1), uniform 
U(0,1) and Cauchy Cau(0,1), and from discrete 
distributions such as binomial Bi(8,0.5) and 
Poisson P(1): Ymi=πm+εmi, where Ymi is the rate of 
profile m for customer i, µm is the reference 
rank/rate of profile m (πm=m) and εmi is the 
random error denoting the distance between Ymi 
and the reference value. [Ymi], m=1,…,8 and 
i=1,…,5 is a 8x5 matrix of real numbers. By 
computing the arithmetic mean or applying the 
NPC Ranking, two 8x1 vectors of ranks RA  or 

RB  are obtained. 1000 matrixes are randomly 
generated and 1000 pairs of vectors are then 

computed. Let )(c
A R  and )(c

B R  indicate the 
vector of ranks obtained by using the arithmetic  
 
 
 
 
 

mean and the NPC Ranking for simulation 
c(c=1,…,1000). Let ( )8,...,2,1'=π . In order to 
establish which of the two methods is better, 
Spearman’s Is and Ip indicators are computed. 

More precisely, the two methods are 
compared using the Ip indicator by computing 
 

( ) ( )( ) 1000,,#' )()( ππ c
Ap

c
BppAB RIRIQ ≤= , 

 
the proportion of simulations in which 

( )π,)(c
Bp RI  is less than or equal to ( )π,)(c

Ap RI . 

If this proportion is greater than 

( ) ( )( ) 1000,,#'' )()( ππ c
Bp

c
AppAB RIRIQ ≤= , then 

the NPC Ranking method is preferable because 
rankings obtained using this method are more 
similar to the reference ranking than those 
obtained using the arithmetic mean. It is worth 
noting that 1''' >+ pABpAB QQ  because the 

equalities are counted both in 'pABQ  and ''pABQ . 

A similar comparison is performed by 
considering the Is indicator and computing 

( ) ( )( ) 1000,,#' )()( ππ c
As

c
BssAB RIRIQ ≤=  and 

( ) ( )( ) 1000,,#'' )()( ππ c
Bs

c
AssAB RIRIQ ≤= . It is 

also of some interest to compare Ip and Is 
indicators themselves. To this end, 'ApsQ  , 

''ApsQ , 'BpsQ  and ''BpsQ  are computed as 

follows: 
 

( ) ( )( ) 1000,,#' )()( ππ c
As

c
ApAps RIRIQ ≤= , 

( ) ( )( ) 1000,,#'' )()( ππ c
Ap

c
AsAps RIRIQ ≤=  and 

( ) ( )( ) 1000,,#' )()( ππ c
Bs

c
BpBps RIRIQ ≤= , 

( ) ( )( ) 1000,,#'' )()( ππ c
Bp

c
BsBps RIRIQ ≤= . 

 
If ''' ApsAps QQ ≥  then Ip is better than Is when the 

average method is used. If ''' BpsBps QQ ≥  then Ip 

is better than Is when the NPC Ranking method 
is used. 
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As reported in table 2, NPC Ranking is 

better than the arithmetic mean for Exponential, 
Cauchy, Binomial and Poisson distributions, 
using both Ip and Is indicators. Only for normal 
and uniform distributions the arithmetic mean 
(as can be expected) is better than NPC Ranking. 
As regards indicator comparisons, Ip is clearly 
better than Is when the arithmetic mean is used 
as well as when NPC Ranking is used, because 

'ApsQ  and 'BpsQ  are greater than ''ApsQ  and 

''BpsQ  respectively, for all considered 

distributions. 
 In order to obtain further insight into Ip 
and Is indicator comparison, instead of reference 
ranking ( )8,7,6,5,4,3,2,1'=π , ranking 

( )8,7,5,4,6,3,2,1'=γ  has been considered in 

Monte Carlo simulations. The reference ranking 
is still π , but now random errors εmi are added 

to γ  and not to π . The power simulation study 

is set out as follows: indicators Is and Ip are 
considered as test statistics within a permutation 
framework, i.e.: 
 

( ) BIIT obs
ppp ≥= *#  

 
and  
 

( ) BIIT obs
sss ≥= *# , 

 
where *

pI  and *
sI  are obtained by a random 

permutation of the observed ranking, obs
pI  and 

obs
sI  are the values of indicators Is and Ip 

calculated by   comparing the   observed ranking  
 

 
 
with the reference ranking, and B is the number 
of all possible permutations in a 23 factorial 
design (i.e. 8!=40320 permutations). 
 Tables 3-5 report the results of the 
simulation study when errors are normal N(0,1), 
uniform U(0,1), exponential exp(1), Cauchy 
Cau(0,1), binomial Bi(8,0.5) and Poisson P(1). 
TsA and TsB (TpA and TpB) indicate that the test 
statistic used is in both cases Ts (Tp); although 
the global ranking is obtained either using the 
arithmetic mean (indicated by the subscript A) 
or the NPC method (indicated by the subscript 
B). Simulation results show that a global ranking 
obtained using the arithmetic mean allows both 
test statistics Ts and Tp to gain more power than 
when the global ranking is obtained using the 
NPC method, when the underlying error 
distribution is either normal or uniform. When 
the error distribution is binomial and Poisson, 
the power is very similar between the two global 
ranking procedures.  
 On the contrary, the power is greater for 
both Ts and Tp when the global ranking is 
obtained using the NPC method when the 
underlying error distribution is exponential or 
Cauchy. However, it is important to emphasize 
that both Ts and Tp tests are unbiased, because 
they indicate that the ranking under H1 is 
different with respect to the reference ranking, 
even when the nominal significance level is very 
small. Moreover, they are consistent tests (for 
more details see e.g. Pesarin 2001) 
 

Conclusion 
 

The problem of pooling customer preference 
ratings within a conjoint analysis experiment has  

 

Table 2 Simulation results 

Distribution 'pAB Q  ''pAB Q  'sAB Q  ''sAB Q  'ApsQ  ''Aps Q  'BpsQ  ''Bps Q  

Normal 0.531 0.771 0.526 0.772 1.000 0.076 1.000 0.125 
Exponential 0.650 0.447 0.592 0.461 0.996 0.015 0.991 0.021 

Uniform 0.441 0.757 0.439 0.758 1.000 0.109 1.000 0.017 
Cauchy 0.649 0.378 0.655 0.385 0.771 0.296 0.662 0.412 

Binomial 0.559 0.487 0.600 0.436 0.844 0.196 0.906 0.112 
Poisson 0.534 0.528 0.592 0.461 0.936 0.111 0.961 0.005  
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Table 3 Estimated power, normal and uniform error distributions 

  normal  uniform 
α  TsA TsB TpA TpB  TsA TsB TpA TpB 

0.010  0.030 0.032 0.032 0.038  0.163 0.135 0.163 0.135 
0.025  0.196 0.212 0.206 0.220  0.464 0.384 0.493 0.401 
0.050  0.716 0.634 0.728 0.672  0.776 0.656 0.795 0.672 
0.075  0.896 0.838 0.896 0.836  0.907 0.811 0.907 0.813 
0.100  0.956 0.886 0.958 0.888  0.943 0.870 0.948 0.878 
0.200  1.000 0.996 1.000 0.996  0.996 0.981 0.997 0.986 
0.300  1.000 1.000 1.000 1.000  0.999 0.994 0.999 0.995 
0.400  1.000 1.000 1.000 1.000  1.000 0.998 1.000 0.998 
0.500  1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000 
0.600  1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000 
0.700  1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000 
0.800  1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000 
0.900  1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000 
1.000  1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000 

 
 
 
 

Table 4 Estimated power, exponential and Cauchy error distributions 

  exponential  Cauchy 
α  TsA TsB TpA TpB  TsA TsB TpA TpB 

0.010  0.017 0.020 0.017 0.020  0.054 0.139 0.054 0.139 
0.025  0.051 0.053 0.062 0.059  0.224 0.392 0.238 0.413 
0.050  0.137 0.150 0.147 0.160  0.419 0.649 0.433 0.673 
0.075  0.218 0.220 0.220 0.221  0.537 0.805 0.538 0.806 
0.100  0.286 0.272 0.304 0.279  0.590 0.875 0.595 0.878 
0.200  0.525 0.480 0.558 0.504  0.738 0.968 0.743 0.975 
0.300  0.652 0.625 0.675 0.647  0.819 0.990 0.823 0.991 
0.400  0.772 0.751 0.774 0.755  0.892 0.996 0.889 0.996 
0.500  0.841 0.830 0.842 0.831  0.929 0.999 0.929 0.998 
0.600  0.898 0.883 0.902 0.895  0.955 1.000 0.959 1.000 
0.700  0.936 0.928 0.937 0.928  0.976 1.000 0.976 1.000 
0.800  0.963 0.962 0.964 0.964  0.990 1.000 0.989 1.000 
0.900  0.986 0.984 0.987 0.984  0.996 1.000 0.996 1.000 
1.000  1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000 
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been addressed. A nonparametric method based 
on the nonparametric combination of rankings 
has been proposed to compete with the 
traditional method based on the arithmetic mean. 
In order to compare these two methods, 
Spearman’s rank correlation coefficient has been 
considered. Moreover, a further nonparametric 
method has been considered and proposed. This 
method takes both correlation and distance 
between ranks into account. By means of a 
simulation study, it has been shown that the 
NPC Ranking method performs better than the 
arithmetic mean. 

The NPC Ranking procedure requires 
only one assumption in terms of variables, i.e. 
the inequality immi XX '≥  means that customer i 
rates profile m better than profile m’. It should 
also be noted that a central feature of NPC 
Ranking is the possibility of assigning different 
degrees of importance to different types of 
customers. 

Fisher’s omnibus combining function 
has been used. Other combining functions, such 
as Liptak’s, Tippett’s, the logistic and additive 
functions may also be used (for more details see 
Lago & Pesarin, 2000). 

 
 
 

 
 
 
A power simulation study showed that 

permutation tests based on Is and Ip statistics 
clearly indicate that the ranking under H1 is 
different with respect to the reference ranking, 
even when the nominal significance level, 
chosen for the comparison, is very small. 

Within a conjoint analysis experiment, 
practitioners should take the NPC Ranking 
method into account for the pooling of customer 
preference ratings. A computer program to 
perform the analysis is available at the website 
http://cmcs.unife.it. 
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Statistical Model And Estimation Of The Optimum Price 
For A Chain Of Price Setting Firms 
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A stochastic approach is used to model the economics of a chain of price setting firms. It is assumed that 
these firms have fixed capacities in their products, but random demands for their products. The optimum 
price, the optimum revenue, and the expected marginal revenue at a given price are investigated. The 
method of maximum likelihood is used to provide both point and confidence interval estimates. The 
coverage probabilities of confidence interval estimates based on a simulation study are presented. 
 
Key words: Asymptotic confidence interval; capacity; gamma distribution; marginal revenue; maximum 
 likelihood estimate (MLE); optimum revenue; Poisson distribution. 
 
 

Introduction 
 
Fixed capacity is very common in businesses. 
For example, an established hotel must operate 
with a fixed number of rooms; and an 
established restaurant has a fixed number of 
seats. While the capacity is fixed for many 
firms, the demand for their products is uncertain. 
By their very nature, the hotel and the restaurant 
cannot respond to the uncertain demand by 
inventory adjustments, nor for that matter, by 
using high priced resources to temporarily 
increase production when demand is high. The 
most important goal for these firms is to choose 
a price that maximizes their expected profits 
under random demand for a fixed capacity. 
Many authors have studied the problem of firm 
decision making when demand for the product is  
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uncertain. Epstein (1978) and Turnovsky (1973), 
provided the classic approach to the problem. 
Scott, Highfill, and Sattler (1988) and Balvers 
and Miller (1992) studied several production 
side questions such as the derived factor demand 
with capacity constraints. Flacco and Kroetch 
(1986) and Booth (1990), investigated the 
production levels and/or inventory adjustments 
in the decision making. 

In this article, it is assumed that these firms 
operate as monopolies and are risk neutral. It is 
also assumed that capacity is a strict upper 
bound on the provision of service and must be 
set before the demand is arriving. With these 
same assumptions, Scott, Sattler, and Highfill 
(1995) studied the optimum price for a single 
firm when the demand is random. Highfill, 
Quigg, Sattler, and Scott (2000) investigated the 
problem of capacity decision for a single firm 
when the product demand is uncertain. Here, a 
chain of price setting firms with random 
demands are considered and the optimum price 
and its estimation applicable to a population of 
firms is studied. There are two levels of 
uncertainty in the demand side now: one is the 
demand uncertainty for any given firm in the 
chain, the other is the demand uncertainty from 
firm to firm in the chain. Therefore, two 
statistical models are needed to model the 
demand at two different stages, one for a given 
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firm and the other for across the firms in the 
chain. 

A simple example of the kind of 
problem under consideration in this article is a 
chain of hotels which operates with the number 
of rooms as the strict upper bound for the 
service. The variability in demand will cause the 
hotels to experience excess capacity and excess 
demand. Both excesses will depend on the 
capacity of the firms and the probability 
distribution for the demand. The question 
answered in this article is, for a randomly 
selected hotel in the chain, how the price should 
be set and estimated so that the maximum profit 
can be achieved. 

In the following section, the statistical 
model is proposed and the optimum price is 
studied by assuming that all the parameters are 
known in the model. Also, the effect of capacity 
on the optimum price is considered. Next, the 
estimation for the model parameters is provided 
and asymptotic confidence intervals for the 
optimum price, the optimum revenue, and the 
expected marginal revenue at a given price are 
presented. 

It is convenient to use a chain of hotels 
as the economic reference of a chain of firms in 
this article. The results in this article apply to all 
businesses where capacity is a strict upper bound 
on the provision of service and the demand is 
random. 

 
The Model and the Optimum Price 

For a given hotel H in a chain of hotels, let 

HY |  be the number of people to rent a room. 
The uncertain number of people to rent a room is 
treated as a standard queuing problem with the 
quantity demanded a random variable distributed 
as Poisson whose mean is ,Hλ  i.e., 

,
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for  y=0,1,2,.... 
 

In order to model the demand variability 
from  hotel to  hotel in  the chain,  it  is  assumed 
that the population of demand mean Hλ  of HY |   
from the hotels follows a Gamma distribution 
with index α>0 and scale parameter θ>0, i.e., 

Hλ  is distributed according to the probability 
density function 
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It is also assumed that α is independent of price 
and θ is linearly and inversely related to unit 
price p, i.e., 
 

θ=a+bp, 
 
where a>0 and b<0 are two constants. 
  
 Let Y denote the number of people to 
rent a room from a hotel randomly sampled from 
the chain. The probability distribution of Y is 
then given by 
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for  y=0,1,2,.... 
  
 The distribution of Y is the well known 
negative binomial distribution when α is a 
positive integer. The index parameter α in the 
model allows for the flexibility to choose 
different densities in the Gamma family to 
model the demand variability across the hotels. 
Let αP  denote the probability of events instead 

of just P to indicate the dependence of the 
probabilities on the parameter α. Notice that 

,)|( bpaEEYEEY HH αααθλ +====  a>0, b<0. 
The expected number of people to rent a room 
from this randomly selected hotel in the chain is 
also linearly and inversely related to price p. 

Suppose that c is the capacity number of 
rooms in the hotel. Let X be the unit sales of the 
hotel. Then 
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,

⎩
⎨
⎧

>
≤

=
cYc

cYY
X  

 



www.manaraa.com

XIONG & ZHU 555 

Therefore  
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When the demand is random and the capacity is 
fixed, there are positive probabilities that excess 
demand (denoted by ED) and excess capacity 
(denoted by EC) occurs. It is straightforward to 
find the probability of excess demand and the 
probability of excess capacity as 
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respectively. Two integral representations of 
these probabilities and their derivatives are 
given, which will be used later in the article: 

dt
t

t
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=
c
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EDdP
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θ
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,
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c

c

cBd

ECdP
+

−

+
−= α

α

θα
θ

θ
                 (4)                                       

 

where B(α,β)=Γ(α)Γ(β)/Γ(α+β) is the Beta 
function. (1) and (2) can be obtained by using 
equation (6) and (7) from Highfill, Quigg, 
Sattler and Scott (2000) and applying Fubini’s 
Theorem for the exchange of integrals. (3) and 
(4) can be obtained by directly taking derivatives 
from (1) and (2), respectively. Combining (3) 
and (4) further gives 
 

.0
)()(1 =++

dp

EDdP
c

dp

ECdP ααθα                  (5)                     

 
The expected unit sales of the hotel is then  

 

( ) )(
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)1)...(1( EDcPxEX
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x

x
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x
αθ

θ
θ
ααα

α +=∑
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++
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).()(1 EDcPECP ααθα += +  

 
Therefore, the expected unit sales of the hotel 
contain two parts, one is the expected demand 
θα multiplied by the probability of excess 
capacity at index α+1, and the other is the 
capacity c multiplied by the probability of 
excess demand. 

For any hotel in the chain, the problem is to 
find the optimum price that maximizes the 
expected profit based on the fixed capacity. It is 
assumed that these hotels have a constant non-
stochastic marginal cost function. Therefore, as 
pointed out by Highfill, Quigg, Sattler and Scott 
(2000), the constant can be set at zero since the 
analysis is not materially affected by the choice 
of this constant (i.e., one can concentrate on the 
expected revenue). Let R be the revenue for a 
randomly selected hotel, i.e., R=Xp. The 
expected revenue is 

 
).()(1 EDpcPECPpER ααθα += +  

 
Therefore, the expected revenue of the 

hotel contains two parts too, one is the expected 
revenue for all demand multiplied by the 
probability of excess capacity at index α+1, the 
other is the revenue at capacity multiplied by the 
probability of excess demand. The following 
theorem gives the optimum price which 
maximizes the expected revenue. 
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Theorem 1  
 The optimum price *p  is the unique 
solution to the equation: 
 

.0)()()( 1 =++ + EDcPECPpb αααθα         (6)                                 

In addition, 
b

a
p

2
* −>  and 

.
2

lim *

b

a
pc −=∞→   Refer to the Appendix 

for the proof. 

Let .** bpa +=θ  Denote the optimum 
expected revenue, the probability of excess 
capacity and the probability of excess demand at 

optimum price *p  by ,*ER  )( *ECPα  and 

),( *EDPα  respectively. Recall that the 

expected demand is EY=α(a+bp) and the 
expected unit sales is 

).()(1 EDcPECPEX ααθα += +  It is always 

true that EX<EY, because X<Y. If the capacity is 
hypothetically infinity, then X= Y and 
ER=pα(a+bp). Therefore ER attains the 

maximum )4/(2 baα−  when price 

).2/( bap −=  Theorem 1 indicates that in real 
world business applications where the capacity c 
is always a finite number, the optimum price for 
the hotel is always larger than that in the limiting 
capacity situation, and the optimum revenue for 
the hotel is always smaller than that in the 
limiting capacity situation. But, as the capacity 
increases, the optimum price and the optimum 
revenue approach their limiting values 
respectively. 

Scott, Sattler and Highfill (1995) 
defined the expected marginal revenue (EMR) as 

./ dEXdEREMR =  The expected marginal 
revenue measures the change in expected 
revenue for a given change in expected unit 
sales. Notice that ).(/ 1 ECPbdpdEX += αα   

Therefore, 
 

/
dER dEX

EMR
dp dp

=  

)(

)()()(

1

1
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EDcPECPpb
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+ ++
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α
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αθα
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2

1 ECPb
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p

+

++=
α

α

α
 

 
As the capacity approaches infinity, )(EDPα  

approaches 0 and )(1 ECP +α  approaches 1. 

Therefore, the expected marginal revenue 
approaches the standard marginal revenue under 
linear demand. 

In order to understand the dependence 

of *p  on capacity c, the effect of an additional 

unit of capacity on the optimum price *p is 
analyzed. Suppose that the hotel capacity is 
increased from c to c+1. Assume that the 

optimum price is changed from *p  to ** pp ∆+  
and the optimum expected revenue is changed 
from *ER  to ** ERER ∆+  accordingly. The 
following theorem presents the effect of an 

additional unit of capacity on *p  and *ER . 
 
Theorem 2  
(1) There exists a constant C depending only on 

a and α such that if c>C then .0* <∆p  In 

addition, .0lim * =∆∞→ pc  

(2) 0* >∆ER  for every c≥1. In addition, 

.0lim * =∆∞→ ERc  Refer to the appendix for 

the proof. 
Theorem 2 indicates that the optimum 

price will decrease after the capacity increases to 
a certain level, but the drop in optimum price for 
each unit increase of capacity approaches 0 
when the capacity approaches infinity. On the 
other hand, when the capacity increases, there is 
always a positive probability that the extra unit 
will be taken by customers. Therefore, the 
optimum expected revenue will always increase. 
But the increase in the optimum revenue for 
each unit increase of capacity also approaches 0 
when the capacity approaches infinity. 
 
Estimation and Inference 

In the previous section, the optimum 
price and optimum revenue were discussed 
when all model parameters are assumed known. 
In this section, it is first assumed that the index 
parameter α is known in the model and the 
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estimate of the unknown parameters a and b is 
discussed using data collected from the hotels in 
the chain. Suppose that hotels operate 
independently and n hotels in the chain have 
been observed, resulting in the data 
( , , , ),i i i ip c x δ  i=1,2,...,n, where iii xcp ,,  are 

the price, the capacity, and the unit sales of the i-
th hotel, respectively, and 

 

1,
,

0,
i i

i
i i

y c

y c

≤⎧
δ = ⎨ >⎩

 

 
where yi is the demand of the i-th hotel. The 

maximum likelihood estimators for a and b 
maximize the likelihood function: 
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the maximum likelihood estimators of a and b 
solve the following system of equations: 
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0.=  
It is assumed that there are at least two different 
prices in the data and n is large enough so that 
not all iδ  are 0. Then, the maximum likelihood 

estimates uniquely exist. However, except for 
trivial situations, the solutions to the system 
cannot be found in a close form. But numerical 
methods as discussed in Press, Flannery, 
Teukolsky, and Vetterling (1986) such as 
Newton-Raphson method can be easily 
implemented to find the solutions. The symbols 

â  and b̂  are used to denote the maximum 
likelihood estimator for a and b, respectively. 
Let 
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These equations are obtained by using equation 
(3) in the previous section and 

,)()1( ii EDPE αδ =−  

iiii ECPXE )()( 1+= ααθδ ,  i=1,2,...,n. 

 
A randomly selected hotel from the 

chain is considered and the estimate for the 
optimum price and the optimum revenue for the 
hotel is given. Also, the expected marginal 
revenue at a given price p is estimated. Again, it 
is assumed that c is the capacity of the hotel and 

similar notations are used. Let  ),(** bapp =  
be the solution to 
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A direct application of the chain rule when 
taking the derivative from both sides of the 
equation gives 
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Applying the chain rule again,  
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where ap ∂∂ /*  and bp ∂∂ /*  are given by (7) 

and (8). Recall that at a given price p, the 

expected marginal revenue 
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is a function of a and b. Another application of 

the chain rule yields 
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where t stands for the transpose. Finally, let 
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be the MLE of 1−Σ . Let *,p̂  2σ̂  , ,ˆ *RE  ,ˆ 2δ  

RME ˆ , and τ̂  be the MLEs of ,, 2* σp  ER*, 

,2δ  EMR, and τ,  respectively. Since ,, 2* σp  

ER*, ,2δ  EMR, and τ are functions of a and b. 
Their MLEs are obtained by replacing a and b 

by â  and b̂  in their functions, respectively. 
For 0<γ<1, let Z be the standard normal 

distribution and 2/γz  be such that 

.2/)Pr( 2/ γγ =≥ zZ  The following theorem 

gives the confidence interval estimations for a, 

b, p*, ER*, and EMR.  
 
 
 
Theorem 3 
 If there exist two constants 1D  and 2D  

not dependent on n such that ,1Dpi <  

,01 >+ bDa  and 2Dci ≤  for i=1,2,...,n, then 

the following statements are correct (refer to the 
appendix for the proofs): 
 
(1) An asymptotic 100(1-γ)% confidence 

interval for a is ,ˆˆ '
112/ σγza ±  

 
(2) An asymptotic 100(1-γ)% confidence 

interval for b is '
222/ ˆˆ σγzb ± , 

 
(3) An asymptotic 100(1-γ)% confidence 

interval for  *p  is σγ ˆ*ˆ 2/zp ± , 
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(4) An asymptotic 100(1-γ)% confidence 

interval for *ER  is δγ
ˆˆ

2/
* zRE ± , 

 
(5) An asymptotic 100(1-γ)% confidence 
interval for EMR at a given price p is 

.ˆˆ
2/ τγzRME ±  

In the more realistic situation when none of 
parameter α, a and b are known, a stepwise 
procedure to find the maximum likelihood 
estimators of α, a and b is proposed. The 
traditional approach of maximizing a likelihood 
function is simply by setting the derivative of 
the likelihood function with respect to each 
parameter to 0 simultaneously and then solving 
the system of equations. This approach becomes 
very complicated in this case because the 
derivative of the likelihood function with respect 
to the index parameter α is rather complicated.  

It is proposed that the maximum 

likelihood estimators ( )ba ˆ,ˆ,α̂  should be 
obtained by first using the method described 
above to get the maximum likelihood estimators 

( )αâ  and ( )αb̂  for specified α values, and then 

combining with a search procedure to obtainα̂ , 
the value of α that 

maximizes ( ) ( )( )ααα baLaL ˆ,ˆ,)(max = . The 

simplex search method of Nelder and Mead 
(1965) has proved successful in many problems, 
particularly when there are not too many 
parameters present. Other search procedures 
such as those of Powell (1964) and Fletcher and 
Reeves (1964) are also widely used. After the 

maximum likelihood estimators ( )ba ˆ,ˆ,α̂  are 
obtained, Theorem 3 can still be used to obtain 
the asymptotic confidence intervals for model 
parameters when α is replaced byα̂ . These 
asymptotic confidence intervals are still valid 
based on the fact that α̂  is a strongly consistent 
estimator to α. 

 
 
 
 
 
 

Notice that all confidence intervals given by 
Theorem 3 are asymptotic confidence intervals 
whose coverage probability approaches 100(1-
γ)% when the sample size n approaches infinity. 
In order to assess how these confidence intervals 
perform with a limited sample size, a simulation 
study was carried out to compare the empirical 
coverage to the nominal coverage probability for 
a selected set of sample size n. The following 
values were chosen α=2, c=50, a=100, b=-1. For 
each selected sample size for X, one third of the 
sample comes from each unit price of p=40, 65, 
90. For a given unit price p, the one third of the 
sample for X are simulated by using the 
distribution of X as given in Section 2.  
 In order to generate these samples, 
random samples on the integer set {1, 2,...,51} 
based on the 51 probabilities of X from X=0 to 
X=50 as given in Section 2 are first generated 
using the random number generating function 
RANTBL from Statistical Analysis System 
(1999). One is then subtracted from the samples 
to give the random samples for X. Table 1 
presents the empirical coverage probability of 
the true parameter values. Each empirical 
coverage probability reported by Table 1 is 
computed from a simulation of 500 independent 
confidence intervals based on 500 independent 

samples of X for parameters a, b, ,, ** ERp  and 

EMR at p=60. The optimum price *p  as the 
solution to (6) is computed using the Newton-
Raphson method. All confidence intervals are 
computed based on Theorem 3 when the index 
parameter α is replaced by the maximum 
likelihood estimator α. The maximum likelihood 

estimators ( )ba ˆ,ˆ,α̂  are obtained by the stepwise 
procedure described above using the simplex 
search method of Nelder and Mead (1965) when 

( ) ( )( )ααα baLaL ˆ,ˆ,)(max =  is maximized. All 

the nominal confidence levels in Table 1 are 
95% (γ=5%). 
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Conclusion 

This article has proposed a two-stage statistical 
model to model the demand variability from a 
chain of price setting firms. The demand 
variability from within a firm is modeled by a 
Poisson distribution, and the demand variability 
from across the firms is modeled by a Gamma 
distribution. It was shown that the optimum 
price under a capacity constraint decreases after 
the capacity increases to a certain level. On the 
other hand, the optimum expected revenue 
increases when the capacity increases. The 
article also provides a stepwise procedure to find 
the maximum likelihood estimates of model 
parameters. The proposed method does not 
require taking the derivative of the likelihood 
function  with  respect to  the index parameter α.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

 
 
 
 
Asymptotic confidence   interval estimates   are 
developed for the optimum price, the optimum 
revenue, and the expected marginal revenue at a 
given price based on the asymptotic normality 
for the maximum likelihood estimates. A limited 
simulation study seems to suggest that a 
relatively large sample size (>100) is required 
for the asymptotic confidence intervals to 
achieve the nominal coverage probability. 
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Appendix 
 
Proof of Theorem 1 

 The optimum price *p  maximizes ER 

and therefore solves ,0/ =dpdER  i.e., 

 
)()( 1 ECPpb ++ ααθα  

dp

ECdP
pEDcP

)(
)( 1+++ α

α θα  

.0
)(

=+
dp

EDdP
pc α  

Thus, using equation (5) in Section 2, it is 

concluded that *p  satisfies the equation: 

.0)()()( 1 =++ + EDcPECPpb αααθα  

In addition, 

dp

ECdP
pbECPb

dp

ERd a )(
)(2 1

12

2
+

+ += αα α  

is negative by the fact that b<0 and equation (4). 

It then follows that *p  is the unique solution to 
(6). It is clear that the first term in (6) has to be 

negative to make (6) hold. Therefore, *p  

satisfies θα+pbα<0, i.e., ).2/(* bap −>  Since 

,1)(lim 1 =+∞→ ECPc α  it follows from (6) that 

0)(lim =+∞→ αθα pbc , i.e.,  

).2/(lim * bapc −=∞→  

 
Proof of Theorem 2 
 (1): For bap /0 −<<  and θ=a+bp, let 

).()()(),( 1 EDcPECPpb
dp

dER
cpf αααθα ++== +
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A direct application of equation (6) gives 

!(1 *) * 1
( *, 1)

( 1)...( ) *

* *
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αθ θ
α α θ

αθθ α α
θ θ
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+= − +
+ + +

 

where 

2
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α α θ

α α α θ
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+ +⎛ ⎞= ⎜ ⎟+ + ⎝ ⎠

+ + − ⎛ ⎞
⎜ ⎟++ ⎝ ⎠

∑

 

Replacing c by c+1 in equation (1) of Section 1, 
provides the following, 

* 2 * 1
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( 1)
( ) (1 )

1

[(1 ) ]
.

(1 )

c

c

c
I c

c

t
d t

t

α

α

α αθ θ

θ
θ

−

+

+ +

+ += +
+

+
+∫

 

For any 1>s>0, 
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,
1
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*
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+
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 by the fact 

that 
2

lim * a
c =∞→ θ  and .1

2/1
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+
+
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Because 

sdt
t

t
c

c

s
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+
+

++

+

∫ 1
)1(

])1[(
2*

1*1

αθ
θ

, 

it follows that 

dt
t

t
c

c

ss 2*

1*1

1 )1(

])1[(
lim ++

+

→ +
+

∫− αθ
θ

 =0, 

where the convergence is uniform on c. Thus, 
,0)(lim =∞→ cIc  which further implies that 

* * *

* *
lim ( )

1 1 1

0.
2

c

p b c
I c

c

a

a

θ α α α θ
θ θ

α

→∞

⎡ ⎤⎛ ⎞+ − +⎢ ⎥⎜ ⎟+ + +⎝ ⎠⎣ ⎦

= − <
+

 

Therefore, there exists a constant C depending 
on only a and α such that if c>C then 

.0)1,( * <+cpf  Because 0)1,( ** =+∆+ cppf  

and ,0/)1,( <+ dpcpdf  it follows that  

f(p,c+1)>0 when **0 ppp ∆+<<  and  

f(p,c+1)<0 when ./** bappp −<<∆+  Hence 

,*** ppp ∆+>  i.e., .0* <∆p  0lim * =∆∞→ pc  

follows from the fact that 

).2/(lim * bapc −=∞→  

 (2): For ,/0 bap −<<  let 

)].()([),( 1 EDcPECPpERcpg ααθα +== +  

Then 
           

),()1,( **** cpgcppgER −+∆+=∆  

( * *, 1) ( *, 1)

( *, 1) ( *, )

g p p c g p c

g p c g p c

= +∆ + − +
+ + −

. 
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0)1,()1,( *** >+−+∆+ cpgcppg  by the 

fact that ** pp ∆+  maximizes g(p,c+1) over p. 

0* >∆ER  follows from the fact that 

1

( *, 1) ( *, )

( 1)...( 1) *
* 0.

!(1 *) * 1

x

x c

g p c g p c

x
p

x α
α α α θ

θ θ
∞

= +

+ −

+ + − ⎛ ⎞= >⎜ ⎟+ +⎝ ⎠
∑

 

Finally, since )( *
1

2** ECPbpER +−= αα  and 

)(lim *
1 ECPc +∞→ α  =1, 0lim * =∆∞→ ERc  

follows from the fact that 

).4/(lim 2* baERc α−=∞→  

 
Proof of Theorem 3 
 The asymptotic normality is first given 

for the maximum likelihood estimator â( tb)ˆ  of 

a( tb)  (t=transpose). Notice that the data come 
from independent but not identically distributed 
distributions. Cox and Hinkley (1974) pointed 
out that the asymptotic normality for the MLEs 
of such distributions requires two conditions: 
one is a central limit theorem to 

( )tbLaL ∂∂∂∂ /ln/ln  with a nonsingular 
asymptotic distribution, the other is a weak law 
of large numbers to insure the convergence in 
probability of 
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to zero. 
 To prove a central limit theorem 

to ( )tbLaL ∂∂∂∂ /ln/ln , one only needs to 
do so for 
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careful computation using 
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Notice that in the above equation, two indices α 
and c were used in the notation ic ECP )(,α  to 

indicate the dependence of the probability on 
these two parameters. Since, for given 1t  and 

,2t  2

iTσ  is a positive continuous function of 

),( ciθ  when abDa i ≤≤+< θ10  and 

21 Dc ≤≤ , 2

iTσ  has a positive lower bound and 

a positive upper bound not dependent on i. Thus, 



www.manaraa.com

XIONG & ZHU 565 

2
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=  approaches infinity when n 

approaches infinity. Notice that iT  is bounded. 
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(i.e., the Lindeberg condition for iT  holds). This 

proves the central limit theorem for 
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follows from Theorem 6.2 of Billingsley (1986). 
Therefore, as n→∞,  
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is distributed as .,
0

0 1
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follow directly from the asymptotic normality of 

â  and b̂ , respectively. (3) follows from the fact 

that as ,∞→n  the MLE of ),(** bapp =  
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in distribution. (4) follows from the fact that as 
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in distribution. (5) follows from the fact that as  

,∞→n  the MLE of EMR  satisfies that 
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in distribution. 
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A Nonrigorous Approach Of Incorporating Sensitizing Rules Into 
Multivariate Control Charts 

 
Michael B.C. Khoo 

School of Mathematical Sciences 
                 Universiti Sains Malaysia 

 
 
Multivariate control charts are becoming more important in the monitoring of processes in manufacturing 
industries because the quality of a process is usually determined by several correlated variables (quality 
characteristics). The most popular multivariate process control procedure is based on the Hotelling   
control chart. It is used to monitor the mean vector of a process. A nonrigorous approach of using four 
sensitizing rules is introduced to improve the performance of a conventional Hotelling chart. The use of 

these rules on a conventional Hotelling  chart do not require a transformation of the 2T  statistics into 
normal random variables. Thus, the 2T  statistics incorporating these rules can be plotted on the same 
scale as they are plotted on a Hotelling chart. Numerous SAS and Mathematica programs are given to aid 
quality control practitioners in implementing these rules in real life problems. The aim of this article is to 
make the implementation of sensitizing rules appealing and user friendly to practitioners.  
 
Key Words: sensitizing rules; Hotelling; average run length (ARL); in-control; out-of-control (o.o.c.); 
 Markov chain; upper control limit (UCL) 
 
 

Introduction 
 
Since its inception (Hotelling, 1947), numerous 
extensions have been made to the conventional 
Hotelling 2T  chart. Tracy, Young and Mason 
(1992) discussed an exact method based on the 
beta distribution for constructing multivariate 
control limits at the start-up stage. Timm (1996) 
introduced the use of a single step and stepdown 
finite intersection test (FIT) to evaluate whether 
a multivariate process is in-control or out-of-
control. Runger (1996) discussed an approach 
based    on   projections,   which   simplifies   the 
construction and understanding of a multivariate 
Hotelling chart. A comparison of using various 
estimators of the covariance matrix for the 
Hotelling chart was made by Sullivan and 
Woodall (1996).  
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 Prins and Mader (1997) provided some 
interesting discussion on multivariate control 
charts for subgrouped data and individual 
observations. Key implementation and 
interpretation issues as well as assessing the 
problems that currently exist when using 
multivariate charts were examined by Mason, 
Champ, Tracy, Wierda and Young (1997). 
Aparisi (1997) proposed sampling plans for the 
multivariate 2T  control chart.  
 Various approaches in the identification 
of the problematic quality characteristics when 
the 2T  chart signals an o.o.c. are suggested in 
the literature. These include the works of 
Doganaksoy, Faltin and Tucker (1991), Holmes 
and Mergen (1995), Mason, Tracy and Young 
(1995; 1997), Runger, Alt and Montgomery 
(1996) and Nedumaran and Pignatiello (1998). 
Apley and Tsung (2002) investigated and 
provided guidelines for designing the 
autoregressive 2T  chart in the monitoring of 
univariate autocorrelated processes. The 
usefulness of the Hotelling 2T  statistic for the 
monitoring of batch processes in both Phase I 
and Phase II operations were shown in Mason, 
Chou and Young (2001). Vargas (2003) 
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suggested 2T  charts based on robust estimators 
of location and dispersion using minimum 
volume ellipsoid (MVE) estimators, which are 
effective in detecting any reasonable number of 
outliers.                     

Sensitizing rules are supplementary 
criteria that are used to increase the sensitivity of 
a univariate control chart to small process shifts 
so that assignable causes can be detected quicker 
(Montgomery, 2001). Nelson (1984) provided a 
good discussion of some of these rules. Champ 
and Woodall (1987) studied the ARL 
performances of a univariate Shewhart chart 
with various sensitizing rules and found that the 
use of these rules improve the ability of the chart 
to detect smaller shifts at the expense of the 
Type-I error. To overcome this problem, Klein 
(2000) introduced two alternative schemes to the 
X  chart, namely rules 2-of-2 and 2-of-3. The 
Type-I error of these two rules can be fixed by 
the user and then their respective limits are 
determined using a Markov chain approach.  

One fundamental requirement of using 
sensitizing rules on a control chart is that the 
consecutive statistics plotted on the chart must 
be normally distributed. This is aside from the 
independent and identically distributed (i.i.d.) 
assumption of the sequence of control chart 
statistics. To meet the normality requirement, 
Khoo and Quah (2003) and Kooh, Quah, and 
Low (2004), suggested an approach of 
transforming the Hotelling statistic into a 
standard normal random variable prior to the 
application of different sensitizing rules on a 
multivariate chart. Their suggestion by means of 
transformation allows the use of such rules on 
the Hotelling control chart. Though their 
suggestion is a useful contribution to 
multivariate quality control, it has increased the 
complexity of using a Hotelling chart to a 
certain extent, which may make the suggested 
approach less appealing to some practitioners.  

The main objective in this article is to 
solve the above problem by making the 
incorporation of sensitizing rules into a 
Hotelling chart user friendly so that quality 
control practitioners will find such 
enhancements useful in their work. Unlike the 
previous works of Khoo and Quah (2003) and 
Kooh, Quah, and Low (2004), the new approach 

suggested in this article does not require the 
transformation of a 2T  statistic into a standard 
normal random variable, hence it is referred to 
as a nonrigorous approach. Besides ease of 
implementation, another remarkable advantage 
of the new approach is that it allows the 2T  
statistics to be plotted on their original scale on a 
Hotelling control chart. Thus, the use of the 
conventional Hotelling chart can still be 
maintained by drawing additional limits on the 
chart for the sensitizing rule being implemented.  

SAS programs are provided for cases of 
µ and Σ known and unknown, involving both 
individual measurements and subgrouped data. 
Now, practitioners can easily compute the limits 
of each of the four rules by running the SAS 
programs after entering the desired values of the 
required parameters.  

 
The Conventional Hotelling 2T  Control Chart 

In the monitoring of a multivariate 
process where the data belong to individual 
observations and follow a multivariate normal 
distribution, i.e., iX  ∼ ( )Σµ,pN , i = 1, 2, …, 

the following 2T  statistics are used (Tracy, 
Young and Mason, 1992): 
 

2
iT  = ( ) ( )µΣµ −′− −

ii XX 1 , i = 1, 2, … .    (1) 
 
Here, 2

iT  ∼ 2
pχ  where p is the number of quality 

characteristics monitored simultaneously. For 
the case where both µ and Σ are unknown, the 
equation below which is given in Tracy, Young 
and Mason (1992) is used: 
 

2
fT = ( ) ( )mfmmf XXSXX −′− −1 , f = 1, 2,…. (2) 

 
It is shown in Tracy, Young and Mason (1992) 
that the exact distribution of 2

fT  is 2
fT  ∼ 

pmpF
pmm

mmp
−−

+−
,)(

)1)(1(
, where p is the number of 

quality characteristics, m is the size of the stable 
reference sample, mX  and mS  are estimates of 
the mean vector and covariance matrix from a 
stable reference sample of size m respectively. 

fX  in equation (2) denotes a future multivariate 
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normal ( )Σµ,pN  observation taken at time f, so 

that the state of a process at that time can be 
determined. 
 For subgrouped data, the test statistics 
plotted on the Hotelling 2T  chart are 
  

2
jT  = ( ) ( )µΣµ −′− −

jj XX 1n ,   j = 1, 2, …,   (3) 

 
where j is the subgroup number. It is assumed 
that the joint probability distribution of the p 
quality characteristics is the p-variate normal 
distribution. In equation (3), jX  is a p×1 vector 

of sample means for each of the p quality 
characteristics from a sample of size n, µ is a 
vector of in-control means for each of the p 
quality characteristics and Σ is the covariance 
matrix. It is noted in Montgomery (2001) that 

2
jT  ∼ 2

pχ . If both µ and Σ are unknown, the 

estimates of these parameters are X  and S 

respectively. Here, X  and S are the sample 
grand mean vector and the sample covariance 
matrix estimated from an in-control preliminary 
data set whose formulas are given in 
Montgomery (2001).  
 There are two phases of control chart 
usage, namely phase 1 and phase 2. Phase 1 is a 
stage where the chart is used for establishing 
control while in phase 2, the chart is used to 
monitor a future production. It is shown in 
Montgomery (2001) that in phase 1, 2

jT  ∼ 

1,1

)1)(1(
+−−+−−

−−
pmmnpF

pmmn

nmp
 and in phase 2, 2

jT  ∼  

 

1,1

)1)(1(
+−−+−−

−+
pmmnpF

pmmn

nmp
 where 

2
jT  = ( ) ( )XXSXX jj −

′
− −1n ,   j = 1, 2, …, (4)  

 
Note that the SAS programs given in the next 
section for the computation of the limits of the 

2T  chart based on the statistics in equation (4) 
incorporating the various rules are made for the 
case involving phase 2. 
 
 
 

Implementing Sensitizing Rules on the 
Conventional Hotelling 2T  Control Chart: A 
Nonrigorous Approach 
 To apply the sensitizing rules on the 
conventional Hotelling 2T  chart, first one needs 
to know the distribution of the 2T  statistics in 
equations (1) – (4). If the probability density 
function of the 2T  statistic is represented by f(t), 
then the upper control limit (UCL) of the various 
sensitizing rules can be determined by solving 
the following integral: 
 

∫
∞

=
 

 
)(

UCL
Apdttf .                       (5) 

 
Here, Ap , denotes the probability of a point 
plotting above the UCL. The following four 
rules will be considered: 
 
The 2-of-2 Rule ( IS ) 

This rule signals an out-of-control if two 
successive points plot above the UCL. For this 
rule, the in-control ARL )(ARL0  formula given 
by Khoo and Quah (2003) is  
 

20

1
ARL

g

g+= ,                                   (6) 

 
where g is the probability of a point falling 
above the UCL. The following Mathematica 4.0 
program can be used to calculate the probability, 
g, based on a fixed 0ARL  (denoted by ARL0 in 
Figure 1) value. 
 
Figure 1. A Mathematica program to compute g 
for rule IS  

                  
                  ARL0 = 

⎥
⎦

⎤
⎢
⎣

⎡
==+

gARL0,
g

g1
NSolve

2
 

 
 
 After obtaining the probability, g, 
equation (5) is used to compute the UCL of this 
rule. The SAS version 8.02 program in Figure 2 
is used to compute the UCL of this rule for the 

2T  chart based on the 2T  statistics in equations 
(1) and (3).  
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Figure 2. A SAS program to compute the UCL 
for the 2T  chart based on equations (1) and (3) 
   

 
Data EQ1and3; 
p= ; 
g= ; 
UCL=Cinv(1-g,p); 
run; 
proc print; 
run; 
 

 
 In Figure 2, UCL = Cinv (1-g, p), where 
Cinv (1-g, p) refers to the 1-g percentile of the 
chi-square distribution with p degrees of 
freedom. Here, the user needs to enter the 
desired values of g and p, where p refers to the 
number of quality characteristics. Note that this 
program can be used by practitioners to compute 
the UCL of the 2-of-2 rule for the 2T  chart of 
both individual measurements and subgrouped 
data when the standards µ and Σ are both 
known. 
 For the case of individual measurements 
when both µ and Σ are unknown and are 
estimated, the limit (UCL) of this rule for the 

2T  chart based on the distribution of the 2
fT  

statistics in equation (2), i.e., 2
fT  ∼ 

pmpF
pmm

mmp
−−

+−
,)(

)1)(1(
 is computed using the 

SAS program given in Figure 3.  
 

Figure 3. A SAS program to compute the UCL 
for the 2T  chart based on equation (2)   

 
Data EQ2; 
p= ; 
m= ; 
g= ; 
a=p; 
b=m-p; 
UCL=p*(m-
1)*(m+1)/(m*(m-
p))*Finv(1-g,a,b); 
run; 
proc print; 
run; 

 
 

The program shows UCL = 

b), a, gFinv(1
p)m(m

1)1)(mp(m −
−

+−
, where a = p 

and b = m−p. Note that “Finv (1−g, a, b)” is the 
1 – g percentile of the F distribution with 
parameters a and b. Here, the user needs to enter 
the values of p, m, and g in the program, where 
the notation m has been defined in the previous 
section. 
 Similarly, the limit of this rule for the 

2T  chart involving subgrouped data when the 
standard values of both µ and Σ are unknown, 
i.e., the case in equation (4), is calculated using 
the SAS program in Figure 4. This program 
deals with the case of monitoring a future 
production, which is also referred to as phase 2. 
 

Figure 4. A SAS program to compute the UCL 
for the 2T  chart based on equation (4)   

 
Data EQ4; 
p= ; 
m= ; 
n= ; 
g= ; 
a=p; 
b=m*n-m-p+1; 
UCL=p*(m+1)*(n-
1)/(m*n-m-
p+1)*Finv(1-g,a,b); 
run; 
proc print; 
run; 
 

 
The 2-of-3 Rule ( IIS ) 

An out-of-control signal is given by this 
rule if two of three successive points plot above 
the UCL. For this case, by solving the 
corresponding linear system given in Khoo and 
Quah (2003), the 0ARL  formula is found to be  

 

0ARL  = 
)2(

21
2

2

gg

gg

−
−+

                       (7) 

 
where g denotes the probability of a point falling 
above the UCL. Figure 5 provides a 
Mathematica 4.0 program for the computation of 
the probability g based on a fixed value of 
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0ARL .  
 
Figure 5. A Mathematica program to compute g 
for rule IIS  

 
ARL0 =  

⎥
⎦

⎤
⎢
⎣

⎡
==

−
−+

gARL0,
g)(2g

g2g1
NSolve

2

2

 

 
 
Equation (5) is used to compute the UCL once 
the value of g is obtained. The UCL of this rule 
for the 2T  chart based on the 2T  statistics in 
equations (1) and (3) can be computed using the 
SAS program in Figure 2 while that based on 
equations (2) and (4) are computed using the 
SAS programs shown in Figures (3) and (4) 
respectively. 
 
The Combined 1-of-1 and 2-of-2 Rules ( IIIS ) 

These combined rules signal an out-of-
control if either a point plots above UUCL  or 

two successive points plot between LUCL  and 

UUCL . The 0ARL  formula (Khoo, Quah and 
Low, 2004) is  

 

ghhg

g

++
+=

20

1
ARL                        (8) 

 
where g is the probability that a point falls 
between  LUCL  and UUCL  while  h  denotes the 

probability of a point plotting above UUCL . 
Figure 6 gives a graphical illustration of the 
limits. 
 
Figure 6. The UUCL  and LUCL  limits for the 
combined rules 

 
When the 2T  statistics are based on the 

formulas in equations (1) and (3), and for an 

arbitrary value of p, the UCLs of the 
corresponding conventional 2T  charts for these 
two cases can be computed using the SAS 
program given in Figure 2. For this case, g is the 
desired Type-I error of each of the conventional 
chart. Similarly, the UCLs of the conventional 

2T  charts based on the 2T  statistics in 
equations (2) and (4) can be obtained using the 
programs in Figures 3 and 4 respectively. After 
obtaining the UCL value of the 2T  chart for any 
of the four cases (equations (1), (2), (3) or (4)) 
of interest, choose a value of UUCL , which is 
greater than that of the UCL. With this value of 

UUCL , find h, the probability of a point falling 

above UUCL . h can be computed using the SAS 
programs in Figures 7, 8 and 9 for cases 
involving equations (1) and (3), equation (2) and 
equation (4) respectively. 

A brief explanation for the program in 
Figure 8 will now be given. Because 

pmphU F
pmm

mmp
UCL −−−

+−= ,,1)(

)1)(1(
, then the 1− h 

percentile of the F distribution with parameters p 

and m − p is 
)(

)1)(1(
,,1 pmm

mmp
UCLF Upmph −

+−=−− . 

Note that in Figure 8, pmphF −− ,,1  is denoted as 

Finv. Thus, ( )pmphFYPh −−<−= ,,11  where Y 

follows an F distribution  with parameters  p and 
m − p. In Figure 8, this probability is represented 
by h=1−Probf(Finv;a,b). The SAS program in 
Figure 9 can be explained in a similar manner. 

Once the probability, h is obtained, find 
the probability g using equation (8) based on the 

0ARL  value, which is chosen earlier. The 
Mathematica 4.0 program in Figure 10 can be 
used in this computation. Next, equation (5) is 
used to compute the limit LUCL  by substituting 

Ap  with g + h. The computation of LUCL  can 
be made using the SAS programs in Figures 11, 
12 and 13 for the 2T  charts involving equations 
(1) and (3), equation (2) and equation (4) 
respectively. The user only needs to enter all the 
required values in the program which are already 
known at this stage. 
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Figure 7. A SAS program to compute h for the 
2T  chart based on equations (1) and (3) 

 
 Data EQ1and3; 
 p= ; 
 UCLu= ; 
 h=1−Probchi(UCLu,p); 
 run; 
 proc print; 

       run; 
 

 
Figure 8. A SAS program to compute h for the 

2T  chart based on equation (2) 
 
Data EQ2; 
p= ; 
m= ; 
UCLu= ; 
a=p; 
b=m-p; 
Finv=UCLu/(p*(m-1)*(m+1)/ 
(m*(m-p))); 
h=1-Probf(Finv;a,b); 
run; 
proc print; 
run; 
 

 
Figure 9. A SAS program to compute h for the 

2T  chart based on equation (4) 
 

Data EQ4; 
p= ; 
m= ; 
n= ; 
UCLu= ; 
a=p; 
b=m*n-m-p+1;            
Finv=UCLu/(p*(m+1)*(n-1)/(m*n-m-
p+1)); 
h=1-Probf(Finv;a,b); 
run; 
proc print; 
run; 
 

 
 
 
 
 
 
 
 

Figure 10. A Mathematica program to compute 
g for rule IIIS  

         
        h = 
        ARL0 = 

⎥
⎦

⎤
⎢
⎣

⎡
==

++
+

gARL0,
ghhg

g1
NSolve

2
  

 
 
 
 
Figure 11. A SAS program to compute the 

LUCL  for the 2T  chart based on equations (1) 
and (3) 
 

Data EQ1and3; 
p= ; 
g= ; 
h= ;                   
UCLL=Cinv(1-g-h,p); 
run; 
proc print; 
run; 

 
 
 
Figure 12. A SAS program to compute the 

LUCL  for the 2T  chart based on equation (2) 
 
Data EQ2; 
p= ; 
m= ; 
g= ; 
h= ; 
a=p; 
b=m-p; 
UCLL=p*(m-1)*(m+1)/(m* 
(m-p))*Finv(1-g-h,a,b); 
run; 
proc print; 
run; 
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Figure 13. A SAS program to compute the 

LUCL  for the 2T  chart based on equation (4) 
 
Data EQ4; 
p= ; 
m= ; 
n= ; 
g= ; 
h= ; 
a=p; 
b=m*n−m−p+1; 
UCLL=p*(m+1)*(n-1)/(m*n-m-
p+1)*Finv(1-g-h,a,b); 
run; 
proc print; 
run; 
 

 
The combined 1-of-1 and 2-of-3 rules ( IVS ) 

These combined rules give an out-of-
control signal if a point exceeds UUCL , or if two 

of three consecutive points plot between LUCL  

and UUCL  (see Figure 6). Here, the 0ARL  
formula is (Khoo, Quah and Low, 2004): 
 

0ARL  = 
hhghhgg

hgg

)2()1(2

)2(1
23

2

+−+−+−+
+−++−

. (9) 

 
In equation (9), g is the probability of a point 
falling between LUCL  and UUCL  and h is the 

probability that a point plots above the UUCL .  
 Similar to the previous combined rules, 
first choose a UUCL  value that is larger than the 

UCL limit of the conventional 2T  chart. The 
UCL of the conventional chart for the four 
different cases in equations (1), (2), (3) and (4) 
based on a desired Type-I error can be easily 
determined using the same approach discussed 
for rule IIIS . Based on a chosen value of UUCL , 
find h, the probability of a point plotting above 

UUCL . h is found from the programs in Figures 
7, 8 and 9 for cases involving equations (1) and 
(3), equation (2) and equation (4) respectively. 
 After obtaining h, find the probability g 
from equation (9). This is made using the 
Mathematica 4.0 program in Figure 14. Then, 
use equation (5) to calculate the limit LUCL  by 

replacing Ap  with g + h. LUCL  can be 

calculated from the SAS programs in Figures 11, 
12 and 13 for the 2T  charts of equations (1) and 
(3), equation (2) and equation (4) respectively. 
 
Figure 14. A Mathematica program to compute 
g for rule IVS  

 
h = 
ARL0 = 

 2 ( 1 ) ( 2 )h h g h h

− + + − +

+ − + − + − +

==

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

2

3 2

1 g g( 2 h)

NSolve g g

ARL0, g

 

 
 
Performance Evaluation by Means of a 
Simulation Study 

A simulation study is conducted using 
Statistical Analysis System (SAS) version 8.02 
to evaluate the performances of the sensitizing 
rules discussed in the previous section. The 
process is assumed to follow a bivariate normal, 

( )Σµ,2N  distribution. The in-control mean 

vector is )0,0(0
′=µ  while the covariance matrix 

is ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

ρ
ρ

=
1

1
Σ , where ρ is the correlation 

coefficient between the two quality 
characteristics. Due to the directionally invariant 
property of the Hotelling, 2T  control chart, the 
value of ρ (−1 < ρ < 1) will not have any 
influence on the performance of the chart. The 
chart’s performance is only dependent on the 
magnitude of a shift given by λ. Hence, ρ = 0 is 
considered in this simulation study. The 
magnitude of shifts in the mean vector 
considered are λ ∈ {0, 0.25, 0.5, 1.0, 1.5, 2.0, 
2.5, 3.0, 3.5, 4.0, 5.0} for the case of individual 
observations and λ ∈ {0, 0.25, 0.30, 0.40, 0.50, 
0.75, 1.00, 1.50, 2.00, 3.00} for the case of 

subgrouped data where 2λ  is the noncentrality 
parameter given by  
 

2λ  = ( ) ( )0
1

0 µµΣµµ −′− −
SS .         (10) 

 
Here, Sµ  = (δ,0)′ represents the off-target mean  
vector. 
 Three in-control ARL values are 
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considered, i.e., 500, 750 and 1000. The 2T  
statistics in equations (1) for individual 
observations and (3) for subgrouped data, are 
considered because this simulation study is 
conducted with the assumption that the on-target 
values of both 0µ  and Σ are known. The limits 

of the conventional 2T  charts and that based on 
the sensitizing rules for individual observations 
and subgrouped data with a sample size, n, are 
similar for the same rule if they have a similar 
in-control ARL because the charts’ statistics 
follow the same distribution, i.e., 2

2χ . Note that 
the limits of all the rules are computed using the 
SAS programs given in the previous section. 
The values of these limits for the various rules 
are shown in Tables 1 – 9. For the subgrouped 
data, samples of sizes n = 5 and 10 are 
considered. For the combined rules of IIIS  and 

IVS , the UUCL  value of 15 is used for the 2T  

charts in Tables 1 – 9. Note that UUCL  = 15 is 

greater than the limits of the conventional 2T  
charts for all 0ARL  values. 
 The simulation results for the 
conventional 2T  chart together with the limits 
of the IVIIIIII S and S ,S ,S  schemes are shown in 
Tables 1 – 9 where the first three tables are 
based on individual observations, the next three 
tables are based on subgrouped data with sample 
size, n = 5 and the last three tables are based on 
subgrouped data with sample size, n = 10. 
Tables 1, 4 and 7 have an in-control ARL of 
1000, Tables 2, 5 and 8 with 0ARL  of 750 

while the 0ARL  value in Tables 3, 6 and 9 is 
500.  

The results in all the tables show that the 
2-of-2 ( IS ) and 2-of-3 ( IIS ) rules outperform the 

conventional 2T  chart in most cases except for 
very large magnitude of shifts. For the results of 
the individual observations in Tables 1 – 3, these 
two sensitizing rules outperform the 
conventional 2T  chart for 0 < λ < 3 and they are 
only slightly less effective than the latter when λ 
> 3. For the results of the subgrouped data in 
Tables 4 – 9, the performances of these two 
rules are superior to the 2T  chart for 0 < λ < 1. 
The performances of these two rules are only 
slightly inferior to the latter for λ > 1. The 

combined rules of IIIS  and IVS , however, 
provide excellent results where they improve the 
performances of the conventional 2T  chart for 
small to moderate magnitude of shifts while 
maintaining the same sensitivity for large shifts. 
This is evident from the results in Tables 1 – 9. 
The results show that the performances of the 
combined rules of IIIS  and IVS  are at par with 

that of rules IS  and IIS  for small to moderate 
magnitude of shifts while slightly outperforming 
the two latter rules for large shifts. 
 
Examples of Application 
Example 1 
 This example deals with a small 
magnitude of shift in the mean vector involving 
individual measurements. The first 20 bivariate 
observations are generated from a bivariate 
normal, ( )Σµ ,02N  distribution, where 0µ = 

(0,0)′ is the on target mean vector and 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

15.0

5.01
Σ  is the covariance matrix. These 

bivariate observations represent the data from an 
in-control process. For the o.o.c. case which 
consists of the next 20 observations, the process 
is assumed to follow a ( )Σµ ,2 SN  distribution, 

where =Sµ (1,0)′. Note that all the observations 
are generated using the SAS program. Because 

0µ  and  Σ  are  both   known,  the  2T   statistics  
are computed using equation (1). An in-control 
ARL of 500 is considered. The values of the 2T  
statistics and variables 1X  and 2X  for vector X 

= ( )′21 , XX  from observations 1 – 40 are 
presented in Table 10. 
 The 2T  statistics are plotted on the 
Hotelling 2T  chart whose limit is computed 
from the conventional rule using the SAS 
program in Figure 2 to be UCL = 12.4292 
because p = 2 and .5001=g  Besides the 
conventional approach, an additional o.o.c. test 
considered is that based on the combined 1-of-1 
and 2-of-2 rules, a.k.a., rule IIIS . The UUCL  of 

this rule is set as 15 so that UUCL > UCL. 
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Table 1. ARL profiles based on 0ARL  = 1000 and Sµ  = (δ,0)′ for individual observations 

λ = δ 

Conventional 
2T  

(UCL = 
13.8155) 

IS  
(UCL = 
6.87614) 

IIS  
(UCL = 
7.54488) 

IIIS  

( 15=UUCL  & 

)64089.7=LUCL  

IVS  

( 15=UUCL  & 

)29725.8=LUCL  

0 1001.83 996.14 998.95 1002.31 999.65 
0.25 817.40 817.23 805.71 805.11 801.37 
0.5 499.37 491.04 460.87 465.98 457.55 
1.0 146.70 120.35 106.26 115.68 109.06 
1.5 44.39 31.55 27.52 30.72 28.26 
2.0 15.83 11.12 9.84 10.82 9.97 
2.5 6.83 5.33 4.89 4.86 4.57 
3.0 3.48 3.38 3.16 2.75 2.70 
3.5 2.11 2.55 2.46 1.91 1.91 
4.0 1.50 2.21 2.18 1.48 1.49 
5.0 1.09 2.02 2.02 1.10 1.11 

 
 
 
 
 
 
Table 2. ARL profiles based on 0ARL  = 750 and Sµ  = (δ,0)′ for individual observations 

λ = δ 

Conventional 
2T  

(UCL = 
13.2401) 

IS  
(UCL =  

6.58356) 

IIS  
(UCL = 

7.24851) 

IIIS  

( 15=UUCL  & 

)08929.7=LUCL  

IVS  

( 15=UUCL  & 

)74539.7=LUCL  

0 749.29 750.54 750.81 753.21 751.39 
0.25 617.53 615.78 605.18 606.72 598.38 
0.5 384.40 375.83 360.34 357.75 353.88 
1.0 117.18 98.12 86.27 91.83 85.88 
1.5 36.85 26.87 23.53 25.51 23.52 
2.0 13.56 9.98 9.06 9.34 8.52 
2.5 6.00 5.00 4.63 4.43 4.20 
3.0 3.20 3.24 3.07 2.61 2.57 
3.5 2.01 2.49 2.45 1.86 1.85 
4.0 1.46 2.19 2.16 1.46 1.46 
5.0 1.07 2.02 2.01 1.10 1.11 
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Table 3. ARL profiles based on 0ARL  = 500 and Sµ  = (δ,0)′ for individual observations 

λ = δ 

Conventional 
2T  

(UCL = 
12.4292) 

IS  
(UCL =     
6.16989) 

IIS  
(UCL = 
6.82846) 

IIIS  

( 15=UUCL  & 

)47195.6=LUCL  

IVS  

( 15=UUCL  & 

)1244.7=LUCL  

0 500.59 498.26 498.02 501.13 500.24 
0.25 419.81 414.91 416.32 407.17 410.95 
0.5 265.92 259.30 247.35 248.02 243.32 
1.0 85.71 73.99 64.97 68.82 63.23 
1.5 28.42 21.68 19.36 20.41 19.07 
2.0 10.90 8.62 7.88 7.94 7.32 
2.5 5.06 4.53 4.23 3.96 3.80 
3.0 2.81 3.05 2.93 2.46 2.45 
3.5 1.82 2.42 2.38 1.81 1.81 
4.0 1.36 2.16 2.13 1.45 1.44 
5.0 1.06 2.01 2.01 1.10 1.11 

 
 

 
 
 
 
 
 
Table 4. ARL Profiles based on 0ARL  = 1000, Sµ  = (δ,0)′ and n = 5 

λ = δ 

Conventional 
2T  

(UCL = 
13.8155) 

IS  
(UCL = 

6.87614) 

IIS  
(UCL = 

7.54488) 

IIIS  

( 15=UUCL  & 

)64089.7=LUCL  

IVS  

( 15=UUCL  & 

)29725.8=LUCL  

0 999.15 999.87 999.81 1000.25 995.78 
0.25 436.34 427.85 401.41 402.44 391.53 
0.30 330.97 314.71 288.86 295.56 284.64 
0.40 190.53 160.42 143.78 155.69 146.70 
0.50 108.59 84.89 74.51 81.93 78.89 
0.75 30.22 21.23 18.58 20.22 18.96 
1.00 10.47 7.72 6.86 7.17 6.77 
1.50 2.43 2.71 2.65 2.07 2.09 
2.00 1.25 2.07 2.06 1.25 1.26 
3.00 1.00 2.00 2.00 1.00 1.00 
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Table 5. ARL Profiles based on 0ARL  = 750, Sµ  = (δ,0)′ and n = 5 

λ = δ 

Conventional 
2T  

(UCL = 
13.2401) 

IS  
(UCL =  
6.58356) 

IIS  
(UCL = 
7.24851) 

IIIS  

( 15=UUCL  & 

)08929.7=LUCL  

IVS  

( 15=UUCL  & 

)74539.7=LUCL  

0 747.90 754.01 748.27 747.18 754.15 
0.25 337.59 332.34 295.56 302.83 290.67 
0.30 257.82 239.66 221.70 228.97 224.04 
0.40 151.95 129.44 114.90 121.92 113.32 
0.50 90.65 70.32 61.06 66.66 62.29 
0.75 25.54 18.36 16.75 17.41 15.88 
1.00 9.04 6.97 6.22 6.34 5.97 
1.50 2.24 2.64 2.55 2.02 2.02 
2.00 1.20 2.06 2.06 1.24 1.24 
3.00 1.00 2.00 2.00 1.00 1.00 

 
 
 
 
 
 
Table 6. ARL Profiles based on 0ARL  = 500, Sµ  = (δ,0)′ and n = 5 

λ = δ 

Conventional 
2T  

(UCL = 
12.4292) 

IS  
(UCL =     

6.16989) 

IIS  
(UCL = 

6.82846) 

IIIS  

( 15=UUCL  & 

)47195.6=LUCL  

IVS  

( 15=UUCL  & 

)1244.7=LUCL  

0 504.07 499.00 503.19 498.88 503.65 
0.25 232.42 232.34 214.33 210.87 210.45 
0.30 182.91 175.59 154.77 156.20 153.86 
0.40 110.66 94.52 85.90 89.19 82.59 
0.50 67.85 53.89 47.81 51.51 46.06 
0.75 20.25 15.06 13.70 14.18 13.10 
1.00 7.52 6.24 5.48 5.59 5.13 
1.50 1.97 2.57 2.47 1.96 1.90 
2.00 1.15 2.05 2.05 1.25 1.26 
3.00 1.00 2.00 2.00 1.00 1.00 
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Table 7. ARL Profiles based on 0ARL  = 1000, Sµ  = (δ,0)′ and n = 10 

λ = δ 

Conventional 
2T  

(UCL = 
13.8155) 

IS  
(UCL = 

6.87614) 

IIS  
(UCL = 

7.54488) 

IIIS  

( 15=UUCL  & 

)64089.7=LUCL  

IVS  

( 15=UUCL  & 

)29725.8=LUCL  

0 995.08 1004.27 1003.12 995.48 995.58 
0.25 255.15 215.16 203.18 218.26 188.25 
0.30 164.26 140.21 124.81 141.86 120.73 
0.40 78.44 55.18 50.65 57.51 51.57 
0.50 38.28 25.30 23.30 24.94 23.69 
0.75 8.17 6.55 6.08 6.00 5.47 
1.00 2.94 2.99 2.91 2.45 2.45 
1.50 1.13 2.03 2.04 1.18 1.18 
2.00 1.00 2.00 2.00 1.01 1.01 
3.00 1.00 2.00 2.00 1.00 1.00 

 
 

Table 8. ARL Profiles based on 0ARL  = 750, Sµ  = (δ,0)′ and n = 10 

λ = δ 

Conventional 
2T  

(UCL = 
13.2401) 

IS  
(UCL =  
6.58356) 

IIS  
(UCL = 
7.24851) 

IIIS  

( 15=UUCL  & 

)08929.7=LUCL  

IVS  

( 15=UUCL  & 

)74539.7=LUCL  

0 750.00 750.34 751.20 750.69 747.47 
0.25 185.83 176.64 148.82 172.52 149.70 
0.30 128.30 114.54 97.52 109.93 93.93 
0.40 61.94 48.94 44.05 46.01 42.01 
0.50 32.25 23.26 18.93 21.38 19.70 
0.75 6.98 5.98 5.31 5.14 4.81 
1.00 2.76 2.97 2.88 2.35 2.36 
1.50 1.13 2.04 2.03 1.18 1.18 
2.00 1.00 2.00 2.00 1.01 1.01 
3.00 1.00 2.00 2.00 1.00 1.00 

 
 

Table 9. ARL Profiles based on 0ARL  = 500, Sµ  = (δ,0)′ and n = 10 

λ = δ 

Conventional 
2T  

(UCL = 
12.4292) 

IS  
(UCL =     
6.16989) 

IIS  
(UCL = 
6.82846) 

IIIS  

( 15=UUCL  & 

)47195.6=LUCL  

IVS  

( 15=UUCL  & 

)1244.7=LUCL  

0 505.75 502.30 501.52 505.22 499.73 
0.25 137.80 126.49 111.39 119.39 104.06 
0.30 93.79 82.06 76.72 80.06 72.60 
0.40 45.25 34.72 34.27 35.25 32.49 
0.50 23.63 18.41 16.14 16.84 15.59 
0.75 6.16 5.35 4.76 4.46 4.33 
1.00 2.48 2.81 2.77 2.20 2.23 
1.50 1.11 2.03 2.02 1.17 1.18 
2.00 1.00 2.00 2.00 1.01 1.01 
3.00 1.00 2.00 2.00 1.00 1.00 
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      Table 10. The Computed 2

iT  Statistics for Example 1 
Obs. no., 

i 1X  2X  2
iT  

Obs. no., 
i 1X  2X  2

iT  

1 −0.344 −1.286 1.774 21 1.585 0.361 2.762 
2 −0.882 0.150 1.245 22 2.569 2.007 7.295 
3 −1.990 0.545 7.125 23 3.045 0.909 9.772 
4 −0.343  −0.067 0.132 24 1.297 −0.005 2.252 
5 −0.800 −0.358 0.643 25 1.168 0.830 1.446 
6 −0.620 0.364 0.990 26 0.595 −1.080 2.884 
7 −0.004 −1.041 1.440 27 0.314 0.769 0.597 
8 1.479 −0.131 3.197 28 1.875 −0.386 5.854 
9 −1.082 −0.478 1.175 29 0.393 −0.823 1.540 
10 1.549 −0.602 4.927 30 1.070 −1.718 7.911 
11 −0.317 −1.128 1.353 31 1.841 1.167 3.471 
12 0.408 1.464 2.282 32 1.868 1.100 3.525 
13 0.639 1.037 1.094 33 1.214 −0.823 4.202 
14 −0.879 −0.080 0.945 34 0.151 −0.643 0.712 
15 −2.294 0.286 7.997 35 2.046 −0.917 9.202 
16 0.060 1.066 1.434 36 1.804 2.521 6.749 
17 −0.586 0.127 0.578 37 0.988 −1.678 7.264 
18 −0.818 0.279 1.300 38 −0.344 −0.718 0.516 
19 −0.600 0.610 1.464 39 1.873 0.223 4.188 
20 0.127 −0.209 0.115 40 0.671 1.229 1.514 

 
 

       Figure 15. The 2T  chart with limits of the conventional and IIIS  rules for example 1 

40393837363534333231302928272625242322212019181716151413121110987654321

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1
0

 
 

Note: The top parallel line is UCLu, the slashed parallel line is UCL, and the lower parallel line is UCLl. 
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          Table 11. The computed 2

iT  statistics for example 2   
Obs. no., 

i 1X  2X  2
iT  

Obs. no., 
i 1X  2X  2

iT  

1 −0.344 −1.286 1.774 21 4.585 0.361 26.002 
2 −0.882 0.150 1.245 22 5.569 2.007 31.820 
3 −1.990 0.545 7.125 23 6.045 0.909 42.495 
4 −0.343  −0.067 0.132 24 4.297 −0.005 24.648 
5 −0.800 −0.358 0.643 25 4.168 0.830 19.473 
6 −0.620 0.364 0.990 26 3.595 −1.080 23.965 
7 −0.004 −1.041 1.440 27 3.314 0.769 12.038 
8 1.479 −0.131 3.197 28 4.875 −0.386 34.401 
9 −1.082 −0.478 1.175 29 3.393 −0.823 19.972 
10 1.549 −0.602 4.927 30 4.070 −1.718 35.340 
11 −0.317 −1.128 1.353 31 4.841 1.167 25.532 
12 0.408 1.464 2.282 32 4.868 1.100 26.064 
13 0.639 1.037 1.094 33 4.214 −0.823 29.209 
14 −0.879 −0.080 0.945 34 3.151 −0.643 16.498 
15 −2.294 0.286 7.997 35 5.046 −0.917 41.236 
16 0.060 1.066 1.434 36 4.804 2.521 23.100 
17 −0.586 0.127 0.578 37 3.988 −1.678 33.879 
18 −0.818 0.279 1.300 38 2.656 −0.718 12.637 
19 −0.600 0.610 1.464 39 4.873 0.223 30.282 
20 0.127 −0.209 0.115 40 3.671 1.229 13.966 

 
 

 
           Figure 16. The 2T  chart with limits of the conventional and IIIS  rules for example 2 

40393837363534333231302928272625242322212019181716151413121110987654321
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Note: The top parallel line is UCLu, the slashed parallel line is UCL, and the lower parallel line is UCLl. 
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From the SAS programs in Figures 7 and 11, 

LUCL  is computed to be 6.47195. The 2T  

statistics are plotted on the 2T  chart with limit 
UCL = 12.4292 on Figure 15. Additional limits 
which consist of UUCL = 15 and LUCL = 

6.47195 are drawn on this chart for rule IIIS . 
Figure 15 shows that the conventional rule fails 
to detect a shift in the mean vector. The 
superiority of rule IIIS  is obvious in that it 
detects the first off-target signal at observation 
23. 
 
Example 2 

The data in this example, which are 
generated using the SAS program, involves a 
shift of a large magnitude in the mean vector. 
Here, the first 20 bivariate observations are 
generated from a ( )Σµ ,02N  distribution, where 

0µ = (0,0)′ is the on target mean vector and 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

15.0

5.01
Σ  is the covariance matrix. This is 

followed by generating another 20 bivariate 
observations from a ( )Σµ ,2 SN  distribution 

where =Sµ (4,0)′, to represent the o.o.c. 

process. The 2T  statistics are computed from 
the formula in eq. (1). The values of the 2T  
statistics and quality characteristics 1X  and 2X  
for observations 1 – 40 are given in Table 11.  
 Figure 16 gives the 2T  chart, which 
consists of the 2T  statistics plotted on it. The 
same value of 0ARL  considered in Example 1 is  

used here. The UCL of the conventional 2T  
chart is computed using the same approach 
described in Example 1 to be 12.4292. Similar to 
Example 1, rule IIIS  is also considered. The 
limits of this rule are obtained using the same 
approach to be UUCL = 15 and LUCL = 6.47195. 
An o.o.c. signal is detected at observation 21 by 
both the conventional and IIIS  rules. This 

example shows that rule IIIS  has the same 
sensitivity as the conventional rule in the 
detection of a large magnitude of shift. 
 

 

 
Conclusion 

 
This article provides a nonrigorous approach of 
implementing sensitizing rules on a Hotelling 
control chart. The advantage of the approach 
presented in this article where the 2T  statistics 
do not need to be transformed into normal 
random variables enable the statistics to be 
plotted on the original scale so that the 
incorporation of runs rules can be made on the 
same conventional chart without having to 
maintain a separate chart specially designed for 
plotting the transformed variables which follow 
a normal distribution. The suggested approach is 
a remarkable improvement of the earlier works 
of Khoo and Quah (2003) and Khoo, Quah and 
Low (2004). The Mathematica and SAS 
programs provided in this article will certainly 
serve as useful tools in assisting practitioners in 
the design and implementation of the various 
rules. 
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Inference on the reliability R = P(Y < X) in a Pareto distribution with a known scale parameter is 
considered. Point estimates and confidence intervals of R are obtained a test of hypothesis is also 
considered. 
 
Key words: MLE, MSE 
 

 
Introduction 

 
A Pareto distribution is given by 
 

 1
( ; , ) , 0,

(1 / )
f x x

x α
αα β

β β += >
+

α, β > 0.                             

                                                                                        
Pareto law has been universal and inevitable, 
regardless of taxation and social and political 
conditions. More recently, attempts have been 
made to explain many empirical phenomena 
using the Pareto distribution (see Moothathu, 
1984; Arnold & Press, 1983). Ali, et al, (2005a 
and 2005b) considered the problem for some 
other distributions. The probability that a 
Weibull random variable Y is less than another 
independent Weibull random variable X was 
considered by McCool (1991). Baklizi (2003) 
considered the confidence interval of P(X < Y) 
in the exponential case with common location. 
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The problem of estimating and of drawing 
inferences about the probability that a random 
variable Y is less than another independent 
random variable X arise in reliability studies. 
 When Y represents the random variable 
of a stress that a device will be subjected to in 
service and X represents the strength that varies 
from item to item in the population of devices, 
then the reliability R, i.e., the probability that a 
randomly selected device functions successfully, 
is equal to P(Y < X). The same problem also 
arises in the context of statistical tolerance 
where Y represents, say, the diameter of a shaft 
and X the diameter of a bearing that is to be 
mounted on the shaft. The probability that the 
bearing fits without interference is the P(Y < X). 
In biometry, Y represents a patient's remaining 
years of life if treated with drug A and X 
represents the patient's remaining years when 
treated with drug B. If the choice of drug is left 
to the patient, person's deliberations will center 
on whether P(Y < X) is less than or greater than 
1/2. 
 In this article, the problem of estimating 
P(Y < X) in a Pareto distribution with a known 
scale parameter, including point and interval 
estimation is considered and also a test of 
hypothesis.  

 
Inference on P(Y < X) 
 Let X and Y be independent random 
variables from Pareto distributions with 
parameters ( , )xα β  and ( , )yα β  respectively. 
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Then from formula 3.381(4) in Gradshteyn and 
Ryzhik (1965), the following fact is obtained. 
 
Fact 1: 

 ( ) 1
1

x

x y

R P Y X
α ρ

α α ρ
≡ < = − =

+ +
  

is a monotone function of ρ , where y

x

α
ρ

α
≡ . 

Proof:  
 

0

( )

1 ( ; , ) ( ; , )X x Y y

y x

R P Y X

f x f y dxdyα β α β
< < <∞

= <

= − ∫∫  

 
where Xf  is the Pareto density with 

parameters ( , )xα β  and Yf  is the Pareto 

distribution with parameters ( , )yα β . By 

formula 3.381(4) in Gradshteyn and Ryzhik 
(1965), one can integrate and obtain the 
following. 
 

( ) 1 (1, ),x x yR P Y X Bα α α= < = − ⋅ +  

 
where, ( , )B a b is a beta function. Using 

( , ) ( ) ( ) / ( ), 0, 0,B a b a b a b a b= Γ Γ Γ + > >  the 
above result is obtained. 
 Because R is a monotone function of ρ , 

inference on ρ is equivalent to inference on R . 
Attention is confined to the parameter ρ  (see 

McCool, 1991). Assume 1 2, ,..., mX X X and 
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The following results in Fact 2 are well-known. 
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From Fact 2(a) and (b), one can obtain the 
following fact. 
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Then one can obtain the following expectation 
and variance. 
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obtained as follows. 
 

1

( ) (1 ) , 0,
( , )

m
m n

U m

u u
f u u

B m n ρ ρ

−
− −= + >  

 

where ( , )B m n is the Beta function. From the 

density of /U Z W= , one can easily find the 

distribution of 
U

B
Uρ

≡
+

. 

 

Fact 5:  Let .
U

B
Uρ

≡
+

 Then, B follows a beta 
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the pivot quantity B , a confidence interval of ρ  
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Here, for a given 0 1,α< <  bα  can be easily 

evaluated by inverse function of the beta 
distribution using statistical software. Hence, 
a (1 )100%α− confidence interval of ρ  can be 
obtained as 
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Next, the null hypothesis is tested 
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Differentiating with respect to xα and yα , the 

MLE's are obtained as follows. 
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From the definition of likelihood ratio test, the 
likelihood ratio test function is given by 
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Therefore, ( , )x y cΛ < is equivalent to 1U c<  

or 2.U c>  Under 0 : ,x yH α α=  i.e., 1ρ = , 

from Fact 5, the statistic  
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follows a beta distribution with m and n . 
Because 0B is a monotone increasing function of 

U , so 1U c< or  2U c>  is equivalent to 

0 1B b<  or 0 2B b> . 1b and 2b can be obtained by 

inverse function of a beta distribution and using 
a statistical software. 
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Training Statisticians To Be Alert To The Dangers Of 
Misapplying Statistical Methods 

 
       Vance W. Berger 
Biometry Research Group 
National Cancer Institute 

 
 
Statisticians are faced with a variety of challenges. Their ability to cope successfully with these challenges 
depends, in large part, on the quality of their training. It is not the purpose of this article to present a 
comprehensive training plan that will overhaul the standard curriculum a statistician might follow under 
current training regimens (i.e., in a degree program). Rather, the objective is to point out important areas that 
appear to be under-represented in standard curricula and correspondingly overlooked too often in practice. 
The hope is that these areas might be better integrated into the training of the next generation of statisticians. 
 
Key words: Assumptions; design-based analysis; exact conditional test; limitations; permutation test. 
 
 
 

Introduction 
The ability of statisticians to cope successfully 
with the wide variety of challenges they face 
depends, in large part, on the quality of their 
training. Key components of any training program 
for statisticians include mathematics, probability 
theory, statistical inference, and computing. Such 
classical statistics training would put the 
statistician in a position to offer solutions to a 
variety of problems, and defend these solutions. 
Yet “statistics can be used to form highly technical 
and even technically correct support for statements 
which are in fact not true” (Vardeman & Morris, 
2003, p. 25). Kimball (1957) described a Type III 
error as the right answer to the wrong question; 
earlier Huff (1954) described this phenomenon as 
a semi-attached figure.  It may be overly harsh to 
use so broad a brush to describe each right answer 
to a wrong question as an error. Optimal solutions 
for contrived problems that bear some 
resemblance to the true problems may also serve 
as appropriate, if not ideal, solutions for the true 
problem. On the other hand, an optimal solution to 
the surrogate problem may not be even a 
minimally acceptable solution to the true problem. 
 
 
Vance W. Berger is Mathematical Statistician at 
the National Cancer Institute. E-mail: 
vb78c@nih.gov.  
 

Few general rules exist to allow a 
statistician to be certain that the ideal solution to 
one problem is actually an appropriate solution to 
another related problem, so often subject matter 
knowledge must be used to evaluate a proposed 
solution to a given problem. 
 
Unreasonable Assumptions 
 Many frequently applied statistical 
methods, including t-tests, linear regression, the 
analysis of variance (ANOVA), the analysis of 
covariance (ANCOVA), multivariate ANOVA 
(MANOVA), and the chi-square test, are based on 
random sampling and/or normality. In practice, 
these methods are often used even when neither of 
these conditions holds. It is also common for 
methods based on compound symmetry of the 
variance/covariance matrix, interval scaling of the 
data, proportional odds or hazards, common 
variances, or additivity to be used when these 
conditions do not hold. Statisticians must be 
concerned with such issues as 1) the evidence for 
or against each of these conditions holding in a 
given application and 2) the performance of 
specific analyses when some or all of these 
conditions fail to hold. Regarding the first issue, 
we note the impossibility of demonstrating that 
certain of these conditions hold in practice. 

For example, although a statement such as 
‘the data are normally distributed’ may appear 
innocuous, this statement simultaneously rules out 
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every distribution that is not Gaussian, including 
any distribution with finite support. Also, given 
the mean and variance, this statement specifies a 
fixed positive probability of a data point falling in 
any interval, no matter how far from the largest or 
smallest observations. As such, this seemingly 
simple statement actually represents an 
uncountable number of sub-statements, many of 
which could not possibly be true. The question is 
not so much whether the statement is true as it is 
how well would a procedure derived with the 
assumption perform without it. This raises the 
question of what exactly is the true question, when 
all the assumptions have been stripped away. 

If a p-value is required for a between-
group comparison, then the true question is ‘How 
likely would it be, if there were no treatment 
effect, to obtain results as extreme as or more 
extreme than those which were found’? The 
answer to this question is a probability, and the 
relevant probability space is defined based on the 
observed outcome and all other outcomes that 
could have occurred given the study design. With 
random sampling from a normal distribution, the 
probability space would be based on repeated 
sampling from a normal distribution. Perhaps a t-
test would be used, because it is the optimal 
solution to the problem of comparing the means of 
normal populations with equal but unknown 
variances. But, how well does the t-test perform as 
an answer for the original question? 

To answer this question, the correct 
answer to the original question must be defined. If 
there is random allocation but not random 
sampling, then the platinum standard is an exact 
design-based permutation test (Tukey, 1993). The 
frequent assurances that standard statistical 
methods are robust to violations of their 
assumptions tend to be based on studies of 
performance when one assumption at a time is 
violated. In reality, if an analysis requires 
assumptions to be valid, then it is vulnerable to the 
possibility that two of its assumptions may be 
violated simultaneously. In this case, robustness 
may be lost (Hunter & May, 1993). 

In some cases it may not be possible or 
feasible to compute an exact p-value. But if the 
exact p-value is available, as it often is, then the 
numerical difference between it and the 
approximate p-value is a better measure of 
robustness than the usual checks that are made of 

assumptions. Using this metric, Berger (2000) 
presented a real data set (specifically, sotalol for 
reinfarctions) whose assumptions appeared to have 
been met, yet the exact Smirnov test p-values were 
0.0485 (two-sided) and 0.0258 (one-sided), and 
the approximate p-values were 0.9910 and 0.6823, 
respectively. This discrepancy can be attributed to 
the poor approximation of the approximate 
Smirnov reference distribution to the exact one. 
That is, the value of the test statistic remains the 
same whether the exact or approximate test is 
being used, but the p-value it produces fluctuates 
wildly as the reference distribution to which it is 
compared varies. 

This is hardly an isolated example, nor is 
the phenomenon specific to the Smirnov test. 
Little (1989) presented another real data set, 
specifically a 2×2 table with cell counts 
{(170,2);(162,9)}. Each expected cell count is at 
least 5, so the usual check of the chi-square 
assumption would be passed, and the chi-square 
test would tend to be used in practice. Yet at the 
one-sided 0.025 alpha level the chi-square test 
would find significance (p=0.0162). and would not 
even be close to the border, although Fisher’s 
exact test would not reach statistical significance 
(p=0.0299). Three more examples follow. Using 
the exact Wilcoxon test, Williams, et al. (2000) 
demonstrated that compared to routine 
appointments, open access reduces secondary care 
costs for inflammatory bowel disease. 

Barber and Thompson (2000) unwittingly 
demonstrated that for this data set, either the 
normality assumption was sufficiently flawed or 
the difference in means was sufficiently 
accompanied by shifts in shape and/or scale that 
the t-test failed to detect this true difference. 
Likewise, in a study of the effect of neuromuscular 
training, Hewett, et al., (1999) used the chi-square 
test to analyze knee injuries in female athletes. 
Clancy (2000) commented: 

 
Because the observed and expected 
number of knee injuries was less than 
five in at least one cell, an approximate 
method is inappropriate. An appropriate 
method in this instance would have been 
a Fisher’s exact test. Incidentally, use of 
this exact method demonstrated no 
statistical significance …, suggesting 
that the extreme variability present in the 
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small sample resulted in an incorrect 
finding when an approximate method 
was used. This provides all sports 
medicine researchers with a potent 
example of why appropriate statistical 
analysis is extremely important. (p. 615) 
 

Chaudry, et al. (2002) found p-values of 
0.004, 0.016, 0.006, 0.001, and <0.001, using t-
tests, for five measures (interest, importance, 
relevance, validity, believability) of readers’ 
perceptions of papers with and without declaration 
of competing interests. Jacobs (2003) pointed out 
that the t-test was applied inappropriately, and, 
using an exact test, found three of these p-values 
to be non-significant (interest, p=0.054; 
importance, p=0.21; relevance, p=0.054). Clearly, 
assumption-based tests are at times used when 
they should not be. Bross (1990) stated, 

 
[T]he user of a statistical method has the 
responsibility for dealing with the 
scientific question: Are the assumptions 
valid? In particular, when human health 
and safety might be jeopardized ..., a 
statistician has a direct responsibility to 
protect the public health and safety by 
following fail-safe principles in dealing 
with any assumptions. (p. 1216) 
 

Some assumptions are more realistic than others, 
but if they were known to be true, then they would 
not be assumptions. As such, one could argue that 
all things being equal, it is best not to rely on 
assumptions unless there is a good reason to. 

In some cases, there are good statistical 
methods that require no assumptions at all. For 
example, design-based between-group permutation 
tests of the null hypothesis of no difference require 
no assumptions in randomized clinical trials 
(Berger, 2000). In other cases, progress can be 
measured by a reduction, but not elimination, of 
assumptions. Weerahandi and Berger (1999), for 
example, derived analyses of growth curves that 
retain the normality assumption but dropped other 
assumptions. The use of assumption-minimizing 
methods, along with the proper respect for 
uncertainty regarding any assumptions that are 
made, might be regarded as part and parcel of 
good statistical practice. 
 

Biased Sampling 
Without a reason to suspect systematic 

bias in the sampling procedure, information about 
the sample would be used, without adjustment, to 
draw inferences about the population. This would 
be optimal in the case of unbiased (perhaps 
random) sampling. Although it is uncommon for a 
clinical trial to employ random sampling from the 
target population, this approach is still used in 
practice, because the sample is still thought to 
represent the target population from which it was 
drawn. Whether or not this is true varies with the 
situation, but there are cases in which the sampling 
is biased in a known way. Many randomized 
clinical trials utilize what is called an open-label 
run-in phase prior to randomization. 

Such a run-in phase is characterized by 
each patient being exposed to the same treatment. 
On the basis of their response during this run-in 
phase, patients are selected for or excluded from 
the subsequent randomization. Generally, good or 
bad responders are excluded as the run-in phase 
used placebo or the active treatment, respectively. 
But, the treatment used in the run-in phase is then 
used again as one of the treatments to which 
patients may be randomized. The effect is over-
representation of either active responders or of 
control non-responders (or, sometimes, both). The 
advantage for the active treatment group can 
greatly exaggerate the estimated magnitude of 
treatment effect (Berger, Rezvani, & Makarewicz, 
2003). An optimal analysis should provide a good 
answer to the question of whether or not treatment 
A is more effective than treatment B in the sample. 
But with run-in selection, this optimal answer 
represents an intentionally distorted answer to the 
question of whether or not treatment A is more 
effective than treatment B in the target population. 
 

Conclusion 
 

It is hoped that the next generation of statistical 
researchers will work towards deriving better 
solutions to the important practical questions that 
need answering. Often, this will involve deriving 
more powerful assumption-minimizing analyses. 
We also hope that the next generation of statistical 
practitioners will appreciate and use these 
maximally robust procedures more 
comprehensively. A good step for aspiring 
statisticians to take now, to help become part of 
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the solution later, would be to take classes in non-
parametric analyses and robust methods, and to 
develop an interest in the nature of experiments 
(including limitations) and the way that data sets 
are generated. It is also useful for one to recognize 
what it is that (s)he does not know. All too often it 
is heard that data are used to prove or conclusively 
demonstrate a hypothesis, when in fact the 
inference from data analysis is inductive, and not 
deductive, so proof is not attainable. If, e.g., 
assumptions were used in an analysis, then the 
appearance of a treatment effect could be 1) a real 
treatment effect; 2) a Type I error; or 3) an artifact 
due to the assumption not being true. A low p-
value allows one to probabilistically rule out the 
second of these explanations, but not the third. 
Even if the analysis did not explicitly rely on any 
assumptions, there is still the implicit assumption 
that an apparent treatment effect cannot be 
attributed exclusively to a bias. Selection bias, 
e.g., can create the appearance of a treatment 
effect where in fact none exists (Berger, 2005). 

Even if every known bias can be ruled out, 
it is still possible that some other bias exists but is 
yet to be discovered. Hence, there may be any 
number of explanations for a given observation 
(such as a data pattern apparently indicative of a 
treatment effect), and introspection may help 
anticipate problems not yet identified, and may 
allow statisticians to perform analyses and design 
studies that not only gain acceptance in the 
present, but also stand the test of time in the future 
(Berger & Matthews, 2005). 
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Power of the t Test for Normal and Mixed Normal Distributions 
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Previous research suggests that the power of the independent-samples t test decreases when population 
distributions are mixed normal rather than normal, and that robust methods have superior power under 
these conditions. However, under some conditions, the power for the independent-samples t test can be 
greater when the population distributions for the independent groups are mixed normal rather than 
normal. The implications of these results are discussed. 
 
Key words: t test, mixed normal, power 
 
 

Introduction 
 

The accepted belief in modern statistical practice 
is that the assumption of normality for 
parametric tests, such as the independent-
samples t test and the analysis-of-variance F test, 
seldom, if ever, holds in practice. In psychology 
and education, Micceri (1989) offered empirical 
support for this conclusion. He examined over 
400 large-sample data sets that included 
achievement and psychometric measures and 
found that they had a variety of shapes (e.g., 
skewed) and generally could not be described as 
normal. 
 For a number of years, violation of the 
normality assumption was not seen as a serious 
problem in that a number of studies showed that 
nonnormality, in and of itself, had a minimal 
effect on Type I error rate unless sample size is 
quite small (e.g., Boneau, 1960; Glass, 
Peckham, & Sanders, 1972; Ramsey, 1980; 
Rogan & Keselman, 1977).  
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 More recently, researchers have 
demonstrated that violation of the normality 
assumption may, however, have a deleterious 
effect on the power of parametric tests (e.g., 
MacDonald, 1999; Lix & Keselman, 1998; 
Wilcox, 1995). Based on these findings and 
others concerning violation of the homogeneity 
of variance assumption, Keselman, Wilcox, and 
Lix (2003) suggested that the application of 
standard parametric methods should be greatly 
restricted, and robust methods requiring minimal 
distributional assumptions should be used in 
their place. More specifically, they argued that 
robust methods, such as those using trimmed 
means and bootstrapping, are superior in terms 
of Type I and II error rates across a wide number 
of conditions encountered in practice.  
 The mixed normal distribution has been 
used extensively to illustrate the detrimental 
effect of nonnormality and specifically outliers 
on parametric tests and, most frequently, on the 
independent-samples t test (e.g., MacDonald, 
1999; Wilcox, 1997, 2001). Based on these 
presentations, the independent-samples t test 
shows a dramatic decrease in power when the 
population distributions for the two independent 
groups are mixed normal rather than normal. A 
small-scale simulation may be used to illustrate 
the decrease in power found in these studies. 
 Consider the power of the independent-
samples t test with 12 observations in each 
group under normal and mixed normal 
conditions. For the normal condition, data are 
generated from normal distributions with means 
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of 0 and 3 for first and second groups, 
respectively. The population variances are held 
constant across groups at 1. Based on 4000 
replications, the empirically determined power is 
1.00. 
 For the mixed normal condition, normal 
data are generated for each group from primary 
and secondary subpopulations with probabilities 
of .80 and .20, respectively. The means of the 
normal distributions for the primary and 
secondary subpopulations are identical to those 
under the normal condition: means of 0 for the 
first group and means of 3 for the second group. 
As in the normal condition, the variances for the 
primary distributions are set to 1 in both groups; 
however, the variances for the secondary 
distributions are set to 400 in both groups to 
simulate outliers. Based on 4000 replications, 
the empirical power is .21 under the mixed 
normal condition, much lower than the 1.00 
found under the normal condition. 
 The explanation for these results and 
ones like them is that the standard error of the 
difference in means is much larger for the mixed 
normal distribution than for the normal 
distribution (e.g., Wilcox, 2001). For this 
example, the within-group variances increased 
from 1.00 for the normal condition to 80.80 for 
the mixed normal condition [i.e., combined 
across the primary and secondary distributions: 
.80 (1) + .20 (400) = 80.80], as a function of 
introducing the secondary distribution with a 
much larger variance (i.e., 400). Because the 
within-group variances increased for the mixed 
normal condition, the standard error of the 
difference in means increased, and the power 
decreased. 
 In the current Monte Carlo study, 
unexpected results were found when 
investigating the comparative power of the 
independent-samples t test under normal and 
mixed normal conditions. Conditions were 
included that were similar to those in previous 
research: the variances for the normal 
distributions were set equal to the variances of 
the primary distributions of the mixed normal 
distributions. In these conditions, the combined 
variances for the mixed normal distributions 
were greater due to the larger variances of the 
secondary distributions. However, different from 
previous studies, control conditions were 

included in which normal distributions had 
variances set equal to the combined variances in 
the mixed normal conditions. Presumably, the 
power of the independent-samples t test would 
be equivalent for the normal and mixed normal 
conditions if the population variances for the 
two conditions were equal and, thus, the 
standard errors of the difference in means were 
equal. However, the results of this study 
demonstrate the counterintuitive result that the 
power may be greater under the mixed normal 
condition. 
 

Methodology 
 

Data were generated using the normal 
pseudorandom number generator available in the 
IML procedure in SAS 8.2. Fifty-four conditions 
were created by manipulating four factors: the 
form of the population distribution, variances of 
these distributions, sample size, and mean 
differences. 
 Form of distributions. Data were 
generated for two independent groups from 
populations with normal or mixed normal 
distributions. 
 Variance. When the distributions were 
normal, the variances were equal to 1 for both 
groups or 80.8 for both groups. When the 
distributions were mixed normal, the variances 
for both groups were 1 for the normal 
distribution with a probability of .80 and 400 for 
the normal distribution with a probability of .20; 
therefore, the mixed normal distributions had a 
combined variance of 80.8. 
 Sample size. The total sample size (N) 
consisted of 24, 48, or 96 cases, with an equal 
number of cases in each of the two independent 
groups. 
 Mean differences. To evaluate the Type 
I error rates of the test statistics, data were 
generated such that the differences in population 
means were equal to zero. To assess power, data 
were generated so that the population mean for 
one group was zero, and the population mean for 
the second group was one of five values: 0.5, 
1.0, 1.5, 3.0, or 4.5. For mixed normal 
distributions, the means of the primary and 
secondary distributions for any one group were 
always the same. 
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Data Analysis 
 Two-tailed independent-samples t tests 
were conducted using the ttest procedure within 
SAS 8.2 and evaluated at the .05 level. Four-
thousand replications were generated for each of 
the 54 conditions. Empirical alphas were 
computed for the conditions in which the means 
were equivalent. Empirical powers were 
calculated as proportions of rejections of a false 
null hypothesis in the correct direction for 
conditions in which the means differed between 
groups. 
 In addition, empirical Type III error 
rates–proportions of rejections of a false null 
hypothesis in the wrong direction–were 
computed. However, Type III error rates were 
excluded from the discussion because they were 
strongly inversely related to power and were 
uniformly very low; Type III error rates were 
less than .01 for 87% of the conditions and never 
exceeded .02. 
 

Results 
 

Empirical Alphas 
For the six conditions with normal distributions 
and equal population means, the empirical 
alphas were very close to .05, ranging from .046 
to .054. These results were expected in that all 
assumptions of the independent-samples t test 
were met under these conditions. On the other 
hand, the empirical alphas were somewhat 
conservative when the distributions were mixed 
normal, particularly for smaller sample sizes. 
The alphas were .025, .042, and .048 with Ns of 
24, 48, and 96, respectively. Given these results, 
any power advantage observed under mixed 
normal conditions cannot be attributed to 
inflated alphas. 
 
Empirical Powers 
 Figure 1 shows the power of the t test as 
a function of the difference in means and sample 
size for three population distributions: mixed 
normal with a variance of 80.8, normal with a 
variance of 80.8, and normal with a variance of 
1.0. As expected, the power was greater for 
conditions with a normal distribution and a 
variance of 1 than for conditions with a mixed 
normal distribution and a variance of 80.8. The 

differential power was substantial across most 
sample sizes and mean differences. 
 The more provocative findings were the 
power comparisons between the mixed normal 
and the normal distributions when both 
distributions had within-group variances of 80.8. 
For these comparisons, the power tended to be 
greater when distributions were mixed normal, 
particularly for the smaller sample sizes (N of 24 
or 48). This power differential became larger as 
the difference in means increased. In contrast, 
the power differential was minimal for the 
largest sample size (N = 96). 
 
Exploration of the Power Differential  
 The results indicate that the power for 
an independent-samples t test is greater when 
samples are drawn from mixed normal 
distributions rather than normal distributions, 
given both distributions have comparable 
variances. To better understand these results, it 
is useful to examine relevant population and 
sampling distributions. 
 In Figure 2, three sets of population 
distributions with means of 0 and 4.5 (and equal 
variances) are presented: mixed normal 
distributions with within-group variances of 
80.8; normal distributions with within-group 
variances of 1.0; and normal distributions with 
within-group variances of 80.8. Examination of 
these population distributions suggests that some 
sample distributions from the mixed normal may 
be more similar to those from the normal with 
variances of 1.0 than those from the normal with 
variances of 80.8, particularly for smaller 
samples. In these samples from mixed normal 
distributions, there should be a greater likelihood 
of rejecting the null hypothesis   than in samples   
drawn from the normal distribution with a 
variance of 80.8. However, sampling 
distributions are next examined to gain a deeper 
insight into the differential power of t test under 
normal and mixed normal conditions. 
 Table 1 shows the sampling 
distributions of the t statistic, the difference in 
means, and the pooled within-group variance for 
30,000 samples drawn from normal and mixed 
normal distributions with a difference in means 
equal to 4.5, within-group variances of 80.8, and 
Ns of 24 (with equal sample sizes). 
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 As shown in the first row, the t 
distribution for the mixed normal condition was 
quite skewed and thick tailed (i.e., skewness = 
2.37 and kurtosis = 11.23) compared to the t 
distribution for the normal condition (i.e., 
skewness = 0.19 and kurtosis = 0.37). Given 
|tcritical(22)| = 2.07, the empirical power of the t 
test was .34 for the mixed normal distribution, 
which was considerably larger than the 
empirical power of .21 for the normal condition. 
 The t statistic is a function of three 
quantities: the difference in means, the pooled 
variance, and sample size–and the latter was 
held constant. As shown  in  the  second  row  of  
 

 

 

 
Table 1, the sampling distributions for the 
difference  in  means  were  symmetric and quite 
similar, except that the sampling distribution for 
the   mixed    normal   was    somewhat   kurtotic 
(kurtosis = .45). As presented in the third row of 
Table 1, the sampling distributions for the 
pooled variance were very different for the two 
types of distributions. Although the means of the 
variances were nearly equal (normal: 80.76; 
mixed normal: 80.65), the variance of the pooled 
variance was 6.56 times larger for the mixed 
normal than for the normal condition. Further, 
the sampling distribution of the pooled variances 
was more skewed and had thicker tails for the 
mixed normal condition compared to the normal 
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Figure 1. Power of the t test as a function of the difference in means and sample size for three 
population distributions: mixed normal with  σ2 = 80.8, normal with  σ2 = 80.8, and normal with σ2 = 
1.0. From left to right, N = 24; N = 48; and N = 96 (with equal cases across group). 

 
                                                                                   Score 
 
Figure 2. Group population distributions for three conditions where variances are equal across groups 
and the difference in means is 4.5. From left to right, mixed normal distributions with σ2 = 80.8; 
normal distributions with σ2 = 1.0; and normal distributions withσ2 = 80.8. 
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condition (normal condition: skewness = 0.59 
and kurtosis = 0.52; mixed normal: skewness = 
1.38 and kurtosis = 2.90). Most importantly, a 
much larger proportion of  replications had small 
variances for the mixed normal distribution than 
for the normal distribution. For example, 
approximately 11% of the pooled variances were 
less than 16 for the mixed normal condition, 
while none were less than 16 for the normal 
condition. 
 A greater percentage of small pooled 
variances are obtained with the mixed normal in 
comparison with the normal distribution in that 
the secondary distribution (with the large 
population variance of 400) for the mixed 
normal may have no or minimal effect on the 
pooled variance in some samples. 
 For example, some samples may contain 
no scores from the secondary distribution, and 
others may contain one score from the secondary 
distribution, but not an extreme score. The 
smaller pooled variances produce larger t values 
and, thus, greater power for the mixed normal 
distribution in comparison with the normal 
distribution with the equal population variances. 
 

Conclusion 
 
The results do not contradict the primary 
conclusions of previous research on the mixed 
normal distribution and the independent-samples 
t test. To the extent that the population 
distributions have outliers, the power of the t test 
is diminished. In the context of the mixed 
normal distribution, the power of the 
independent-samples t test decreases 
dramatically as the probability of a secondary 
distribution with a large variance increases from 
.00 to .20. In the presence of extreme scores, 
robust methods such as trimmed means become 
advantageous. 
 The results, however, contradict the 
hypothesis that the power of the test for normal 
and mixed normal conditions would be equal if 
the within-group variances were held constant 
or, comparably, if the effect sizes (difference in 
means divided by the within-group standard 
deviation) were held constant. Under these 
conditions, the power, in fact, was greater for the 
mixed normal distribution in that some samples 
produce relatively small pooled variance as a 

function of having few, if any, outliers drawn 
from the secondary distributions. The superior 
power was achieved despite the conservative 
Type I error rate for the mixed normal. 
 These results support a number of 
conceptual points. First, care should be used in 
discussing the diminished power of the 
independent-samples t test when population 
distributions are mixed normal rather than 
normal. An accurate statement is that the 
independent-samples t test has diminished power 
with a mixed normal distribution in comparison 
with the normal distribution to the extent that the 
secondary normal distribution has a much larger 
variance than the primary distribution and the 
probability of the secondary distribution is 
relatively large. 
 Second, although the independent-
samples t test is the most powerful method for 
comparing two means if the assumptions, 
including normality, are met, variations of this 
statement may not be true. In particular, it is not 
true that the independent-samples t test has 
greater power if the population distributions are 
normal in comparison with other distributions, 
holding all other conditions constant. As 
demonstrated in this study, the independent-
samples t test can have greater power when the 
population distributions are mixed normal rather 
than normal, given the variances of these two 
types of distributions are held constant.  
 Third, these results may be used to 
speculate about trimming strategies for the 
independent-samples t test. Some samples may 
include no outliers, even though the population 
distributions have outliers. For these samples, 
robust methods relying on trimming lower the 
likelihood of rejecting the null hypothesis by 
reducing the effective sample size without 
decreasing the pooled variance. Adaptive 
trimming methods–ones that trim based on the 
outliers present in the sample data–should 
produce greater power in these circumstances 
than those that use a fixed proportion of 
trimming (e.g., trim 20% from both tails of 
sample distributions). Future Monte Carlo 
studies are required to investigate whether 
adaptive trimming methods under these 
conditions maintain proper control of Type I 
error while increasing power. 
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Table 1. Sampling distributions based on independent samples of equal size (N = 24) drawn from two 
population distributions that are both either normal or mixed normal with a difference in population 
means of 4.5 and a common population variance of 80.8 

Population distributions  
Sampling 
distribution 

Normal Mixed normalc 

  
t test statistica 

t Test Statistic

151413121110987654321-0-1-2-3

F
re

qu
en

cy

6000

5000

4000

3000

2000

1000

0

 
 

t Test Statistic

151413121110987654321-0-1-2-3

F
re

qu
en

cy

6000

5000

4000

3000

2000

1000

0

 
  

Difference in 
meansb 

Difference in Means

2018161412108642-1-3-5-7-9-11

F
re

qu
en

cy

4000

3000

2000

1000

0

 
Difference in Means

2018161412108642-1-3-5-7-9-11

F
re

qu
en

cy

4000

3000

2000

1000

0

 
 
Pooled 
variance 

 

Pooled Variance

3603303002702402101801501209060300

F
re

qu
en

cy

5500

5000

4500

4000

3500

3000

2500

2000

1500

1000

500

0

 

 

Pooled Variance

3603303002702402101801501209060300

F
re

qu
en

cy

5500

5000

4500

4000

3500

3000

2500

2000

1500

1000

500

0

  
aThe vertical reference line indicates the critical value for rejecting the null hypothesis in the correct 
direction: t(22)=2.07. 
bA normal curve is superimposed on the plots of the difference in means. 
cThe abscissas for the distributions based on the mixed normal were not extended to include all 
possible values of statistics if the frequencies for intervals including these values were sufficiently 
small (< .04 % of samples) that they could not be observed on the graphs.  The most extreme values 
not shown were for the pooled variance, with six values being greater than 500. 
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There exist many misconceptions in choosing the t over the Wilcoxon Rank-Sum test when testing for 
shift. Examples are given in the following three groups: (1) false statement, (2) true premise, but false 
conclusion, and (3) true statement irrelevant in choosing between the t test and the Wilcoxon Rank Sum 
test. 
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Introduction 
 
For treatment effects modeled as a shift in 
location parameter, the t test can be decidedly 
nonrobust to departures from population 
normality unless certain conditions have been 
met (Sawilowsky & Blair, 1992). When 
normality is met or nearly met (which occurs 
rarely), the t test maintains a very small power 
advantage over the Wilcoxon Rank Sum / Mann- 
Whitney U test. When normality is violated, the 
Wilcoxon Rank Sum Test can be three or four 
times more powerful than the independent 
samples t test (Blair, 1980; Blair & Higgins, 
1980a, 1980b, 1981; Blair, Higgins, & Smitely, 
1980; Sawilowsky & Blair, 1992). The power 
advantages of the nonparametric test actually 
increases with sample size for the low to mid-
level parts of the t test’s power spectrum. 

Although the power advantage is not as 
spectacular as with the independent samples 
case, the Wilcoxon Signed-Ranks test for two 
dependent samples nevertheless maintains a 
considerable power advantage over the 
dependent samples t test for similar conditions 
(Blair & Higgins, 1985a, 1985b). 
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 The dates of the Monte Carlo studies 
cited above are from 1980 – 1992. Promise for 
these small sample results was available decades 
prior on the basis of large sample asymptotic 
theory. This understanding had even penetrated 
to the level of a book review written in 1968! 
“The Wilcoxon rank-sum test…show[s] only 
slight losses in both large and small sample 
efficiency relative to the t-test in the normal 
case, while in many non-normal cases, 
efficiency exceeds 100%” (Meeter, 1968). 
 Thus, sane researchers opt to use the 
Wilcoxon Rank Sum test when testing for shift 
in location. Overly cautious researchers, with no 
justification, opt to perform both the t test and 
the Wilcoxon Rank Sum test, and accept the 
Wilcoxon only if it rejects and the t doesn’t. 
(This is a misguided practice, as it leads to an 
increase in experiment-wise Type I errors.) 
Pedantic researchers, oblivious to the Monte 
Carlo results of the past 25 years, and 
asymptotic results for the past half-century, 
simply ignore the Wilcoxon Rank Sum test in 
favor of the t test. 

In the course of reviewing articles 
submitted to the sixteen journals that I have 
provided ad hoc reviews over the past 15 years, I 
have compiled a list of constantly recycling 
reasons given for preferring the t test over the 
Wilcoxon Rank Sum test when testing for shift 
in location. They are presented below without 
expansive commentary, in the hopes that they 
never again resurface. 
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The misconceptions are categorized in 
three groups: (1) false statement, (2) true 
premise, but false conclusion, and (3) true 
statement irrelevant in choosing between the t 
test and the Wilcoxon Rank Sum test. 

 
(1) False Statement 
  

• the Wilcoxon is only for use when the 
data are originally in the form of ranks 

• the Wilcoxon’s ranking procedure 
throws away useful information 

• the Wilcoxon is only for use in the 
presence of outliers 

• the Wilcoxon should only be used for 
small samples 

• the t is robust with respect to Type I 
errors 

• the t is more powerful 
• if a modern procedure should be used, it 

should be a permutation test, not the 
Wilcoxon 

 
(2) True Premise, but False Conclusion 
  

• the Wilcoxon is a test of fi(x) = gi(x) 
(true), so even if it does reject and the t 
doesn’t, it is probably due to some 
difference other than the mean (e.g., 
scale) (false) 

• the Wilcoxon’s underlying assumptions 
are weaker (true), therefore the 
hypothesis being tested is less 
interesting (false) 

• in terms of central tendency, the 
Wilcoxon pertains to the median (true), 
which is less interesting than the mean 
(false) 

• the t is expandable to the k samples case 
(true), but the Wilcoxon is not (false) 

• the t is expandable to the multivariate 
case (true), but the Wilcoxon is not 
(false) 

• the t is expandable to the factorial case 
(true), but the Wilcoxon is not (false) 

 
 
 
 

(3) True Statement Irrelevant in Choosing 
Between the t and Wilcoxon 
 

• the t is a classical test 
• results based on the t have been 

accumulating for almost a century, 
permitting direct comparison of results 
over time 

• the t on the ranks is equivalent to the 
Wilcoxon on the original scores 

• the hypotheses being tested for the t and 
Wilcoxon aren’t exactly the same 

• the t is the Uniformly Most Powerful 
Unbiased test under normality 

• the t is robust with respect to Type II 
errors for departures from normality 

• for very small sample sizes the t can be 
conducted at α = .05 or .01, but the 
Wilcoxon cannot because there are no 
critical values 

• at relatively small sample sizes, the 
Wilcoxon test cannot be conducted at 
exactly the α = .05 or .01 levels due to 
the discrete nature of the sampling 
distribution 

• even its inventor called the Wilcoxon 
test a “quick and dirty” or “crude” 
procedure 

 
References 

 
 Blair, R. C. (1980). A comparison of the 
power of the two independent means t test to 
that of theWilcoxon’s rank-sum teset for samples 
of various populations. Unpublished doctoral 
dissertation, University of South Florida, 
Tampa, FL. 
 Blair, R. C., & Higgins, J. J. (1980a). A 
comparison of the t test and the Wilcoxon 
statistics when samples are drawn from a certain 
mixed normal distribution. Evaluation Review, 
4, 645-656. 
 Blair, R. C., & Higgins, J. J. (1980b). A 
comparison of the power of the Wilcoxon’s 
rank-sum statistic to that of student’s t statistic 
under various non-normal distributions. Journal 
of Educational Statistics, 5(4), 309-335. 
 
 
 



www.manaraa.com

CHOOSING THE T TEST OVER THE WILCOXON MANN-WHITNEY 600 

 Blair, R. C., & Higgins, J. J. (1981). A 
note on the asymptotic relative efficiency of the 
Wilcoxon rank-sum test relative to the 
independent means t test under mixtures of two 
normal distributions. British Journal of 
Mathematical and Statistical Psychology, 31, 
125-128. 
 Blair, R. C., & Higgins, J. J., & Smitely, 
W. D. S. (1980). On the relative power of the U 
and t tests. British Journal of Mathematical and 
Statistical Psychology, 33, 114-120. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 

Meeter, D. (1968). Book Reviews, 
Journal of the American Statistical Association, 
62, p. 1505) 
 Sawilowsky, S. S., and Blair, R. C. 
(1992). A more realistic look at the robustness 
and type II error properties of the t test to 
departures from population normality. 
Psychological Bulletin, 111, 353-360. 
 



www.manaraa.com

Journal of Modern Applied Statistical Methods   Copyright © 2005 JMASM, Inc. 
November, 2005, Vol. 4, No. 2, 601-608                                                                                                                  1538 – 9472/05/$95.00 

601 

Early Scholars 
Sample Size Selection for Pair-Wise Comparisons Using Information Criteria 

 
    Xuemei Pan       C. Mitchell Dayton 

      University of Maryland  
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and Tukey HSD as functions of the pattern of mean differences and of sample size. Therefore, the tables 
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Introduction 
 

Model-comparison procedures using 
information-theoretic criteria such as AIC or 
BIC provide the basis for attractive alternatives 
to traditional pairwise comparison procedures 
such as Tukey HSD tests and its many 
variations. Known as paired-comparisons 
information criterion, or PCIC, these methods 
avoid many of the problems associated with 
conducting a series of correlated significance 
tests.  

 In presenting the theoretical background 
for PCIC, Dayton (1998) reported a small-scale 
simulation study that provided some evidence 
concerning the probability of detecting exactly 
all true pairwise differences among means from 
several samples. This is referred to as all-pairs 
power Ramsey (1978) or as the true-model rate 
by Cribbie and Keselman (2003). Dayton (1998) 
found that the all-pairs power for PCIC was 
found to be generally better than that of HSD. In 
a much more extensive study of PCIC compared 
with three step-wise multiple comparison 
procedures (MCPs), Cribbie and Keselman 
(2003) reported that “when all population means 
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were not equal… {PCIC}… had significantly 
higher true-model rates than any of the stepwise 
MCPs.” Similarly, Cribbie (2003) reported a 
simulation study that compared several 
conventional multiple comparison procedures 
with PCIC and concluded that PCIC “…had 
consistently larger true models rates than did 
familywise error controlling MCPs.”  

Information is provided in this article 
concerning the performance of PCIC with 
respect to rates of correct identifications of 
patterns of mean differences as a function of 
sample size and thus, the results are useful for 
selecting sample sizes for real world 
applications. These results supplement the very 
limited simulation results for minimum sample 
size requirements for selected power levels 
provided by Dayton (2003).  

 
Summary of PCIC 
 For K independent groups, many 
popular pairwise-comparison procedures 
compute test statistics for each of the K(K – 1)/2 
unique pairs of means and refer these statistics 
to an appropriate null distribution. Tukey HSD 
tests, for example, are based on the studentized 
range  statistic  for a span  of  K  means. Thus, K  
(K – 1)/2 hypotheses of the form µk = µk′  for k ≠ 
k′ are tested. Among the problems with 
procedures such as this as cited by Dayton 
(1998) are: 
 

(1) Some arbitrary technique is 
necessary to control the family-wise 
type I error rate for the set of 
correlated pairwise tests; 
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(2) The issues of homogeneity of 
variance and differential sample size 
pose problems for many paired-
comparison procedures; 

(3) Intransitive decisions (e.g., 
outcomes suggesting mean 1 = 
mean 2, mean 2 = mean 3, but mean 
1 < mean 3) are the rule rather than 
the exception with typical paired 
comparison procedures since they 
entail a series of discrete, pairwise 
significance tests; 

(4) There exists a large variety of 
competing procedures that differ in 
how type I error is controlled and 
consequently, in power. 

 
Dayton (1998) proposed using 

information-theoretic model-selection criteria 
such as AIC (Akaike, 1973) or BIC (Schwarz, 
1978) for selecting the most appropriate 
ordering of subsets of means for purposes of 
interpretation. By considering patterns of mean 
differences, rather than pair-wise differences, the 
PCIC approach avoids many of the objections 
raised above. Furthermore, the interpretation of 
results is facilitated by PCIC to a much greater 
degree than by conventional pair-wise 
comparison procedures. 

For K independent means, there are a 
total of 2K-1 patterns of ordered subsets with 
equal means within subsets. For example, with 
three groups for which the means are ranked and 
labeled 1, 2, 3, the 22 = 4 distinct ordered subsets 
are {123}, {1,23}, {12,3} and {1,2,3}, where a 
comma is used to separate subsets that are 
unequal in mean value. The basic approach in 
PCIC is to compute AIC (or, BIC) for each 
ordered subset based on appropriate model 
assumptions. Then, the preferred model for 
purposes of interpretation is the one that satisfies 
a min(AIC), or min(BIC), criterion. 

Assuming a given model and 
distributional form for the data (e.g., normal), 
AIC is computed as –2Loge(L) + 2p, where p is 
the number of independent parameters estimated 
in calculating the likelihood, L, for the observed 
data. Typically, the additive term, 2p, is viewed 
as a penalty that reflects the complexity of the 
model. Similarly, BIC is computed as –2Loge(L) 
+ Loge(N)p where N is the total sample size. For 

a model with T subsets of means, p equals T+1 
assuming homogeneity of variance for the K 
groups (see Dayton, 1998; 2003, for discussion 
of related models without the assumption of 
homogeneity). For example, for the pattern {1, 
2, 34} there are three ordered subsets of means 
so the value of T is 4. The four parameters that 
are estimated are the mean of group 1, the mean 
of group 2, the combined mean of groups 3 and 
4 and the pooled variance across the four groups. 
It should be noted that in computing the 
likelihood for the data, maximum-likelihood 
estimates for variances are biased (e.g., use N in 
the denominator for computing the pooled 
variance). 

 AIC does not directly involve the 
sample size in its computation and, as noted by 
Bozdogan (1987), lacks certain properties of 
asymptotic consistency usually associated with 
increasing sample sizes. Also, since Loge(N) is 
larger than the penalty coefficient, 2 for AIC 
when N is greater than seven, AIC and BIC may, 
and often do, result in different orderings of 
subsets of means with, predictably, simpler 
models being favored by BIC, although AIC 
tends to select more complex models (i.e., 
models with a greater number of subsets of 
means).  

 
Methodology 

 
The main focus of this research was to provide 
some guidance for selecting sample sizes for 
comparisons based on information criteria. 
Power is not only a function of effect size and 
sample size but also varies in terms of the 
population pattern of mean differences. In 
addition for AIC, but not BIC or other 
asymptotically    consistent  methods,   there  are  
theoretical maximum power levels with respect 
to certain patterns of mean differences. 
 In theory, probabilities for selecting 
models with larger numbers of subsets of means 
than the true model can be calculated for AIC 
using results provided by Bozdogan (1987). 
These calculations provide the upper limits on 
power that AIC can attain regardless of sample 
size (as noted above, AIC is not asymptotically 
consistent). Therefore, when using AIC it is 
theoretically possible to choose an over-
parameterized model even as the sample size 
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approaches infinity. Model selection criteria 
which have this property are sometimes called 
dimension inconsistent. For example with 5 
groups, the maximum powers, in theory, for true 
models with 1 to 5 clusters of means are: .504, 
.596, .707, .843, and 1.000, respectively. Thus, 
for one or two clusters of means there is no 
sample size that will yield all-pairs power of 2/3 
for AIC with 5 groups. 
 For determining minimum sample size 
requirements, four sets of conditions were 
considered:  
 
 (1) Number of independent groups: k=3, 
4, 5 and 6.  
 (2) Effect size, f, using Cohen’s (1969) 
definition with small (.1), medium (.25) and 
large (.4) levels for the corresponding one-way 
ANOVA design with equally-spaced population 
means. 
 (3) Power: .50, .67 and .80 representing 
low, medium and large values.  
 (4) Patterns of population means: A 
variety of patterns were examined as shown in 
the sample size tables below. 
 

Programming in the matrix language, 
Gauss (Aptech Systems, Inc., 2002), was used to 
determine minimum sample size requirements 
for AIC, BIC and HSD. Data were generated by 
using 1,000 pseudo-random, homoscedastic 
normal samples of equal sizes with sample sizes 
starting at 10 per group and incremented by five 
per group at each iteration. Iterations terminated 
and the sample size recorded when the specified 
power (.50, .67 or .80) was attained or, if not 
attained, when a sample size of 1000 per group 
was reached.  

For AIC and BIC, the proportion of 
cases for which the selection procedure resulted 
in selection of the correct data-generating model 
represents the true-model (or, accuracy) rate. For 
HSD, pairwise q tests were calculated for all 
pairs of means and a count was made of the 
number of correct decision in the sense of 
identifying the correct pattern (e.g., to be 
counted as correct for the population pattern {1, 
2, 3, 4, 5}, all 10 pairwise differences had to be 
significant at the .05 level). Note that the 
simulations only involved equal sample sizes 
with equal population variances. 

Results 
 

Results for minimum sample sizes are shown in 
Tables 1, 2 and 3 for effect sizes of .10, .25 and 
.40, respectively. As expected from prior power 
studies, HSD often requires considerably larger 
sample sizes to attain specified power levels 
than do methods based on information criteria. 
However, there are substantive differences 
among the methods for specific cases. The 
following generalities apply:  
 
 (A) When all means are different, AIC 
requires uniformly much smaller sample sizes 
than either BIC or Tukey HSD for any number 
of groups. For example, this superiority of AIC 
is displayed in Figure 1 that shows minimum 
sample size requirements for AIC, BIC and 
Tukey HSD with medium effect size, .25, 
medium power, .67, and all means different. On 
the other hand, the minimum sample size 
requirements for BIC and Tukey HSD are 
essentially equivalent for this case. 
 (B) As a rule of thumb, AIC requires 
smaller minimum samples sizes than BIC or 
Tukey HSD when the number of clusters of 
homogeneous means is greater than one-half the 
number of groups. Occasionally this rule fails 
since AIC cannot, in theory, attain .67 or .8 
power, as noted above. 
 (C) When the number of clusters of 
homogeneous means is less than one-half the 
number of groups, BIC tends to perform better 
than either AIC or Tukey HSD although this 
advantage tends to vanish when all group means 
are equal. On the basis of the poor performance 
of AIC for the null pattern, it was suggested by 
Dayton(1998) that an omnibus test be conducted 
as the first step in any analysis and that 
additional analyses be contingent on attaining 
significance with the omnibus test. However, a 
preliminary omnibus test provides no benefit for 
the BIC strategy.  
 (D) For three or more clusters of 
homogeneous means, those patterns with two or 
more groups clustered in the center yield higher 
accuracy rates than when the groups are 
clustered in   the tail for  all  three  methods.  For  
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example, with four groups, the pattern {1, 23, 4} 
has higher accuracy rates than pattern {12, 3, 4} 
even though both patterns contain three clusters 
of means. Similarly, for six groups, the five-
cluster pattern {1, 2, 34, 5, 6} requires smaller 
minimum sample size requirements than the 
five-cluster pattern {12, 3, 4, 5, 6}. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
In general, inconsistent performance 

between the two PCIC methods, AIC and BIC, 
can be explained by differences in their penalty 
terms. In general, AIC tends to select more 
complex models than BIC. Thus, when errors 
are made, AIC can be viewed as tending to 
overfit models whereas BIC can be viewed as 
tending to underfit models. 
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Table 1. Minimum Sample Size Requirement: Effect Size=0.10 

 
 AIC BIC Tukey HSD 
Power .5 .67 .8 .5 .67  .8 .5  .67 .8  
Pattern of means          
Three groups 
{1,2,3} 560 750 985 M M M M M M 
{12,3} 100 185 325 225 310 415 345 450 565 
{123} 10 10 * 10 10 10 10 10 10 
          
Four groups          
{1,2,3,4} M M M M M M M M M 
{12,3,4} 615 860 M M M M M M M 
{1,23,4} 390 550 835 910 M M M M M         
{123,4} 110 220 * 175 245 325 370 480 580 
{1234} 10 * * 10 10 10 10 10 10 
          
Five groups          
{1,2,3,4,5} M M M M M M M M M 
{12,3,4,5} M M M M M M M M M 
{12,3,45} 655 M * M M M M M M 
{1,234,5} 360 595 * 665 805 980 M M M 
{1234,5} 105 * * 135 205 260 385 495 575 
{12345} 10 * * 10 10 10 10 10 10 
          
Six groups          
{1,2,3,4,5,6} M M M M M M M M M 
{12,3,4,5,6} M M M M M M M M M        
{1,2,34,5,6} M M M M M M M M M 
{1,2,3,456} M M * M M M M M M 
{1,2,345,6} M M * M M M M M M 
{12,34,56} 515 * * 710 930 M M M M   
{12,345,6} 405 * * 465 580 740 M M M 
{12345,6} 160 * * 125 170 230 385 465 545  
{123456} * * * 10 10 10 10 10 10 

 
 *   AIC, cannot, in theory attain this power 
 M  Sample size >1000 
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Table 2. Minimum Sample Size Requirement: Effect Size=0.25 
 

 
 AIC BIC Tukey HSD 
Power .5 .67 .8 .5 .67  .8 .5  .67 .8  
Pattern of means          
Three groups 
{1,2,3} 90 125 160 225 265 325 195 240 285 
{12,3} 20 30 60 30 45 60 60 75 90 
{123} 10 10 * 10 10 10 10 10 10 
          
Four groups          
{1,2,3,4} 220 275 335 530 640 730 480 575 655 
{12,3,4} 100 145 235 210 255 310 250 305 360 
{1,23,4} 60 90 125 120 155 185 200 230 280 
{123,4} 20 45 * 25 35 50 65 80 95 
{1234} 10 * * 10 10 10 10 10 10 
          
Five groups          
{1,2,3,4,5} 385 475 565 985 M M M M M 
{12,3,4,5} 240 320 485 520 620 740 585 670 765 
{12,3,45} 100 185 * 145 200 245 335 395 450  
{1,234,5} 55 90 * 85 100 130 175 210 240 
{1234,5} 20 * * 20 25 40 60 75 90 
{12345} 10 * * 10 10 10 10 10 10 
          
Six groups          
{1,2,3,4,5,6} 640 760 925 M M M M M M 
{12,3,4,5,6} 460 610 880 M M M M M M 
{1,2,34,5,6} 310 420 550 670 765 900 885 M M 
{1,2,3,456} 260 420 * 545 650 740 680 765 905 
{1,2,345,6} 170 270 * 300 360 430 470 540 625 
{12,34,56} 85 250 * 105 140 175 360 415 480 
{12,345,6} 65 * * 65 90 110 260 305 340 
{12345,6} 30 * * 20 25 40 65 75 90 
{123456} * * * 10 10 10 10 10 10 

   
*   AIC, cannot, in theory attain this power 
M  Sample size >1000 
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Table 3. Minimum Sample Size Requirement: Effect Size=0.40 
 

 
 AIC BIC Tukey HSD 
Power .5 .67 .8 .5 .67  .8 .5  .67 .8  
Pattern of means          
Three groups 
{1,2,3} 40 50 60 75 95 115 80 90 120 
{12,3} 10 15 25 10 15 25 25 30 40  
{123} 10 10 * 10 10 10 10 10 10 
          
Four groups          
{1,2,3,4} 85 105 135 195 230 275 190 220 260 
{12,3,4} 40 55 85 75 90 110 105 125 145 
{1,23,4} 25 40 60 45 55 70 80 90 105 
{123,4} 10 15 * 10 15 20 25 30 35 
{1234} 10 * * 10 10 10 10 10 10 
          
Five groups          
{1,2,3,4,5} 160 195 235 365 425 475 365 415 480 
{12,3,4,5} 100 130 190 200 235 290 245 285 315 
{12,3,45} 50 70 * 60 80 100 140 165 185 
{1,234,5} 25 35 * 30 40 50 75 90 105 
{1234,5} 10 * * 10 15 15 25 35 40 
{12345} 10 * * 10 10 10 10 10 10 
          
Six groups          
{1,2,3,4,5,6} 250 300 365 580 690 765 600 675 760 
{12,3,4,5,6} 175 235 350 385 455 525 455 515 580 
{1,2,34,5,6} 120 155 240 235 280 330 355 400 450 
{1,2,3,456} 105 155 * 190 235 275 260 305 350 
{1,2,345,6} 65 105 * 105 130 160 190 220 245 
{12,34,56} 40 85 * 40 50 65 145 165 190   
{12,345,6} 30 * * 25 35 45 105 115 130 
{12345,6} 15 * * 10 10 20 25 30 40  
{123456} * * * 10 10 10 10 10 10 

 
*   AIC, cannot, in theory attain this power 
M  Sample size >1000 
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JMASM Algorithms and Code 
JMASM20: Exact Permutation Critical Values For The 

Kruskal-Wallis One-Way ANOVA 
 

Justice I. Odiase      Sunday M. Ogbonmwan 
Department of Mathematics 
University of Benin, Nigeria 

 
 
The exhaustive enumeration of all the permutations of the observations in an experiment is the only 
possible way of truly constructing exact tests of significance. The permutation paradigm requires no 
distributional assumptions and works well with values that are normal, almost normal and non-normally 
distributed. The Kruskal-Wallis test does not require the assumptions that the samples are from normal 
populations and that the samples have the same standard deviation. In this article, the exact permutation 
distribution of the Kruskal-Wallis test statistic is generated empirically by actually obtaining all the 
distinct permutations of an experiment. The tables of exact critical values for the Kruskal-Wallis one-way 
ANOVA are produced. 
 
Keywords: Permutation test, Kruskal-Wallis test, p-value, permutation algorithm, one-way ANOVA. 
 

 
Introduction 

 
Variation is inherent in nature and errors are 
made occasionally when inferences are drawn 
from experiments. The risk in decision making 
cannot be totally eliminated but it can be 
controlled if correct statistical procedures are 
employed. The unconditional permutation 
approach is a statistical procedure that ensures 
that the probability of a type I error is exactly α 
and ensures that the resulting distribution of the 
test statistic is exact (Agresti, 1992; Good, 2000; 
Pesarin, 2001). 
 Scheffe (1943) demonstrated that for a 
general class of problems, the permutation 
approach    is   the   only   possible    method   of  
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constructing exact tests of significance. It is 
asymptotically as powerful as the best 
parametric test (Hoeffding, 1952). In this article, 
consideration is given to the exhaustive 
permutation of the ranks of the observations in a 
single factor multi-sample experiment to arrive 
at the exact distribution of the Kruskal-Wallis 
(K-W) test statistic. 
 The method of obtaining an exact test of 
significance originated with Fisher (1935). The 
essential feature is that all the distinct 
arrangements of the observations are considered, 
with the proviso that all permutations are equally 
likely under the null hypothesis. An exact test on 
the level of significance α is constructed by 
choosing a proportion, α, of the permutation as 
the critical region. 
 Statisticians have considered for some 
decades the possibility of generating exact 
critical values for the common test statistics that 
are in use today. This has resulted in the 
development of several ways such as the exact 
conditional permutation approach (Fisher, 1935; 
Agresti, 1992), the Monte Carlo approaches 
such as the Bootstrap (Efron, 1979; Efron and 
Tibshirani, 1993),     the     Bayesian     approach 
(Casella & Robert, 2004), and the likelihood 
approach (Owen, 1988; Barndorff-Nielsen & 
Hall, 1988). 
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 The works of Siegel and Castellan 
(1989), Conover (1999), Headrick (2003), Bagui 
& Bagui (2004) are contributions to the quest for 
exact critical values but the distributions are 
obtained from either simulation or asymptotic 
approximations of the distribution of the K-W 
test statistic. For small samples, ni ≤ 5, i = 1(1)p 
in a p-sample experiment, the null distribution of 
K-W statistic is not known and a chi-square 
approximation will not be a good approximation, 
(see Bagui & Bagui (2004)). The consideration 
given in this article produces the exact 
distribution of the K-W test statistic for small 
samples. 
 
Distribution-free analysis of variance 
 The single-factor ANOVA model for 
comparing p populations or treatment means 
assumes that for i = 1, 2, …, p, a random sample 
of size n is drawn from a normal population with 
mean iµ  and variance σ

2. The normality 

assumption is required for the validity of the F 
test while the validity of the Kruskal-Wallis test 
for testing equality of the µi’s (Kruskal & 
Wallis, 1952) depends only on the amount by 
which observed values deviate from their means 
µi’s (random error) having the same continuous 
distribution. 
 Given a multisample experiment with  
 

( )T
iniii i

XXXX ,...,, 21= , i = 1(1)p 

 
and  
 

XN = ( )pXXX ,...,, 21 , 

where N = ∑
=

p

i
in

1

, the total number of 

observations in the data set. Suppose that one 
ranks all the N observations from 1 (smallest Xij) 
to N (largest Xij), the permutation test procedure 
presented in this article, computes an empirical 
estimate of the cumulative distribution of the test 
statistic T under the null hypothesis. Let the 
layout of the ranks of the observations Xij be as 
follows:  
 

( )T
21 ,...,,

iiniii rrrR = , i  = 1(1)p. 

 

and  
 

RN = ( )pRRR ,...,, 21 , N = ∑
=

p

i
in

1

. 

 
Under the null hypothesis, RN is composed of N 
independent  and identically  distributed random  
variables and hence conditioned on the observed 
data set. An exhaustive permutation of the ranks 
yields  
 

M =
( )[ ]!

!

1
i
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permutations of the N ranks of the variates of p 
subsets of size ni, i = 1(1)p which are equally 
likely, each having the conditional probability 
M-1. 
 When pH µµµ === ...: 210  is true, 

the N observations are assumed to have come 
from the same distribution, in which case all 
possible assignments of the rank 1, 2, …, N to 
the p samples are equally likely and the ranks 
will be intermingled in these samples. Let Rij 
denote the rank of the jth observation in the ith 

treatment Xij. Let .iR  and .iR  denote 

respectively the total and mean of the ranks in 
the ith treatment. The K-W test statistic is a 

measure of the extent to which the .iR ’s deviate 

from their common expected value 
2

1+N
, and 

H0 is rejected if the computed value of the 
statistic indicates too great a discrepancy 
between observed and expected rank averages. 
The K-W test statistic is  
 

H = ( ) ( )13
1
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1

2

+−
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R

NN

p
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i . 

 
 If H0 is rejected when cH ≥ , then c 
should   be   chosen so  that the test has level α .  
That is, c should be the upper-tail critical value 
of the distribution of H when H0 is true. Under 
H0, each possible assignment can be 
enumerated, the value of H determined for each 
one, and the null distribution obtained by 
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counting the number of times each value of H 
occurs. When H0 is true, the large-sample 
approximation is applied if p = 3, 6≥in , i = 

1(1)3 or 5,3 ≥> inp , i = 1(1)p (Devore, 1982; 

Rohatgi, 1984). H has approximately a chi-
squared distribution with p – 1 degrees of 
freedom. An approximate level α  test is given 

by: Reject H0 if 
2

1, −≥ pH αχ . 

 
Methodology 

 
The process of obtaining the permutations starts 
by choosing the test statistic T and the 
acceptable significance level α . Let π 1, π 2, 
…, π n be a set of all distinct permutations of the 
ranks of the data set in the experiment. The 
permutation test procedure is as follows: 
 

1. Rank the observations of the experiment 
as required by the K-W test. 

 
2. Compute the observed value of the K-W 

test statistic (H1 = t0). 
 
3. Obtain a distinct permutation iπ , of the 

ranks in Step 1. 
 
4. Compute the K-W test statistic Hi for 

permutation iπ  in Step 3, that is, Hi = 

H( iπ ). 

 
5. Repeat Steps 3 and 4 for i = 2, 3, …, M. 
 
6. Construct an empirical cumulative 

distribution for H 
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where  
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 tif0,

 tif1,

H

H
. 

 
7.Under the empirical distribution, if α≤0p ,  

reject the null hypothesis. 

 The complexity in permutation test lies 
in obtaining all the distinct permutations of the 
observations in a given experiment. For 
example, a four-sample experiment with six 
variates in each sample requires 
2,308,743,493,056 permutations. The frequency 
distribution is constructed for all the distinct 
occurrences of the test statistic from which the 
probability distribution of the test statistic is 
computed. 
 The number of permutations of the 
ranks of a two-sample experiment is  
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑

= i

n

i

nn

i

2

0

1 , n = min (n1, n2), 

 
see Odiase & Ogbonmwan (2005) for details. 
 After obtaining the permutations of the 
ranks of a two sample experiment, the number of 
ways to permute the ranks of any n3 of the 
combined ranks (n1 + n2 + n3) of the variates of 
the three-sample experiment yields 
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A complete enumeration of the distinct 
permutations of the ranks of a four-sample 
experiment yields 
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 Continuing in this manner, for p ≥ 3 
treatments, the distinct permutations of the ranks 
of the variates are enumerated through  
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 For the balanced case, n1 = n2 = … = np 
= n, the number of distinct permutations of the 

ranks  of  the   variates   is     
p
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illustration, let  
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and  
 

RN = ( )pRRR ,...,, 21 . 

 
Consider a three-sample experiment with 
observations xij, n1 =3, n2 = n3 = 2, that is, 
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can be taken as 
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. An exhaustive 

permutation of this experiment yields 210 
distinct permutations of the ranks. 
 First obtain the 6 permutations of the 
ranks of the 4 variates of the last two treatments, 
that is, 
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There are 35 ways to permute any 3 ranks of the 
combined 7 ranks of the variates of the 
experiment. 
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Each of the 35 ways will combine with the 6 
permutations of the remaining 4 ranks of the 
variates making up the last two treatments in any 
configuration of the experiment, that is,  
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 Consider the set of all these 210 
permutations, for each one of them, compute the 
test statistic of interest and hence calculate the 
probability of the different values of the test 
statistic based on the number of times each is 
occurring. When ties occur in the data set, the 
tied observations are usually assigned the mean 
of the ranks they would have been assigned if 
they were distinct. Ties do not pose any problem 
to the permutation test presented in this article. 
Assuming no ties, the experiment just presented 
will have ranks {1, 2, 3, 4, 5, 6, 7} represented 
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 as 
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 and the distinct permutations of 

these ranks lead to the remaining 209 
permutations. 
 
Permutation algorithms 
 Considering the associated complexity 
in a complete enumeration of the distinct 
permutations necessary for the compilation of 
the distribution of the K-W test statistic, 
computer algorithms for an exhaustive 
enumeration are now presented. 
 The first step in developing permutation 
algorithm is to formulate an initial configuration 
of the ranks of the variates of an experiment by 
taking the trivial configuration given below as: 
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Algorithm (PERMUTATION) of Odiase 

& Ogbonmwan (2005) can handle the 
permutation of the ranks of the variates in a two-
sample experiment. Algorithm 1 in this article 
generates the distinct permutations of the ranks 
of the variates of a three-sample experiment and 
relies on the permutation of the ranks of the 
variates in a two-sample experiment. 

 
 
 
 
 
 
 
 
 
 
 

Algorithm 2 calls Algorithm 1 and then 
generates the distinct permutations of the ranks 
of the variates of a four-sample experiment. 
Algorithms 1 and 2 can be extended to take care 
of the sample sizes under consideration. 
 

Results 
 
Critical values for the K-W test statistic 
 The algorithms were implemented in 
Intel Visual Fortran. Figures 1 – 10 show the 
small sample distribution of the K-W test 
statistic for different sample sizes for 3 and 4 
samples. The resulting tables of exact critical 
values as obtained from the exact permutation 
distribution of the K-W test statistic are 
presented in Tables 1 and 2. 

 
Conclusion 

 
Figures 1 and 2 reveal the fact that the chi 
squared distribution, which is the large sample 
approximation of the K-W test statistic, will 
poorly approximate the exact distribution of the 
K-W test statistic for very small sample sizes. 
As sample sizes increase, the shape of the chi 
squared distribution begins to emerge as seen in 
Figures 3 – 10. 
 The critical values for a test statistic are 
usually determined by cutting off the most 
extreme 100α% of the theoretical frequency 
distribution of the test statistic, where α is the 
level of significance, see Siegel and Castellan 
(1989). The critical values of the K-W test 
statistic contained in Tables 1 and 2 are obtained 
from the enumeration of all the distinct 
permutations of the ranks of the variates in an 
experiment. These critical values are exact and 
therefore ensures that the probability of a type I 
error in decisions arising from the use of the K-
W test is exactly α. 
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Algorithm 1 (3 samples) 
1: for II10 ← 1, P do 
2: for JJ10 ← 1, K(II10) do 
3: Y(JJ10, II10) ← Z1(JJ10, II10) 
4: Y1(JJ10, II10) ← Z1(JJ10, II10) 
5: end for 
6: end for 
7: Obtain a distinct permutation of ranks in the last two samples 
 Exchange one rank 
8: for JJ1 ← 1, K(2) do 
9: TEMPA ← Y1(JJ1, P - 2) 
10: for II1 ← P-1, P do 
11: for 110 JJ2 ← 1, K(II1) do 
12: Y1(JJ1, P - 2) ← Y1(JJ2, II1) 
13: Y1(JJ2, II1) ← TEMPA 
14: Obtain a distinct permutation of ranks in the last two samples 
15: end for 
16: end for 
17: end for 
 Exchange two ranks 
18: for II ← 1, K(2) – 1 do 
19: TEMPA1 ← Y1(II, P – 2) 
20: for JJ ← II + 1, K(2) do 
21: TEMPA2 ← Y1(JJ, P – 2) 
22: for LL ← P – 1, P do 
23: for II1 ← 1, K(LL) do 
24: for LL1 ← LL, P do 
25: if LL ← LL1 then 
26: TT ← II1 + 1 
27: else 
28: TT ← 1 
29: end if 
30: for JJ1 ← TT, K(LL1) do 
31: Y1(II, P - 2) ← Y1(II1, LL) 
32: Y1(II1, LL) ← TEMPA1 
33: Y1(JJ, P - 2) ← Y1(JJ1, LL1) 
34: Y1(JJ1, LL1) ← TEMPA2 
35: Obtain a distinct permutation of ranks in the last two samples 
36: end for 
37: end for 
38: end for 
39: end for 
40: end for 
41: end for 
42: … 
 Restore original ranks 
43: for II0 ← 1, P do 
44: for JJ0 ← 1, K(II0) do 
45: Z1(JJ0, II0) ← Z(JJ0, II0) 
46: end for 
47: end for 
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Algorithm 2 (4 samples) 
 Generate ranks 
1: KK ← 0 
2: for I ← 1, P do 
3: KK ← KK + K(I-1) 
4: for J ← 1, K(I) do 
5: Z(J, I) ← KK + J 
6: Z1(J, I) ← Z(J, I) 
7: Y(J, I) ← Z(J, I) 
8: Y1(J, I) ← Y(J, I) 
9: X(J, I) ← Z(J, I) 
10: X1(J, I) ← X(J, I) 
11: end for 
12: end for 
13: call Algorithm 1 
14: for R2 ← 1, P do 
15: for R3 ← 1, K do 
16: Y(R3,R2) ← Z1(R3,R2) 
17: Y1(R3,R2) ← Z1(R3,R2) 
18: end for 
19: end for 
 Adjust Algorithm 1 as follows and insert here: 
20: Change all the loop variables 
21: Change the variable names TEMPA, TEMPA1, TEMPA2, TT, TT1, … 
22: Replace Steps 10, 22, … with [Variable name ← P – 2, P] 
23: Replace all [P – 2] with [P – 3] 
24: Replace [Y1] with [Z1] 
25: Replace [Obtain a distinct permutation of ranks in the last two samples] with [Call Algorithm 1] 
26: Construct the empirical distribution of H 
27: Sort values of H in ascending order of magnitude 
28: Construct the CDF for H 
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Figures 1 – 10: Distribution of Kruskal-Wallis test statistic for different sample sizes 
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Table 1: Critical values for Kruskal-Wallis test statistic (3 samples) 
 

Sample Size H0.9000 H0.9500 H0.9750 H0.9900 H0.9950 H0.9975 H0.9990 
2,2,1 3.6000       
2,2,2 3.7143 4.5714      
3,2,1 4.2857       
3,2,2 4.4643 4.5000 5.3571     
3,3,1 4.5714       
3,3,2 4.5556 5.1389 5.5556 6.2500    
3,3,3 4.6222 5.6000 5.9556 6.4889    
4,2,1 4.0179 4.8214      
4,2,2 4.4583 5.1250 5.3333 6.0000    
4,3,1 3.8889 5.4000 5.3889     
4,3,2 4.4444 5.4000 5.8000 6.3000 6.4444 7.0000  
4,3,3 4.7000 5.7273 6.0182 6.7455 7.0000 7.3182 8.0182 
4,4,1 4.0667 4.8667 6.0000 6.1667    
4,4,2 4.4455 5.2364 6.0818 6.8727 7.0364 7.2818 7.8545 
4,4,3 4.4773 5.5758 6.3864 7.1364 7.4773 7.8485 8.3258 
4,4,4 4.5000 5.6538 6.5769 7.5385 7.7308 8.1154 8.7692 
5,1,1 3.8571       
5,2,1 4.0500 4.4500 5.2500     
5,2,2 4.2933 5.0400 5.6933 6.1333    
5,3,1 3.8400 4.8711 5.7600 6.4000    
5,3,2 4.4945 5.1055 5.9491 6.8218 6.9491 7.1818 7.6364 
5,3,3 4.4121 5.5152 6.3030 6.9818 7.5152 7.8788 8.2424 
5,4,1 3.9600 4.8600 5.7764 6.8400 6.9545   
5,4,2 4.5182 5.2682 6.0409 7.1182 7.5682 7.8136 8.1136 
5,4,3 4.5231 5.6308 6.3949 7.3949 7.9064 8.2564 8.6256 
5,4,4 4.6187 5.6176 6.5967 7.7440 8.1560 8.7033 9.1286 
5,5,1 4.0364 4.9091 5.7818 6.8364 7.7455 7.7455 8.1818 
5,5,2 4.5077 5.2462 6.2308 7.2692 8.0769 8.2923 8.6846 
5,5,3 4.5363 5.6264 6.4879 7.5429 8.2637 8.7912 9.2835 
5,5,4 4.5200 5.6429 6.6714 7.7914 8.4629 9.0257 9.5057 
5,5,5 4.5000 5.6600 6.7200 7.9800 8.7200 9.3800 9.9200 
6,1,1 4.0833       
6,2,1 3.8222 4.6222 5.4000     
6,2,2 4.4364 5.0182 5.5273 6.5455 6.6545   
6,3,1 3.8182 4.8545 5.8545 6.5818    
6,3,2 4.5455 5.2273 6.0606 6.7273 7.5000 7.5758 8.1818 
6,3,3 4.5385 5.5513 6.3846 7.1923 7.6154 8.3205 8.6282 
6,4,1 3.8636 4.9242 5.6970 7.0833 7.5000 7.9545  
6,4,2 4.4359 5.2628 6.1090 7.2115 7.8205 8.3077 8.6667 
6,4,3 4.5989 5.6044 6.5000 7.4670 8.0275 8.6538 9.1703 
6,4,4 4.5238 5.6667 6.5952 7.7238 8.3238 8.8810 9.6286 
6,5,1 3.9205 4.8359 5.8615 6.9974 8.0667 8.4359 8.8846 
6,5,2 4.4747 5.3187 6.1890 7.2989 8.1868 8.7473 9.1890 
6,5,3 4.4971 5.6000 6.6210 7.5600 8.2971 9.0286 9.6686 
6,5,4 4.5000 5.6558 6.7358 7.8958 8.6400 9.2933 9.9600 
6,5,5 4.5294 5.6985 6.7809 8.0118 8.8353 9.5809 10.2706 
6,6,1 3.9780 4.8571 5.9121 7.0659 7.9341 8.9231 9.3077 
6,6,2 4.4190 5.3524 6.1714 7.4095 8.1524 8.9333 9.6762 
6,6,3 4.5250 5.6000 6.6833 7.6833 8.4167 9.2250 10.1250 
6,6,4 4.5184 5.7206 6.7831 7.9890 8.7206 9.4118 10.3419 
6,6,5 4.5412 5.7516 6.8379 8.1190 8.9817 9.7242 10.5242 
6,6,6 4.5380 5.7193 6.8772 8.1871 9.0877 9.8713 10.8421 
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Table 2: Critical values for Kruskal-Wallis test statistic (4 samples) 
 

Sample Size H0.9000 H0.9500 H0.9750 H0.9900 H0.9950 H0.9975 H0.9990 
2,2,1,1 4.7143       
2,2,2,1 5.0357 5.3571 5.6786     
2,2,2,2 5.5000 6.0000 6.1667     
3,2,1,1 4.8929 5.4643      
3,2,2,1 5.3889 5.8056 6.0556 6.5000    
3,2,2,2 5.6444 6.2444 6.6444 7.0000 7.1333 7.5333  
3,3,1,1 5.2222 5.8889      
3,3,2,1 5.6222 6.1556 6.5111 7.0444 7.2000 7.4000  
3,3,2,2 5.7273 6.4727 7.0000 7.6364 7.7273 8.0000 8.1273 
3,3,3,1 5.5818 6.5273 6.8909 7.3273 7.7636 8.0545 8.3455 
3,3,3,2 5.8182 6.6818 7.4697 7.9545 8.3182 8.5606 8.9242 
3,3,3,3 5.9744 6.8974 7.6154 8.4359 8.7436 9.1538 9.4615 
4,2,1,1 5.2083 5.4583 6.0833     
4,2,2,1 5.5000 6.0000 6.5000 6.8000    
4,2,2,2 5.6727 6.4364 6.9818 7.3091 7.8545 7.9636 8.2909 
4,3,1,1 4.9778 6.0444 6.5667 6.7111    
4,3,2,1 5.5727 6.3000 6.9091 7.3636 7.7273 7.8909 8.1818 
4,3,2,2 5.7121 6.6136 7.3182 7.8485 8.2500 8.5909 8.8939 
4,3,3,1 5.6667 6.5379 7.2727 7.7500 8.1212 8.3561 8.8409 
4,3,3,2 5.8590 6.7821 7.5577 8.3205 8.7179 9.0577 9.4038 
4,3,3,3 6.0000 6.9670 7.7582 8.6538 9.2308 9.5769 10.0000 
4,4,1,1 5.1273 5.8636 6.9273 7.5000    
4,4,2,1 5.5455 6.3636 7.1364 7.8864 8.2273 8.5682 8.7045 
4,4,2,2 5.7692 6.6923 7.5192 8.3077 8.6731 9.0577 9.4423 
4,4,3,1 5.6603 6.6154 7.4808 8.2179 8.5769 8.8654 9.2949 
4,4,3,2 5.8901 6.8626 7.7363 8.6099 9.1538 9.4835 9.9121 
4,4,3,3 6.0048 7.0333 7.9238 8.8667 9.4905 9.9667 10.4619 
4,4,4,1 5.6374 6.7088 7.6319 8.5714 8.9505 9.2473 9.7253 
4,4,4,2 5.9000 6.9429 7.8857 8.8571 9.4714 9.9143 10.4000 
4,4,4,3 6.0292 7.1292 8.0542 9.0667 9.7167 10.3417 10.9000 
4,4,4,4 6.0662 7.2132 8.2059 9.2647 9.9485 10.5662 11.3382 
5,2,1,1 5.1067 5.7600 6.0667 6.6000    
5,2,2,1 5.5309 6.0327 6.5782 7.2000 7.4727 7.8000  
5,2,2,2 5.6182 6.5273 7.1545 7.6636 8.0182 8.3818 8.6818 
5,3,1,1 5.1309 6.0036 6.8764 7.1673 7.4000   
5,3,2,1 5.5030 6.3303 7.0939 7.7455 8.1818 8.2909 8.7273 
5,3,2,2 5.7538 6.6564 7.4641 8.1949 8.6256 8.9333 9.4231 
5,3,3,1 5.6564 6.6000 7.4205 8.1179 8.5282 8.8974 9.2564 
5,3,3,2 5.8571 6.8220 7.6505 8.5912 9.0571 9.4176 9.8549 
5,3,3,3 5.9981 7.0114 7.8267 8.8400 9.4571 9.9067 10.4095 
5,4,1,1 5.2000 6.0182 6.8000 7.8591 8.2000 8.2955 8.6364 
5,4,2,1 5.5615 6.4077 7.2115 8.1692 8.5731 8.9423 9.3231 
5,4,2,2 5.7725 6.7220 7.5989 8.4692 9.0495 9.4451 9.8604 
5,4,3,1 5.6396 6.6813 7.5253 8.3989 8.9802 9.3484 9.7934 
5,4,3,2 5.8933 6.9171 7.7933 8.8000 9.3933 9.8733 10.3543 
5,4,3,3 6.0292 7.0892 7.9892 9.0292 9.6958 10.2892 10.8558 
5,4,4,1 5.6686 6.7429 7.6743 8.7171 9.3029 9.6971 10.2114 
5,4,4,2 5.9400 6.9850 7.9475 9.0000 9.6625 10.2525 10.7875 
5,4,4,3 6.0346 7.1669 8.1346 9.2118 9.9397 10.5574 11.2963 
5,4,4,4 6.0608 7.2569 8.2725 9.3902 10.1373 10.8020 11.5882 
5,5,1,1 5.0923 6.0154 6.8769 8.0769 8.6000 8.9077 9.0923  
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                                                        Table 2: Continued 
 

 
Sample Size 

 
H0.9000 

 

 
H0.9500 

 

 
H0.9750 

 

 
H0.9900 

 

 
H0.9950 

 

 
H0.9975 

 

 
H0.9990 

 
5,5,2,1 
5,5,2,2 

5.5648 
5.7943 

6.5341 
6.7714 

7.2725 
7.6457 

8.3077 
8.6286 

9.0198 
9.2914 

9.4352 
9.8800 

9.7582 
10.3429 

5,5,3,1 5.6476 6.7371 7.6286 8.5962 9.2743 9.7619 10.2191 
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PCIC_SAS is a SAS program for identifying optimal subsets of means based on independent groups. All 
possible configurations of ordered subsets of groups are considered and a best model is identified using 
both the AIC and BIC information criteria. Results for models with homogeneous variances as well as 
models with heterogeneity of variance in the same pattern as the means are reported.   
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Introduction 
 
Researchers often use analysis of variance 
(ANOVA) to investigate mean differences 
among several groups. If the null hypothesis of 
equality of means is rejected, it is common 
practice to employ multiple comparison 
techniques to further study the pattern of 
differences among the means. For example, Kirk 
(1995) described 22 multiple comparison 
procedures including nine pairwise comparisons 
such as the Tukey honestly significantly 
different (HSD) procedure and Dunnett’s T3 
test. Statistical packages often include a variety 
of competing procedures with, for example, SAS 
8.1 allowing the user to choose among 12 
distinct methods for pairwise comparisons. 
Often, these procedures depend upon 
interpreting    multiple    significance   tests.   As  
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detailed in the next section, Dayton (1998, 2003) 
advocated replacing these procedures by a 
holistic model selection approach based on 
information criteria. The purpose of this article 
is to describe and make available to applied 
researchers a SAS program, PCIC_SAS, that 
implements this modern information theoretic 
approach for comparisons among means. 
  
Application of Information Criteria to the 
Paired-Comparisons of Means 
 The widely-used Tukey Honestly 
Significantly Different (HSD) procedure for K 
independent group means involves the 
computation of q statistics for the K(K – 1)/2 
different pairs of means and refers these 
statistics to the appropriate null distribution of 
the studentized range statistic for a span of K 
means. Like similar pair-wise comparison 
procedures, Tukey HSD entails testing K(K – 
1)/2 hypotheses of the form µk = µk′ for k ≠ k′. 
Often  this  is   done  subsequent  to  testing  the 
omnibus hypothesis of equality of means (i.e., µk 
= µ for k = 1,…,K) using analysis of variance 
techniques. Theoretically, the omnibus test is not 
required since the K-range pairwise comparison 
is an equivalent, although less powerful, test. 
There are many optional procedures based on 
modifications to the Tukey procedure or based 
on related notions using stepwise procedures. 
See, for example, the Kirk (1995) reference cited 
above for   details of many of these procedures.  
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 Among the problems with pairwise 
comparison procedures cited by Dayton (1998, 
2003) are: 
 

(1) Some arbitrary technique is utilized 
to control the family-wise type I 
error rate for the set of correlated 
pairwise tests; 

(2) The issues of homogeneity of 
variance and differential sample size 
pose problems for many paired-
comparison procedures; 

(3) Intransitive decisions (e.g., 
outcomes suggesting mean 1 = 
mean 2, mean 2 = mean 3, but mean 
1 < mean 3) are the rule rather than 
the exception with typical paired 
comparison procedures because they 
entail a series of discrete, pairwise 
significance tests; 

(4) There exists a large variety of 
competing procedures that differ in 
how type I error is controlled and, 
consequently, in power (e.g., SPSS 
11.5 for Windows offers eighteen 
distinct procedures to choose 
among). 

 
 For K independent groups, there is a 
total of 2K-1 patterns of ordered subsets with 
equal means within subsets. For example, with 
four groups with means ranked and labeled 1, 2, 
3, 4, the 23 = 8 distinct ordered subsets are 
{1234}, {1,234}, {12,34}, {123,4}, {1,2,34}, 
{1,23,4}, {12,3,4} and {1,2,3,4}, where a 
comma is used to separate subsets with unequal 
means. Dayton (1998, 2003) proposed using 
model-selection criteria such as the Akaike 
(1973) AIC statistic for selecting the most 
appropriate ordering of subsets of means for 
purposes of interpretation. In particular, this 
approach avoids many of the objections that can 
be raised with respect to conventional pairwise 
comparison procedures. Information criteria 
such as AIC are based on the logarithm of the 
likelihood of the data, Loge(likelihood). Sclove 
(1987) noted that AIC represents a penalized 
log-likelihood function of the general form:   
 

-2LogeL(likelihood) + a(n)p 
 

where a(n) is a function that may depend upon 
the total sample size, n, and p is the number of 
independent parameters estimated in fitting the 
model to the data. Akaike’s AIC is equal to  
 

-2LogeL(likelihood) + 2p 
 
which does not directly depend upon sample 
size. Various adaptations of or alternatives to 
AIC have been suggested that, unlike AIC, are 
explicitly dependent upon sample size. In 
particular, the Schwarz (1978) BIC statistic and 
the Bozdogan (1987) CAIC statistic use penalty 
terms equal to Loge(n) and Loge(n) + 1, 
respectively. As noted by Bozdogan (1987), 
these latter procedures are asymptotically 
consistent in the sense that, when the null case is 
the true model, the probability of selecting the 
true model approaches one, rather than an 
arbitrary significance level, as is true for 
conventional hypothesis testing procedures. It is 
beyond the scope of this article to discuss the 
basis for selecting among alternative information 
criteria. However, these issues are discussed in 
Dayton (2003). 
 In practice, AIC (or, BIC) is computed 
for all competing models that the researcher 
wishes to compare. Then, from an information 
theoretic perspective, the model satisfying a 
min(AIC) (or, min(BIC)) criterion is selected as 
the best approximating model for the data being 
analyzed. Note that the min(AIC) (or, min(BIC)) 
strategy does not suggest that the selected model 
either fits or does not fit the data but that, among 
the models being compared, it is, in the 
information sense, the best choice. If additional 
models were added to the basis of comparison, a 
different selection might occur although the 
previously computed AIC values would not be 
altered. 

The program, PCIC_SAS, computes 
both the Akaike AIC and the Schwarz BIC 
statistics for all 2K-1 distinct ordered subsets. 
Since the number of ordered subsets can, in 
practice, become quite large (e.g., 512 for K = 
10 groups but 524,288 for K = 20 groups), only 
the ordered subsets corresponding to the 
smallest AIC and BIC values, as specified by the 
user (e.g., 5), are printed out. There is no limit to 
the number of groups that can be analyzed but, 
of course, execution time can become relatively 
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long for large K. In PCIC_SAS, it is assumed 
that the observations arise from normal 
densities.  

Note, that the log-likelihood is 
maximized for any given model when variance 
estimates are computed using the sample size, n, 
rather than n-1, in the denominator. PCIC_SAS 
calculates AIC and BIC based on the usual 
assumption of homogeneity of variance as well 
as based on a restricted heterogeneous variance 
model in which it is assumed that there is a 
unique population variance for each of the 
distinct subsets of means. For the homogeneous 
case, the conventional analysis of variance 
within-groups sum of squares, SSw, is converted 
to a variance estimate, SSw/n, where n is the 
total sample size. For the restricted, 
heterogeneous variance case, an estimated 
variance for a subset of means can be obtained 
(a) by pooling the estimates from the separate 
groups or (b) by computing the sample variance 
for the combined sample. The latter approach is 
illustrated in Dayton (1998, 2003) and is the 
procedure incorporated into PCIC_SAS.  

For a model with T subsets of means, 
the number of independent parameters, p, is 
equal to T+1 for the homogeneous case and 2T 
for the restricted heterogeneous case. Because 
Loge(n) is greater than 2 for n greater than 7, 
AIC and BIC may, and often do, result in 
different orderings of subsets of means with, 
predictably, simpler models being favored by 
BIC because of the larger penalty term. In 
Dayton (1998), results of a limited simulation 
with AIC and CAIC (the slightly different 
criterion than BIC with penalty term Loge(n+1)p 
suggested by Bozdogan (1987)), it was found 
that: “Overall…the accuracy of CAIC is always 
approximately equal to or superior to Tukey 
HSD but tends to be lower than AIC when there 
are relatively many clusters of means, especially 
with smaller sample sizes.” For a more extensive 
simulation providing favorable results for PCIC, 
see Cribbie and Keselman (2003).  
 
 
 
 
 
 
 

Using the PCIC_SAS Program 
 PCIC_SAS is written in the SAS 
programming language. For general-purpose 
analysis with a major statistical computer 
package, there is no other program that 
computes AIC and/or BIC for the models 
available in PCIC_SAS. For a small number of 
groups (e.g., 5 or less), it is reasonably easy to 
program the computations in a spreadsheet as 
was reported by Dayton (1998). For users of the 
matrix-language, Gauss (Aptech Systems, 1997), 
appropriate code that provides input from 
spreadsheets such as Microsoft Excel is 
available (Dayton, 2001).  

Data for analysis with PCIC_SAS can 
be in a SAS data base or imported into SAS 
from a spreadsheet or database program. It is 
conventional to code the groups with names, or 
1, 2, etc., or A, B, etc. but PCIC_SAS rearranges 
the groups in rank order of means, from smallest 
to largest, and presents groups in ranked order, 
1, 2, etc., in the output. Results are directed to 
the SAS output screen that can be printed and/or 
saved. 

 
Example 
 Summary statistics for five ethic groups, 
based on a 5% random sample of cases from the 
NELS88 database, are presented below (see 
//nces.ed.gov/surveys/nels88/ for information 
about the longitudinal study of youth). The 
dependent variable is mathematics achievement 
on a standardized scale with population mean of 
about 50 and standard deviation of about 10. The 
five groups, as documented with the database, 
are: (1) API (Asian/Pacific Islander), (2) 
Hispanic, (3) Black-Non-Hispanic, (4) White-
Non-Hispanic, and (5) American Indian. In rank 
order of means from low to high on the output 
these become: (3) Black-Non-Hispanic, (2) 
Hispanic, (5) American Indian, (4) White-Non-
Hispanic and (1) API. The PCIC_SAS summary 
table and output for the five smallest values of 
AIC and BIC are summarized below: 
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 Summary Table - group means in original order                     
Obs race _FREQ_ mean sd n varunb varmle sum ss 

1 1 75 53.25 10.26 75.00 105.19 103.79 3993.45 7783.89 
2 2 139 47.00 8.28 139.00 68.50 68.01 6532.98 9453.36 
3 3 153 45.63 8.37 153.00 70.09 69.63 6981.58 10654.00 
4 4 798 52.96 10.14 798.00 102.78 102.65 42258.81 81913.54 
5 5 44 47.21 7.22 44.00 52.15 50.96 2077.40 2242.25 

  1209      112047.04  
 

 Summary Table - group means in rank order                                           

Obs race _FREQ_ mean sd n varunb varmle sum ss 
1 3 153 45.63 8.37 153.00 70.09 69.63 6981.58 10654.00 
2 2 139 47.00 8.28 139.00 68.50 68.01 6532.98 9453.36 
3 5 44 47.21 7.22 44.00 52.15 50.96 2077.40 2242.25 
4 4 798 52.96 10.14 798.00 102.78 102.65 42258.81 81913.54 
5 1 75 53.25 10.26 75.00 105.19 103.79 3993.45 7783.89 

 
 

AIC and BIC for Homogeneous Case 
Rank of AIC, value of AIC and ordered subsets for homogeneous variance case: 

AIC_HOMOG 
1 8914.598       1       1       1       2       2 
2 8914.785       1       2       2       3       3 
3 8916.240       1       1       2       3       3 
4 8916.535       1       1       1       2       3 
5 8916.722       1       2       2       3       4 

 
Rank of BIC, value of BIC and ordered subsets for homogeneous variance case: 

BIC_HOMOG 
1 8929.890       1       1       1       2       2 
2 8935.175       1       2       2       3       3 
3 8936.630       1       1       2       3       3 
4 8936.926       1       1       1       2       3 
5 8942.210       1       2       2       3       4 

 
AIC and BIC for Heterogeneous Case 

Rank of AIC, value of AIC and ordered subsets for patterned heterogeneous variance case: 
AIC_HETEROG 

1 8895.898       1       1       1       2       2 
2 8897.075       1       2       2       3       3 
3 8897.724       1       1       2       3       3 
4 8899.729       1       2       3       4       4 
5 8899.838       1       1       1       2       3 

 
Rank of BIC, value of BIC and ordered subsets for patterned heterogeneous variance case: 

BIC_HETEROG 
1 8916.288       1       1       1       2       2 
2 8927.660       1       2       2       3       3 
3 8928.309       1       1       2       3       3 
4 8930.423       1       1       1       2       3 
5 8936.311       1       1       2       2       2 
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Interpretation 
 For AIC, all five reported 
heterogeneous-variance models have smaller 
values than the best homogeneous-variance 
model and for BIC this is true for the first three 
heterogeneous models. Thus, models with 
variances that differ among subsets of means are 
favored over homogeneous-variance models. 
Based on both AIC and BIC, the preferred 
model is reported as: 1, 1, 1, 2, 2. This suggests 
that there are two subsets of means comprised of 
the groups with the three smallest means in one 
subset and the groups with the two largest means 
in the second subset. This corresponds to the 
pattern {Black-Non-Hispanic, Hispanic, 
American Indian} in the subset with smaller 
means and {White-Non-Hispanic, API} in the 
subset with larger means. Note that the 
conclusion should not be drawn that, for 
example, the means are equal for the White-
Non-Hispanic and API groups but, rather that 
the data are not sufficiently reliable to permit an 
ordering within that subset. The variances for 
the two subsets are not reported but can be easily 
computed from the output (see Dayton, 1998) 
and are equal to 67.02 and 102.75, respectively. 
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Appendix 
 The theoretical background for AIC 
derives from information-theoretic concepts 
originally presented by Kullback and Leibler 
(1951). The mathematical material presented in 
this section is supplementary to that presented 
above and can be skimmed or omitted without 
any serious loss of understanding of the PCIC 
technique.  
 Adapting the notation of Akaike (1973, 
1974, 1987) for univariate data, the Kullback-
Leibler information for the true distribution, 
gt(x), of random variable x, relative to some 
other distribution, go(x), is: 
 
(1) I(gt; go) = E(Loge[gt(x)]) - 

E(Loge[go(x)]) 
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where all expectations are taken with respect to 
gt(x). In statistical applications making use of 
maximum likelihood estimation, let x = {xi} be 
n values of an iid random variable, x, with true 
density function g(· | θ) based on the parameter 
vector, θ, and let θx be the usual maximum 
likelihood estimator (MLE) of θ found by 
maximizing g(x | θ) over the sample by treating 
θ as variable. Assuming p independent 
parameters, a large-sample result for the 
distribution of likelihood ratios is:  
 
(2) L1 = 2{Loge[g(x | θx)] - Loge[g(x | θt)]} 
                  = χp

2 
 
where χp

2 is central chi-square with p degrees of 
freedom.  

Let y be an additional observation from 
the same distribution as x. Akaike (1974) shows 
that, asymptotically: 

 
(3) L2 = 2{EyLoge[g(y | θx)]  
 - EyLoge[g(y | θt)]} =  - χp

2 

Then: 

 
(4) E(L1 - L2) = 2Loge[g(x | θx)]  
 - 2EyLoge[g(y |  θx)] ≈ 2p. 
  

Noting that the first term in Equation (1) 
is constant for any model, Akaike defines the 
AIC estimator of Kullback-Leibler information 
as:  

 
(5) Constant - EyLoge[g(y |  θx)] ≈  
 -2Loge[g(x | θx)] + 2p = AIC 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

For M different models for the same 
data, the Akaike min(AIC) procedure involves 
using Equation (5) to calculate AICm, m = 
1,…,M, for the models and selecting the model 
with min(AICm) as the preferred model. The 
conventional interpretation of AIC is as an 
estimate of the loss of precision (or, increase in 
information) that results when θx, the MLE, is 
substituted for the true parametric value, θt, in 
the likelihood function. 

Sclove (1987) notes that AIC represents 
a penalized log-likelihood function of the 
general form: 

 
 (6) -2Loge[g(x | θx)] + a(n)p  
 
where a(n) is a function that may depend upon 
the total sample size, n. Various adaptations of 
AIC have been suggested that, unlike AIC, make 
the statistic dependent upon sample size. In 
particular, the Schwarz (1978) BIC statistic and 
the Bozdogan (1987) CAIC statistic use penalty 
terms equal to Loge(n) and Loge(n) + 1, 
respectively. As noted by Bozdogan (1987), 
these latter procedures are asymptotically 
consistent in the sense that, when the null case is 
the true model, the probability of selecting the 
true model approaches one, rather than an 
arbitrary significance level, as is true for 
conventional hypothesis testing procedures.  
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Statistical Pronouncements IV 
 
“By sampling, we can learn only about 
collective properties of populations, not about 
the properties of individuals” – William G. 
Cochran, Frederick Mosteller, & John W. Tukey 
(1954, Principles of sampling, Journal of the 
American Statistical Association, 49, p. 17). 
 
“If a student has not already at least some 
facility with graphs and logarithms then he is, I 
believe, ill-advised to start to grapple with the 
theory of statistics” – Bernard L. Welch, (1954, 
Book Reviews, Journal of the American 
Statistical Association, 49, p. 378). 
 
“Type, paper, and binding are good” – H. W. 
Norton (1954, Book Reviews, Journal of the 
American Statistical Association, 49, p. 390). 
 
“It is curious that there are many people who are 
established scientists, and many others offering 
to become scientists, who have so little 
mathematics” – H. W. Norton (1954, Book 
Reviews, Journal of the American Statistical 
Association, 49, p. 390). 
 
“Choice of subject matter is always an author’s 
prerogative” – J. H. Curtiss, (1954, Book 
Reviews, Journal of the American Statistical 
Association, 49, p. 401). 
  
“Once upon a time the calculation of the first 
four moments was an honorable art in statistics” 
– John W. Tukey (1954, Unsolved problems of 
experimental statistics, Journal of the American 
Statistical Association, 49, p. 717). 
 
“Why isn’t someone writing a book on one- and 
two-sample techniques? (After all, there is a 
book being written on the straight line!” – John 
W. Tukey (ibid, p. 721). 
 
“With this issue, the Journal will discontinue 
publication of random digits” – (1954, 
RANDOM DIGITS (20,876-21,875), Journal of 
the American Statistical Association, 49, p. 928). 
 
 

“At a Galton Laboratory tea in 1937, when there 
were few text books to guide a student in study 
of statistical methods for research, Fisher 
remarked that the way to obtain a good one 
would be for everyone who might feel the urge 
to try his hand and see which product would 
survive… The flood is now upon us” – H. 
Fairfield Smith, (1955, Book Reviews, Journal 
of the American Statistical Association, 50, p. 
975). 
 
“If told another elementary text is to be written, 
my reaction is: Please, not another!” – H. 
Fairfield Smith, (1955, Book Reviews, Journal 
of the American Statistical Association, 50, p. 
979). 
 
“Leonard J. Savage recommended us to read 
about the foundations of statistics sitting bolt 
upright on a hard chair, at a desk, and now 
[Michel] Loève asks us to approach his 
monumental treatise on the foundations of 
probability theory “armed permanently with 
patience, pebble, and reed” – Walter L. Smith, 
(1955, Book Reviews, Journal of the American 
Statistical Association, 50, p. 986). 
 
“This is by far the largest and best collection of 
random digits yet” – W. Allen Wallis (1955, 
Book Reviews, Journal of the American 
Statistical Association, 50, p. 987) 
 
“Good examples in theoretical statistics are not 
easy to find” – Herman Chernoff (1955, Book 
Reviews, Journal of the American Statistical 
Association, 50, p. 1334). 
 
“The naive reader is almost certain to form a set 
of incorrect ideas concerning inference about 
distribution means. He is likely to feel that the 
assumption of normality of distribution is about 
on the same level as the use of a sharp pencil - 
nice but not exactly necessary” – Leo Katz  
(1955, Book Reviews, Journal of the American 
Statistical Association, 50, p. 1344). 
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“The practitioner of statistical inferences must 
understand much more of his art than he brings 
to bear on a specific problem; therefore, the 
‘cookbook’ approach cannot succeed” – Leo 
Katz (ibid, p. 1344). 
 
“I never knew a statistician who thought he 
knew enough mathematics” – Leonard J. Savage 
(1955, Book Reviews, Journal of the American 
Statistical Association, 50, p. 1352). 
 
“Nondeductive reasoning is of paramount 
importance to the statistician” – Leonard J. 
Savage (ibid, p. 1352). 
 
“The statistician like the scientist has to be 
concerned primarily with the collection and 
arrangement of and the reasonable inferences 
from observed data. Some mathematics will 
surely help, too much will surely hinder” – 
Edwin B. Wilson (1955, Book Reviews, Journal 
of the American Statistical Association, 50, p. 
1356). 
 
“Using P = .05 [is] all right if understood, but 
the businessman, the investor, the weather 
forecaster, the executive, or the card player who 
waited for that degree of significance would be 
so out of the game as to be without a livelihood” 
– Edwin B. Wilson (ibid, p. 1357). 
 
“Science is always provisional and usually 
approximately, and thus constantly being 
corrected” – Edwin B. Wilson (ibid, p. 1357). 
 
“Every statistician knows something about 
stochastic processes, though like me he may be 
late to learn, and never entirely comfortable 
with, that awesome sounding name – Leonard J. 
Savage (1956, Book Reviews, Journal of the 
American Statistical Association, 51, p. 383) 
 
“The best philosophers are often 
mathematicians” – – I. J. Good (1956, Book 
Reviews, Journal of the American Statistical 
Association, 51, p. 388). 
 
 
 
 

“Decision theory is not a subject that can be 
appreciated in all its austere details by a 
statistician with less than one or two years of 
experience of real life” – I. J. Good (1956, Book 
Reviews, Journal of the American Statistical 
Association, 51, p. 388). 
 
“To all of us some of the time and to some of us 
all of the time it seems that economics fails to 
make progress as other sciences do” – Robert M. 
Solow (1956, Book Reviews, Journal of the 
American Statistical Association, 51, p. 398). 
 
“1955 saw the creation of a new Committee to 
Investigate Statistics as Evidence. The 
Committee, under the chairmanship of John 
Tukey, was appointed in response to 
recommendations based on the fact that many 
lawyers fail to recognize the validity of statistics 
as evidence” – American Statistical Association 
(1956, Report of the board of directors, 1955, 
Journal of the American Statistical Association, 
51, p. 424). 
 
“Much oh!ing and ah!ing has been heard in the 
land about those prodigious giants, the new 
electronic computing machines” – Thornton C. 
Fry (1956, The automatic computer in industry, 
Journal of the American Statistical Association, 
51, p. 565). 
“The theory of decision making, the natural 
sequel to hypothesis testing, has elevated the 
notion of risk to an even higher place in the 
hierarchy of ideas passed on from professor to 
student” – A. W. Kimball (1957, Errors of the 
third kind in statistical consulting, Journal of the 
American Statistical Association, 52, p. 133). 
 
“A scientist with ideas frames his hypotheses 
and wishes to test them” – E. J. G. Pitman 
(1957, Statistics and science, Journal of the 
American Statistical Association, 52, p. 323). 
 
“Nonparametric methods are needed in many 
fields, and can be applied in all” – I. Richard 
Savage (1957, Nonparametric statistics, Journal 
of the American Statistical Association, 52, p. 
331). 
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    The fastest, most comprehensive and robust   
   permutation test software on the market today. 
       
       Permutation tests increasingly are the statistical method of choice for addressing business questions and research 
hypotheses across a broad range of industries.  Their distribution-free nature maintains test validity where many parametric 
tests (and even other nonparametric tests), encumbered by restrictive and often inappropriate data assumptions, fail 
miserably.  The computational demands of permutation tests, however, have severely limited other vendors’ attempts at 
providing useable permutation test software for anything but highly stylized situations or small datasets and few tests.  
PermuteItTM addresses this unmet need by utilizing a combination of algorithms to perform non-parametric permutation tests 
very quickly – often more than an order of magnitude faster than widely available commercial alternatives when one sample is 
large and many tests and/or multiple comparisons are being performed (which is when runtimes matter most).  PermuteItTM 
can make the difference between making deadlines, or missing them, since data inputs often need to be revised, resent, or 
recleaned, and one hour of runtime quickly can become 10, 20, or 30 hours. 
 
In addition to its speed even when one sample is large, some of the unique and powerful features of PermuteItTM include: 
  
•      the availability to the user of a wide range of test statistics for performing permutation tests on continuous, count, & 
binary data, including: pooled-variance t-test; separate-variance Behrens-Fisher t-test, scale test, and joint tests for scale and 
location coefficients using nonparametric combination methodology; Brownie et al. “modified” t-test; skew-adjusted 
“modified” t-test; Cochran-Armitage test; exact inference; Poisson normal-approximate test; Fisher’s exact test; Freeman-
Tukey Double Arcsine test 
 
•      extremely fast exact inference (no confidence intervals – just exact p-values) for most count data and high-frequency 
continuous data, often several orders of magnitude faster than the most widely available commercial alternative 
 
•      the availability to the user of a wide range of multiple testing procedures, including: Bonferroni, Sidak, Stepdown 
Bonferroni, Stepdown Sidak, Stepdown Bonferroni and Stepdown Sidak for discrete distributions, Hochberg Stepup, FDR, 
Dunnett’s one-step (for MCC under ANOVA assumptions), Single-step Permutation, Stepdown Permutation, Single-step and 
Stepdown Permutation for discrete distributions, Permutation-style adjustment of permutation p-values 
 
•      fast, efficient, and automatic generation of all pairwise comparisons 
 
•      efficient variance-reduction under conventional Monte Carlo via self-adjusting permutation sampling when confidence 
intervals contain the user-specified critical value of the test  
 
•      maximum power, and the shortest confidence intervals, under conventional Monte Carlo via a new sampling optimization 
technique (see Opdyke, JMASM, Vol. 2, No. 1, May, 2003) 
 
•      fast permutation-style p-value adjustments for multiple comparisons (the code is designed to provide an additional speed 
premium for many of these resampling-based multiple testing procedures)  
 
•      simultaneous permutation testing and permutation-style p-value adjustment, although for relatively few tests at a time 
(this capability is not even provided as a preprogrammed option with any other software currently on the market)  
 
       For Telecommunications, Pharmaceuticals, fMRI data, Financial Services, Clinical Trials, Insurance, Bioinformatics, and 
just about any data rich industry where large numbers of distributional null hypotheses need to be tested on samples that are 
not extremely small and parametric assumptions are either uncertain or inappropriate, PermuteItTM is the optimal, and only, 
solution. 
 
       To learn more about how PermuteItTM can be used for your enterprise, and to obtain a demo version, please contact its 
author, J.D. Opdyke, President, DataMineItSM, at JDOpdyke@DataMineIt.com or www.DataMineIt.com. 
 
       DataMineItSM is a technical consultancy providing statistical data mining, econometric analysis, and data warehousing 
services and expertise to the industry, consulting, and research sectors.  PermuteItTM is its flagship product. 
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FREE trials available at:
programmersparadise.com/intel

“The Intel Fortran Compiler 7.0 was first-rate, and Intel Visual Fortran
8.0 is even better. Intel has made a giant leap forward in combining
the best features of Compaq Visual Fortran and Intel Fortran. This
compiler… continues to be a ‘must-have’ tool for any Twenty-First
Century Fortran migration or software development project.”

—Dr. Robert R. Trippi 
Professor Computational Finance 
University of California, San Diego

To order or request additional information call:
800-423-9990

Email: intel@programmers.com

Two Years in the Making...

Compatibility
• Plugs into Microsoft Visual Studio* .NET
• Microsoft PowerStation4 language and library support
• Strong compatibility with Compaq* Visual Fortran

Support
1 year of free product upgrades and Intel Premier Support

Visual Fortran Timeline

1997 DEC releases

Digital Visual Fortran 5.0

1998 Compaq acquires DEC

and releases DVF 6.0

1999 Compaq ships CVF 6.1

2001 Compaq ships CVF 6.6

2001 Intel acquires CVF 

engineering team

2003 Intel releases 

Intel Visual Fortran 8.0

Intel Visual Fortran 8.0

• CVF front-end + 

Intel back-end

• Better performance

• OpenMP Support

• Real*16

Intel® Visual Fortran 8.0 
The next generation of Visual Fortran is here!
Intel Visual Fortran 8.0 was developed jointly 
by Intel and the former DEC/Compaq Fortran 
engineering team.  

Now
Available!

Performance
Outstanding performance on Intel architecture including Intel®

Pentium® 4, Intel® Xeon™ and Intel Itanium® 2 processors,
as well as support for Hyper-Threading Technology.
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NCSS 
329 North 1000 East 
Kaysville, Utah 84037 

Announcing NCSS 2004 
Seventeen New Procedures 

NCSS 2004 is a new edition of our popular statistical NCSS package that adds seventeen new procedures. 
 

Meta-Analysis 
Procedures for combining studies 
measuring paired proportions, means, 
independent proportions, and hazard 
ratios are available. Plots include the 
forest plot, radial plot, and L’Abbe plot. 
Both fixed and random effects models 
are available for combining the results. 
 

Curve Fitting 
This procedure combines several of our 
curve fitting programs into one module. 
It adds many new models such as 
Michaelis-Menten. It analyzes curves 
from several groups. It compares fitted 
models across groups using computer-
intensive randomization tests. It 
computes bootstrap confidence intervals. 
 

Tolerance Intervals 
This procedure calculates one and two 
sided tolerance intervals using both 
distribution-free (nonparametric) 
methods and normal distribution 
(parametric) methods. Tolerance 
intervals are bounds between which a 
given percentage of a population falls. 
 

Comparative Histogram 
This procedure displays a comparative 
histogram created by interspersing or 
overlaying the individual histograms of 
two or more groups or variables. This 
allows the direct comparison of the 
distributions of several groups. 
 

Random Number Generator 
Matsumoto’s Mersenne Twister random 
number generator (cycle length > 
10**6000) has been implemented. 
 

Binary Diagnostic Tests 
Four new procedures provide the 
specialized analysis necessary for 
diagnostic testing with binary outcome 
data. These provide appropriate specificity 
and sensitivity output. Four experimental 
designs can be analyzed including 
independent or paired groups, comparison 
with a gold standard, and cluster 
randomized. 
 
ROC Curves 
This procedure generates both binormal 
and empirical (nonparametric) ROC 
curves. It computes comparative measures 
such as the whole, and partial, area under 
the ROC curve. It provides statistical tests 
comparing the AUC’s and partial AUC’s 
for paired and independent sample designs.  
 

Hybrid (Feedback) Model 
This new edition of our hybrid appraisal 
model fitting program includes several new 
optimization methods for calibrating 
parameters including a new genetic 
algorithm. Model specification is easier. 
Binary variables are automatically 
generated from class variables. 
 

New Procedures 
Two Independent Proportions 
Two Correlated Proportions 
One-Sample Binary Diagnostic Tests 
Two-Sample Binary Diagnostic Tests 
Paired-Sample Binary Diagnostic Tests 
Cluster Sample Binary Diagnostic Tests 
Meta-Analysis of Proportions 
Meta-Analysis of Correlated Proportions 
Meta-Analysis of Means 
Meta-Analysis of Hazard Ratios 
Curve Fitting 
Tolerance Intervals 
Comparative Histograms 
ROC Curves 
Elapsed Time Calculator 
T-Test from Means and SD’s 
Hybrid Appraisal (Feedback) Model 

Documentation 
The printed, 330-page manual, called 
NCSS User’s Guide V, is available for 
$29.95. An electronic (pdf) version of 
the manual is included on the distribution 
CD and in the Help system. 
 

Two Proportions 
Several new exact and asymptotic 
techniques were added for hypothesis 
testing (null, noninferiority, equivalence) 
and calculating confidence intervals for 
the difference, ratio, and odds ratio. 
Designs may be independent or paired. 
Methods include: Farrington & Manning, 
Gart & Nam, Conditional & 
Unconditional Exact, Wilson’s Score, 
Miettinen & Nurminen, and Chen. 
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Statistical Innovations Products 
Through a special arrangement with 
Statistical Innovations (S.I.), NCSS 
customers will receive $100 discounts on: 
  Latent GOLD - latent class modeling 
  SI-CHAID -  segmentation trees  
  GOLDMineR -  ordinal regression 

For demos and other info visit: 
www.statisticalinnovations.com 
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 Please rush me the following products: 
Qty 
___ NCSS 2004 CD upgrade from NCSS 2001, $149.95 .................. $_____ 

___ NCSS 2004 User’s Guide V, $29.95............................................. $_____ 

___ NCSS 2004 CD, upgrade from earlier versions, $249.95........... $_____ 

___ NCSS 2004 Deluxe (CD and Printed Manuals), $599.95........... $_____ 

___ PASS 2002 Deluxe, $499.95 ......................................................... $_____ 

___ Latent Gold® from S.I., $995 - $100 NCSS Discount = $895..... $_____ 

___ GoldMineR® from S.I., $695 - $100 NCSS Discount = $595 ..... $_____ 

___ CHAID® Plus from S.I., $695 - $100 NCSS Discount = $595.... $_____ 

Approximate shipping--depends on which manuals are ordered (U.S: $10 
ground, $18 2-day, or $33 overnight) (Canada $24) (All other countries 
$10) (Add $5 U.S. or $40 International for any S.I. product) ........ $_____ 

 Total.......... $_____ 

TO PLACE YOUR ORDER 
CALL: (800) 898-6109 FAX: (801) 546-3907 

ONLINE: www.ncss.com 
MAIL: NCSS, 329 North 1000 East, Kaysville, UT 84037 

My Payment Option: 
___ Check enclosed 
___ Please charge my: __VISA   __ MasterCard ___Amex 
___ Purchase order attached___________________________  

Card Number ______________________________________Exp ________ 

Signature______________________________________________________ 

Telephone: 
(        ) ____________________________________________________ 

Email: 
____________________________________________________________ 

Ship to: 
NAME ________________________________________________________ 

ADDRESS ______________________________________________________ 

ADDRESS_________________________________________________________________________ 

ADDRESS_________________________________________________________________________ 

CITY _____________________________________________ STATE _________________________ 

ZIP/POSTAL CODE _________________________________COUNTRY ______________________ 

Analysis of Variance / T-Tests 
Analysis of Covariance 
Analysis of Variance 
Barlett Variance Test 
Crossover Design Analysis 
Factorial Design Analysis 
Friedman Test 
Geiser-Greenhouse Correction 
General Linear Models 
Mann-Whitney Test 
MANOVA 
Multiple Comparison Tests 
One-Way ANOVA 
Paired T-Tests 
Power Calculations 
Repeated Measures ANOVA 
T-Tests – One or Two Groups 
T-Tests – From Means & SD’s 
Wilcoxon Test 
 
Time Series Analysis 
ARIMA / Box - Jenkins 
Decomposition 
Exponential Smoothing 
Harmonic Analysis 
Holt - Winters 
Seasonal Analysis 
Spectral Analysis 
Trend Analysis 
 
*New Edition in 2004 
 

Regression / Correlation 
All-Possible Search 
Canonical Correlation 
Correlation Matrices 
Cox Regression 
Kendall’s Tau Correlation 
Linear Regression 
Logistic Regression 
Multiple Regression 
Nonlinear Regression 
PC Regression 
Poisson Regression 
Response-Surface 
Ridge Regression 
Robust Regression 
Stepwise Regression 
Spearman Correlation 
Variable Selection 
 
Quality Control 
Xbar-R Chart  
C, P, NP, U Charts 
Capability Analysis 
Cusum, EWMA Chart 
Individuals Chart 
Moving Average Chart 
Pareto Chart 
R & R Studies 
 

 

Plots / Graphs 
Bar Charts 
Box Plots 
Contour Plot 
Dot Plots 
Error Bar Charts 
Histograms 
Histograms: Combined* 
Percentile Plots 
Pie Charts 
Probability Plots 
ROC Curves* 
Scatter Plots 
Scatter Plot Matrix 
Surface Plots 
Violin Plots 
 
Experimental Designs 
Balanced Inc. Block 
Box-Behnken 
Central Composite 
D-Optimal Designs 
Fractional Factorial 
Latin Squares 
Placket-Burman 
Response Surface 
Screening 
Taguchi 
 

Survival / Reliability  
Accelerated Life Tests 
Cox Regression 
Cumulative Incidence 
Exponential Fitting 
Extreme-Value Fitting 
Hazard Rates 
Kaplan-Meier Curves 
Life-Table Analysis 
Lognormal Fitting 
Log-Rank Tests 
Probit Analysis 
Proportional-Hazards  
Reliability Analysis 
Survival Distributions 
Time Calculator* 
Weibull Analysis 

 
Multivariate Analysis 
Cluster Analysis 
Correspondence Analysis 
Discriminant Analysis 
Factor Analysis 
Hotelling’s T-Squared 
Item Analysis 
Item Response Analysis 
Loglinear Models 
MANOVA 
Multi-Way Tables 
Multidimensional Scaling 
Principal Components 

 

Curve Fitting  
Bootstrap C.I.’s* 
Built-In Models 
Group Fitting and Testing* 
Model Searching 
Nonlinear Regression 
Randomization Tests* 
Ratio of Polynomials 
User-Specified Models 

 
Miscellaneous 
Area Under Curve 
Bootstrapping 
Chi-Square Test 
Confidence Limits 
Cross Tabulation 
Data Screening 
Fisher’s Exact Test 
Frequency Distributions 
Mantel-Haenszel Test 
Nonparametric Tests 
Normality Tests 
Probability Calculator 
Proportion Tests 
Randomization Tests 
Tables of Means, Etc. 
Trimmed Means 
Univariate Statistics 

 

Statistical and Graphics Procedures Available in NCSS 2004 
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Meta-Analysis* 
Independent Proportions* 
Correlated Proportions* 
Hazard Ratios* 
Means* 
 
Binary Diagnostic Tests* 
One Sample* 
Two Samples* 
Paired Samples* 
Clustered Samples* 
 
Proportions 
Tolerance Intervals* 
Two Independent* 
Two Correlated* 
Exact Tests* 
Exact Confidence Intervals* 
Farrington-Manning* 
Fisher Exact Test 
Gart-Nam* Method 
McNemar Test 
Miettinen-Nurminen* 
Wilson’s Score* Method 
Equivalence Tests* 
Noninferiority Tests* 
 
Mass Appraisal 
Comparables Reports 
Hybrid (Feedback) Model* 
Nonlinear Regression 
Sales Ratios 
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Analysis of Variance
Factorial AOV
Fixed Effects AOV
Geisser-Greenhouse
MANOVA*
Multiple Comparisons*
One-Way AOV
Planned Comparisons
Randomized Block AOV
New Repeated Measures AOV*
Regression / Correlation
Correlations (one or two)
Cox Regression*
Logistic Regression
Multiple Regression
Poisson Regression*
Intraclass Correlation
Linear Regression

Proportions
Chi-Square Test
Confidence Interval
Equivalence of McNemar*
Equivalence of Proportions
Fisher's Exact Test
Group Sequential Proportions
Matched Case-Control
McNemar Test
Odds Ratio Estimator
One-Stage Designs*
Proportions – 1 or 2
Two Stage Designs (Simon’s)
Three-Stage Designs*
Miscellaneous Tests
Exponential Means – 1 or 2*
ROC Curves – 1 or 2*
Variances – 1 or 2

T Tests
Cluster Randomization
Confidence Intervals
Equivalence T Tests
Hotelling’s T-Squared*
Group Sequential T Tests
Mann-Whitney Test
One-Sample T-Tests
Paired T-Tests
Standard Deviation Estimator
Two-Sample T-Tests
Wilcoxon Test
Survival Analysis
Cox Regression*
Logrank Survival -Simple
Logrank Survival - Advanced*
Group Sequential - Survival
Post-Marketing Surveillance
ROC Curves – 1 or 2*

Group Sequential Tests
Alpha Spending Functions
Lan-DeMets Approach
Means
Proportions
Survival Curves
Equivalence
Means
Proportions
Correlated Proportions*
Miscellaneous Features
Automatic Graphics
Finite Population Corrections
Solves for any parameter
Text Summary
Unequal N's

*New in PASS 2002

NCSS Statistical Software • 329 North 1000 East • Kaysville, Utah  84037
Internet (download free demo version): http://www.ncss.com • Email: sales@ncss.com

Toll Free: (800) 898-6109 • Tel: (801) 546-0445 • Fax: (801) 546-3907

PASS comes with two manuals that contain
tutorials, examples, annotated output,
references, formulas, verification, and
complete instructions on each procedure.
And, if you cannot find an answer in the
manual, our free technical support staff
(which includes a PhD statistician) is
available.

System Requirements
PASS runs on Windows 95/98/ME/NT/
2000/XP with at least 32 megs of RAM and
30 megs of hard disk space.

PASS sells for as little as $449.95.

Power vs N1 by Alpha with M1=20.90 M2=17.80
S1=3.67 S2=3.01 N2=N1 2-Sided T Test
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PASS performs power analysis and
calculates sample sizes. Use it before
you begin a study to calculate an
appropriate sample size (it meets the
requirements of government agencies
that want technical justification of the
sample size you have used). Use it after
a study to determine if your sample size
was large enough. PASS calculates the
sample sizes necessary to perform all of
the statistical tests listed below.

A power analysis usually involves
several “what if” questions. PASS lets
you solve for power, sample size, effect
size, and alpha level. It automatically
creates appropriate tables and charts of
the results.
PASS is accurate. It has been
extensively verified using books and
reference articles. Proof of the
accuracy of each procedure is included
in the extensive documentation.

PASS is a standalone system. Although
it is integrated with NCSS, you do not
have to own NCSS to run it. You can use
it with any statistical software you want.

PASS Beats the Competition!
No other program calculates sample
sizes and power for as many different
statistical procedures as does PASS.
Specifying your input is easy, especially
with the online help and manual.

PASS automatically displays charts and
graphs along with numeric tables and
text summaries in a portable format that
is cut and paste compatible with all word
processors so you can easily include the
results in your proposal.

Choose PASS. It's more comprehensive,
easier-to-use, accurate, and less
expensive than any other sample size
program on the market.

Trial Copy Available
You can try out PASS by downloading it
from our website. This trial copy is
good for 30 days. We are sure you will
agree that it is the easiest and most
comprehensive power analysis and
sample size program available.

PASS 2002
Power Analysis and Sample Size Software from NCSS
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PASS calculates sample sizes for...

PASS 2002 adds power analysis and sample size to your statistical toolbox

WHAT’S NEW IN PASS 2002?
Thirteen new procedures have been added
to PASS as well as a new home-base
window and a new Guide Me facility.

MANY NEW PROCEDURES
The new procedures include a new multi-
factor repeated measures program that
includes multivariate tests, Cox
proportional hazards regression, Poisson
regression, MANOVA, equivalence
testing when proportions are correlated,
multiple comparisons, ROC curves, and
Hotelling’s T-squared.

TEXT STATEMENTS
The text output translates the numeric
output into easy-to-understand
sentences. These statements may be
transferred directly into your grant
proposals and reports.

GRAPHICS
The creation of charts and graphs is
easy in PASS. These charts are easily
transferred into other programs such
as MS PowerPoint and MS Word.

NEW USER’S GUIDE II
A new, 250-page manual describes each new
procedure in detail. Each chapter contains
explanations, formulas, examples, and
accuracy verification.

The complete manual is stored in PDF
format on the CD so that you can read and
printout your own copy.
GUIDE ME
The new Guide Me facility makes it easy for
first time users to enter parameter values.
The program literally steps you through those
options that are necessary for the sample size
calculation.
NEW HOME BASE
A new home base window has been added just
for PASS users. This window helps you
select the appropriate program module.
COX REGRESSION
A new Cox regression procedure has been
added to perform power analysis and sample
size calculation for this important statistical
technique.
REPEATED MEASURES
A new repeated-measures analysis module
has been added that lets you analyze designs
with up to three grouping factors and up to
three repeated factors. The analysis includes
both the univariate F test and three common
multivariate tests including Wilks Lambda.
RECENT REVIEW
In a recent review, 17 of 19 reviewers
selected PASS as the program they would
recommend to their colleagues.

Please rush me my own personal license of PASS 2002.
Qty
___ PASS 2002 Deluxe  (CD and User's Guide): $499.95..............$ _____

___ PASS 2002 CD (electronic documentation): $449.95..........$ _____

___ PASS 2002 5-User Pack (CD & 5 licenses): $1495.00........$ _____

___ PASS 2002 25-User Pack (CD & 25 licenses): $3995.00....$ _____

___ PASS 2002 User's Guide II (printed manual): $30.00.........$ _____

___ PASS 2002 Upgrade CD for PASS 2000 users: $149.95 .......$ _____

Typical Shipping & Handling: USA: $9 regular, $22 2-day, $33
overnight. Canada: $19 Mail. Europe: $50 Fedex.......................$ _____
Total: ...................................................................................$ _____

My Payment Options:
___ Check enclosed
___ Please charge my: __VISA __MasterCard __Amex
___ Purchase order enclosed

Card Number
_______________________________________________Expires_______

Signature____________________________________________________
Please provide daytime phone:

(       )_______________________________________________________

Ship my PASS 2002 to:

NAME

COMPANY

ADDRESS

CITY/STATE/ZIP

COUNTRY (IF OTHER THAN U.S.)

FOR FASTEST DELIVERY, ORDER ONLINE AT
WWW.NCSS.COM

Email your order to sales@ncss.com
Fax your order to (801) 546-3907

NCSS, 329 North 1000 East, Kaysville, UT 84037
(800) 898-6109 or (801) 546-0445
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Introducing GGUM2004 
Item Response Theory Models for Unfolding

The new GGUM2004 software system
estimates parameters in a family of item
response theory (IRT) models that unfold
polytomous responses to questionnaire
items.  These models assume that persons
and items can be jointly represented as
locations on a latent unidimensional
continuum.  A single-peaked,
nonmonotonic response function is the key
feature that distinguishes unfolding IRT
models from traditional, "cumulative" IRT
models.  This response function suggests

that a higher item score is more likely to the extent that an individual is located close to a given
item on the underlying continuum.  Such single-peaked functions are appropriate in many
situations including attitude measurement with Likert or Thurstone scales, and preference
measurement with stimulus rating scales.  This family of models can also be used to determine
the locations of respondents in particular developmental processes that occur in stages.
 
The GGUM2004 system estimates item parameters using marginal maximum likelihood, and
person parameters are estimated using an expected a posteriori (EAP) technique.  The program
allows for up to 100 items with 2-10 response categories per item, and up to 2000 respondents. 
GGUM2004 is compatible with computers running updated versions of Windows 98 SE,
Windows 2000, and Windows XP.  The software is accompanied by a detailed technical
reference manual and a new Windows user's guide.  GGUM2004 is free and can be downloaded
from:
 

http://www.education.umd.edu/EDMS/tutorials

GGUM2004 improves upon its predecessor (GGUM2000) in several important ways:
- It has a user-friendly graphical interface for running commands and 

               displaying output.
- It offers real-time graphics that characterize the performance of a given model.
- It provides new item fit indices with desirable statistical characteristics.
- It allows for missing item responses assuming the data are missing at random.
- It allows the number of response categories to vary across items.
- It estimates model parameters more quickly.

Start putting the power of unfolding IRT models to work in your attitude and preference
measurement endeavors.  Download your free copy of GGUM2004 today!
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 JOIN DIVISION 5 OF APA! 
 
 The Division of Evaluation, Measurement, and Statistics of the American Psychological 
Association draws together individuals whose professional activities and/or interests include 
assessment, evaluation, measurement, and statistics.  The disciplinary affiliation of division 
membership reaches well beyond psychology, includes both members and non-members of 
APA, and welcomes graduate students. 
 
 Benefits of membership include: 
$  subscription to Psychological Methods or Psychological Assessment (student members, 

who pay a reduced fee, do not automatically receive a journal, but may do so for an 
additional $18) 

$  The Score – the division’s quarterly newsletter 
$  Division’s Listservs, which provide an opportunity for substantive discussions as well as 

the dissemination of important information (e.g., job openings, grant information, 
workshops) 

 
 Cost of membership: $38 (APA membership not required); student membership is only $8 
 
 For further information, please contact the Division’s Membership Chair, Yossef Ben-Porath 
(ybenpora@kent.edu) or check out the Division’s website: 
 
  http://www.apa.org/divisions/div5/ 
______________________________________________________________________________ 
 

ARE YOU INTERESTED IN AN ORGANIZATION DEVOTED TO 
EDUCATIONAL AND BEHAVIORAL STATISTICS? 

 
Become a member of the Special Interest Group - Educational Statisticians of the 

American Educational Research Association (SIG-ES of AERA)! 
 

The mission of SIG-ES is to increase the interaction among educational researchers interested 
in the theory, applications, and teaching of statistics in the social sciences. 

 
Each Spring, as part of the overall AERA annual meeting, there are seven sessions sponsored 

by SIG-ES devoted to educational statistics and statistics education. 
We also publish a twice-yearly electronic newsletter. 

 
Past issues of the SIG-ES newsletter and other information regarding SIG-ES can be found at 

http://orme.uark.edu/edstatsig.htm 
 

To join SIG-ES you must be a member of AERA. Dues are $5.00 per year. 
 

For more information, contact Joan Garfield, President of the SIG-ES, at jbg@umn.edu. 
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Instructions For Authors 
 
 Follow these guidelines when submitting a manuscript: 
 
 1. JMASM uses a modified American Psychological Association style guideline. 
 2. Submissions are accepted via e-mail only. Send them to the Editorial Assistant at 
ea@edstat.coe.wayne.edu. Provide name, affiliation, address, e-mail address, and 30 word biographical 
statements for all authors in the body of the email message. 
 3. There should be no material identifying authorship except on the title page. A statement should be 
included in the body of the e-mail that, where applicable, indicating proper human subjects protocols were 
followed, including informed consent. A statement should be included in the body of the e-mail indicating the 
manuscript is not under consideration at another journal. 
 4. Provide the manuscript as an external e-mail attachment in MS Word for the PC format only. 
(Wordperfect and .rtf formats may be acceptable - please inquire.) Please note that Tex (in its various 
versions), Exp, and Adobe .pdf formats are designed to produce the final presentation of text. They are not 
amenable to the editing process, and are not acceptable for manuscript submission. 
 5. The text maximum is 20 pages double spaced, not including tables, figures, graphs, and references. Use  
11 point Times Roman font. 
 6. Create tables without boxes or vertical lines. Place tables, figures, and graphs “in-line”, not at the end of 
the manuscript. Figures may be in .jpg, .tif, .png, and other formats readable by Adobe Illustrator or 
Photoshop. 
 7. The manuscript should contain an Abstract with a 50 word maximum, following by a list of key words 
or phrases. Major headings are Introduction, Methodology, Results, Conclusion, and References. Center 
headings. Subheadings are left justified; capitalize only the first letter of each word. Sub-subheadings are left-
justified, indent optional. 
 8. Do not use underlining in the manuscript. Do not use bold, except for (a) matrices, or (b) emphasis 
within a table, figure, or graph. Do not number sections. Number all formulas, tables, figures, and graphs, but 
do not use italics, bold, or underline. Do not number references. Do not use footnotes or endnotes. 
 9. In the References section, do not put quotation marks around titles of articles or books. Capitalize only 
the first letter of books. Italicize journal or book titles, and volume numbers. Use “&” instead of “and” in 
multiple author listings. 
 10. Suggestions for style: Instead of “I drew a sample of 40” write “A sample of 40 was selected”. Use 
“although” instead of “while”, unless the meaning is “at the same time”. Use “because” instead of “since”, 
unless the meaning is “after”. Instead of “Smith (1990) notes” write “Smith (1990) noted”. Do not strike 
spacebar twice after a period. 
 

Print Subscriptions 
 Print subscriptions including postage for professionals are US $95 per year; for graduate students are US 
$47.50 per year; and for libraries, universities, and corporations are US $195 per year. Subscribers outside of 
the US and Canada pay a US $10 surcharge for additional postage. Online access is currently free at 
http://tbf.coe.wayne.edu/jmasm. Mail subscription requests with remittances to JMASM, P. O. Box 48023, 
Oak Park, MI, 48237. Email journal correspondence, other than manuscript submissions, to 
jmasm@edstat.coe.wayne.edu. 
 

Notice To Advertisers 
 Send requests for advertising information to jmasm@edstat.coe.wayne.edu. 
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  STATISTICIANS 
 

HAVE YOU VISITED THE 
 

Mathematics Genealogy Project? 
 

The Mathematics Genealogy Project is an 
ongoing research project tracing the intellectual 
history of all the mathematical arts and sciences 
through an individual’s Ph.D. advisor and Ph.D. 
students.  Currently we have over 80,000 
records in our database.  We welcome and 
encourage all statisticians to join us in this 
endeavor.  

 
 

Please visit our web site 
 

http://genealogy.math.ndsu.nodak.edu 
 

The information which we collect is the following: 
The full name of the individual, the school where he/she earned a Ph.D., the 
year of the degree, the title of the dissertation, and, MOST 
IMPORTANTLY, the full name of the advisor(s). E.g., Fuller, Wayne 
Arthur; Iowa State University; 1959; A Non-Static Model of the Beef and 
Pork Economy; Shepherd, Geoffrey Seddon 

 
For additions or corrections for one or two people a link is available on the 
site.  For contributions of large sets of names, e.g., all graduates of a given 
university, it is better to send the data in a text file or an MS Word file or an 
MS Excel file, etc. Send such information to: 
 

harry.coonce@ndsu.nodak.edu 
The genealogy project is a not-for-profit endeavor supported by donations from individuals and sales of 
posters and t-shirts.  If you would like to help this cause please send your tax-deductible contribution to: 
Mathematics Genealogy Project, 300 Minard Hall, P. O. Box 5075, Fargo, North Dakota 58105-5075E 
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