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INVITED ARTICLES
Robust Confidence Intervals for Effect Size in the Two-Group Case

H. J. Keselman
University of Manitoba

James Algina
University of Florida

Katherine Frette
University of Manitoba

The probability coverage of intervals involving robust estimates of effect size based on seven procedures
was compared for asymmetrically trimming data in an independent two-groups design, and a method that
symmetrically trims the data. Four conditions were varied: (a) percentage of trimming, (b) type of
nonnormal population distribution, (c) population effect size, and (d) sample size. Results indicated that
coverage probabilities were generally well controlled under the conditions of nonnormality. The
symmetric trimming method provided excellent probability coverage. Recommendations are provided.

Key words: Robust Intervals, effect size statistics, symmetric and asymmetric trimmed means,

nonnormality

Introduction

Journal editorial policies in medicine and
psychology encourage researchers to supplement
significance testing by reporting confidence
intervals (Cls) as well as effect size (ES)
statistics. As Fidler, Thomason, Cumming,
Finch, and Leeman (2004) note, this movement
started in medicine as early as the 1980s (see
Rothman 1975, 1978a, 1978b). In psychology,
in the past 15 years or so, there has been
renewed emphasis on reporting ESs because of
editorial policies requiring ESs (e.g., Murphy,
1997; Thompson, 1994) and official support for
the practice. According to The Publication
Manual of the American Psychological
Association (2001), “it is amost aways

H. J. Kesaddman is Professor of Psychology.
Email: kesel @ms.umanitoba.ca. James Alginais
Professor of Educational Psychology. Email
algina@ufl.edu. Katherine H. Fradette is a
doctoral student in the Department of
Psychology. Email: umfradet@cc.umanitoba.ca.

353

necessary to include some index of ES or
strength of relationship in your Results section.”
(p. 25). The practice of reporting ESs has also
received support from the APA Task Force on
Statistical Inference (Wilkinson and the Task
Force on Statistical Inference, 1999). An interest
in reporting Cls for ESs has accompanied the
emphasis on ESs. Cumming and Finch (2001),
for example, presented a primer of Cls for ESs.
The purpose of this article is to bring to the
attention of researchers in medicine and
psychology, and other interested researchers,
who set Cls around an ES parameter, a better
approach than currently adopted methods.

Algina and Keselman (2003) and Algina,
Keselman and Penfield (2005) investigated two
two-group ES statistics, looking, in particular, at
the confidence coefficient of two intervals
associated with each. One of the ES statistics
was Cohen’'s (1965) standardized mean
difference statistic

dzvz_vl
S L)
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354 ROBUST CONFIDENCE INTERVALS FOR EFFECT SIZE

where Y, is the mean for the jth level (j=1, 2)

of atreatment factor and S is the square root of
the pooled variance. The second was

0. - _643[uj,
S

w

where \_(tj denotes the jth 20% trimmed mean,

S,, is the square root of the pooled 20%

Winsorized variance and .643 is the population
20% Winsorized standard deviation for a
standard normal distribution. These authors
included .643 in the definition of their robust

effect so that the population values of d, (J;)

and d (o) would be equal when data are drawn

from normal distributions with equal variances.
However, these authors also pointed out that

it is not obligatory to include the .643 multiplier

in the definition of d; and J; . Accordingly, the

multiplier is excluded in this article. Using each
ES dsatistic, Cls were constructed by using
critical values obtained from theory or through a
bootstrap method. Algina and Keselman (2003)
found that probability coverage for intervals of
the usual dtatistic based on least squares
estimators was inaccurate whether or not the
interval’s critical values were obtained from a
theoretical or bootstrap distribution. They also
reported that probability coverage was
inaccurate when the interval was set around a
robust parameter of ES and the critical values
for the interval were obtained from a theoretical
probability distribution. However, probability
coverage was by in large accurate (e.g., .940-
.971 for a .95 confidence coefficient) when the
interval for the robust parameter of ES was
based on critical values obtained through a
bootstrap method (see Algina et al., 2005).
Keselman, Wilcox, Lix, Algina and Fradette
(in press) found that tests of treatment group
equality based on robust estimators performed
very well, with respect to Type | error control
and power to detect effects in nonnormal
heteroscedastic  distributions, when adopting
robust estimators based on asymmetric trimming
of the data. That is, rather than trim a
predetermined fixed amount of data from each

tail of the empirical distribution, as frequently is
recommended in the literature (e.g., 20% from
each tail; see Wilcox, 1997; Wilcox &
Keselman, 2003), Keselman et al. used nine
adaptive procedures that empirically determined
the amounts of data that should be trimmed in
the right and left tails of each of the nonnormal
distributions that they examined in their Monte
Carlo investigation. The rationale behind
asymmetric trimming is to remove more of the
offending data (i.e., data that does not represent
the bulk of the observations, that is, the typical
score) from the tail containing more of the
outlying values.

Based on the two aforementioned studies, it
is believed that more accurate confidence
coefficients for Algina and Keselman's (2003)
and Algina et a.’s (2005) robust parameter of
ES could be obtained by adopting the
asymmetric trimming procedures enumerated in
Kesdman et a. (in press). Accordingly, this
issuewill beinvestigated in this article.

Theoretical Background

ES Statistics and Accompanying Cls

In the two independent-groups paradigm,
Cohen’s (1965) standardized mean difference
statistic, d, is a popular choicefor estimating ES.
His ES statistic is defined as

d= \?2 _\?1 .
S
Cohen's d estimates
5: :uz _zul
()- H

where ; is the jth population mean and o is

the population standard deviation, assumed to be
equal for both groups.

When the scores are independently
distributed and are drawn from normal
distributions having egqual variances, an exact Cl
for the population ES (i.e, J) can be
constructed by using the noncentral t distribution
(see, eg., Cumming & Finch, 2001 or Steiger &
Fouladi, 1997). The noncentral t distribution is

www.manaraa.com



KESELMAN, ALGINA, & FRADETTE 355

the sampling distribution of thet statistic when
0 is not equal to zero; it has two parameters.
The first is the degrees of freedom and equals
N—2 in the two independent-groups set-up
([(N=n,+n,] and the number of observations

in a level is denoted by n;). The second
parameter is the noncentrality parameter

A= nn, [ﬂz _ﬂlj — nn, S.
\{ n,+n, o \{ n,+n,

The noncentrality parameter controls the
location of the noncentral t distribution. The
mean of the noncentral t distribution is = A
(Hedges, 1981); the accuracy of the
approximation improves as N increases.

To find a 95% (for example) ClI for &, one
would first use the noncentral t distribution to

find a95% Cl for 4. A Cl for § can then be
obtained by multiplying the limits of the interval

for A by \/(n,+n,)/nn, . The lower limit of

the CI for A is the noncentrality parameter for
the noncentral t distribution in which the
calculated t statistic

t= nn, v2 _ ?1
n,+n, S

is the .975 quantile. The upper limit of the
interval for A is the noncentrality parameter for
the noncentral t distribution in which the
calculated t statistic is the .025 quantile of the
distribution (see Steiger & Fouladi, 1997).

The use of the noncentral t distribution is
based on the assumption that the data are drawn
from normal distributions. If this assumption is
not true, there is no guarantee that the actual
probability coverage for the interval will match
the nominal probability coverage, as was
demonstrated by Algina and Keselman (2003).
In addition, as noted by Wilcox and Keselman
(2003), when data are not normal, the usual
population ES can be misleading because the
(least squares) means and standard deviations
can be affected by skewed data and by outliers.
A better strategy, they maintain, is to replace the

least squares values by robust estimates, such as
trimmed means and Winsorized variances, and,
accordingly, estimate a robust population ES.

As an alternative to d, Algina and K eselman
(2003) and Algina e a. (2005) (hereafter
referred to as A& K) proposed

(Remember, the .643 multiplier is not used.)
Therobust population ESis

5R :[ﬂtz _ﬂtl)
Ow

where 4, is the jth population 20% trimmed
mean and o, is the population analogue of
S,y - (Seeappendix 1.)

As Algina and Keselman (2003) and Algina
et al. (2005) indicated, an approximately correct

Cl for ¢, can also be constructed by using the

noncentral t distribution. However, as previously
noted, this approach to forming intervals did not
provide satisfactory probability coverage when
data were obtained from  nonnormal
distributions. However, Algina et a. did find
that probability coverage, under conditions of
nonnormality, was generally reasonably good
when critical values were obtained through a
percentile  bootstrap  empirical  sampling
distribution, not from the noncentral t
distribution.

Adaptive Trimming M ethods

The theoretical background to the
asymmetric trimming methods investigated by
Kesedman et al. (in press) is now discussed.
Based on the work of Hogg (1974, 1982) and
others, Reed and Stark (1996) defined seven
adaptive location estimators based on measures
of tail-length and skewness for a set of n
observations. To define these estimators the
measures of tail-length and skewness must first
be defined. By adopting the notation of Hogg
(1974, 1982) and Reed and Stark (1996), based

on the ordered values, we let L, = the mean of

www.manaraa.com



356 ROBUST CONFIDENCE INTERVALS FOR EFFECT SIZE

the smallest [an] observations, where [ on]
denote the greatest integer less than an and

U,, =the mean of the largest [am] observations.
When ¢ =.05, and, therefore, L . is the

mean of the smallest [.05n] observations, B =
the mean of the next largest .15n observations,
C= the mean of the next largest .30n
observations, D = the mean of the next largest
.30n observations, and E = the mean of the next
largest .15n observations.

Tail-length measures. Hogg (1974) defined

two measures of tail-length, Q and Q, , where

Q= (U(.os) - L(.os) )/(U(-S) B L(-5)) and
Q, = (U(.z) —Ly) )/(U(-S) ~Li )

Q and Q, can be used to classify symmetric
distributions as light-tailed, medium-tailed or
heavy-tailed. Q and Q, are location free
statistics and, moreover, are uncorrelated with
location statistics such as trimmed means (Reed
& Stark, 1996, p. 12). According to Hogg and
Reed and Stark, values of Q <2 imply a light-
tailed distribution, 2.0<Q <2.6 a medium-
tailed distribution, 2.6 <Q <3.2 a heavy-
tailed distribution and Q > 3.2 a very heavy-
tailled distribution. The cutoffs for Q, are

Q,<1.81 (light-tailed), 1.81<Q,<1.87
(medium-tailed) and Q, >1.87 (heavy-tailed).

Hogg (1982) introduced another measure of
tail-length:

H, = (U(.os) - L(.os) )/(E _B) :

With this measure, values of H, <1.26

suggest that the tails of the distribution are
similar to a uniform distribution, values of 1.26
through 1.76 suggest a normal distribution and
values greater than 1.76 suggest the tails are
similar to those of a double exponential
distribution.

Measures of skewnesss
Reed and Stark (1996) defined four
measures of skewness as:

Qz = (U(,os) _T(.25) )/(T(.zs) _L(.os))’

Hy = (Uyg - D)/ (€—Lies)

SK, =(Y,, —~ YMD) /(YMD -} and

K, = vy - (-, )
where YMD is the median, YM is the arithmetic
mean, T s is the .25- trimmed mean (T,)
given below and Y(l) and Y(n) are, respectively

the first and last ordered observations.
According to Reed (1998), the « -trimmed
mean is defined as

T = Y. Y Y
o 1 20( |:Z |+ + nk+1):|

=K+1

(In this definition a proportion, «, has been
trimmed from each tail) and the accompanying

Winsorized variance S? is defined as

1
(n-1)(1-22)°

ﬁ“‘nﬁk(ﬂ T +K (Y Tad

i=k+1

S =

where k =[on] +1.

Based on the former definitions of tail-
length and skewness, Reed and Stark (1996, p.
13) proposed a set of adaptive linear estimators
“that have the capability of asymmetric
trimming.” These authors defined a genera
scheme for their approach as follows:

1. Setthevaluefor thetotal amount of trimming

fromthesample, « .

1) Determine the proportion to be trimmed
from the lower end of the sample (¢) by
the following proportion:

= a[ UW, /(UW, +LW, )], where
UW, and LW, are the numerator and
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KESELMAN, ALGINA, & FRADETTE 357

denominator portions of the previously
defined selector statistics (i.e., tail-length
and skewness).
2) The upper trimming proportion is then given
by o, =a—¢,.
Based on this general schema, Reed and
Stark (1996) defined seven hinge estimators,
which are trimmed means:

HQ g=of UN,/(UNG +LW) |

HQ o= W, /U, +Lw, )|

HH, =] U (U, +LW, ) |

HQ o= U, /(U LW, ) |

HH or=al U, f[Uw, 1w, |

HSK, =] WA /(WG +LW ) |, and

HSKG - ar=af UG (UG +LWG )|

Kesdman e a. (in press), investigating
Type | error rates and power of procedures for
testing equality of two trimmed means when
variances are not assumed to be equal, examined
the Reed and Stark (1996) procedure with
various values for « because the literature
varies on the amount of recommended
(symmetric) trimming. Rosenberger and Gasko
(1983) recommended 25% when sample sizes
are small, though they thought generally 20%
suffices. Wilcox (1997) also recommended 20%,
and Mudholkar, Mudholkar and Srivastava
(1991) suggested 15%. Ten percent has been
considered by Hill and Dixon (1982), Huber
(1977), Stigler (1977) and Staudte and Sheather
(1990); results reported by Keselman, Wilcox,
Othman and Fradette (2002) also support 10%
trimming.

Reed and Stark (1996) found, based on a
simulation study, that T,,, T,.,, HSK, and

HSK, were the most efficient estimators when

the distribution was symmetric. When the
distribution was asymmetric, they found that

“HQ, HQ11 HQZ, HHl’ HSK2 and HSK5
[were] consistently among the top four

NS o

w

e

o

[o2]

~N

estimators, with HQ, and HQ, in the top

three” (p. 661).

According to Keselman et a. (in press), one
can modify Reed and Stark’s (1996) tail-length
and skewness measures for the multi-group
problem and then apply the modified multi-
group measures to the hinge estimators. In
particular, they indicated that each of the
measures can be modified by taking weighted
averages (in a manne analogous to the
modifications of tail-length and symmetry
measures suggested by Babu, Padmanaban and
Puri, 1999) of each numerator and denominator
term. For example, for the multi-group problem,

where n; represents the number of observations

ineach group, Q, and Q, can be defined as

Ql{qu Yt )/ JZW yLZr! UsLs )/ JZH}

ad

Q] STl | Z1fTa ) 3]

The other measures would be similarly modified
and these multi-group measures of tail-length
and skewness are the measures that are applied
to the general scheme proposed by Reed and
Stark (1996).

Based on these multi-group tail-length and
skewness measures, and their application to the
hinge estimators, Keselman et a. (in press)
reported that over the 288 empirical values they
collected for each method investigated, in which
they varied the total percent of data trimmed,
sample size, degree of variance heterogeneity,
pairing of variances and group sizes and
population shape, five methods resulted in
exceptionally good control of Type | error rates
(HH3, HQ2, HH1, HSK2 and HSK5). With
regard to the power to detect nonnull treatment
effects, they found that HH3 was uniformly
more powerful than the remaining ones.
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Robust Estimation
In this study, the methods for constructing
Cls for a robust ES, defined by using robust
measures of central tendency and variability are
investigated. It is important to note that « -
trimmed means and Winsorized variances can be
defined in a number of different ways (Hogg,
1974; Reed, 1998; Keselman et al., in press;
Wilcox, 2003). Suppose n; independent random
observations Yy, Y,;,..., Y, are sampled from
(j=12). Let

represent the ordered

population j

Yy S Yoy S<Y,

observations associated with the jth group. The
approach taken by Reed (1998) is based on the
work of Hogg (1974). For Hogg, the « -
trimmed mean is

nj-g
m a) = (l/h)zlY(') ,
i=g+:
where ¢ is usually selected so that g = [nja}
and h=n,-2g=n,-2[ne]. The standard
error of m(¢r) that Hogg suggests is based on

the work of Tukey and McLaughlin (1963) and
Huber (1970) and, according to these authors, is
estimated by

=/SS(a)/h(h-1),

where SS(or) is the Winsorized sum of
squares, defined as

CEINA

+[Y(g+2) —m(a)T+. ..

¥, gy [ +ae] v, , -mia]

When alowing for different amounts of
trimming in each tail of the distribution, Hogg
(1974) defines the trimmed mean as

nj—9
() =(Uh) 3 Y,
i=g,+1
where g, =[N | ad g,=[ne,| ad
h:nj_gl_g2'
standard deviation of m(ey, @,) can be
estimated as

Hogg suggests that the

Sie.e =SS(0n @) /h(h-1),

m(eq, o)

where SS(«, o,) can becalculated as

(6 +1)| Yigua — (aa%)}z
Yy —mlep )] +.
{Y(ni_gz_]; -m(a %)T +
(0. +Y) [Y(nj_%) -m(a;, %)T
(9)] Y ~Mlen, ) |+
(gz)[Y(ni_gz) -m(a, %)}

n

Based on the preceding, our robust estimate
of ES for asymmetrically trimmed data is
defined as

2

m, (e, a,)—m, (e, &, )

d, = ,
\/SSl(al, @,)+SS, (o, a,)
N-2

where m, (¢4, @;,) and SS,(a, @, ) arethejth

asymmetrically trimmed mean and sum of
squares, respectively. (See Appendix 2.)
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Methodol ogy

Probability coverage for seven ES dtatistics
(based on seven hinge estimators. HQ, HQ1,
HH3, HQ2, HH1, HSK2, and HSK5) was
estimated for all combinations of the following
four factors: (@) four values of total trimming,
namely 10%, 15%, 20% and 25%, (b)
population distribution (four cases from the
family of g and h distributions), (c) sample size:
n,=n, =20, 40, 60, 80, and 100, and
(d) population ES (PES = &;) of 0, .2, .5, .8,

11, and 1.2. The A&K statistic was also
included, where the values of symmetric
trimming investigated were 5%, 10%, 15% and
20%.

The data were generated from the family of
g and h distributions (Hoaglin, 1985).
Specifically, it was chosen to investigate four g
and h distributions:

(@ g=h=0, the standard normal distribution
(n=7=0),

() g=0and h=.225, a long-tailed
distribution (7, =0, 3, =154.84),

(0 g=.76 and h=-.098, a distribution
with skew and kurtosis equal to that for an
exponential distribution (%, =2, %, =6), and
(d g=.225and h=.225, a longtailed
skewed distribution (3, =4.90, y, =4673.80).

To generate data from a g and h distribution,
standard unit normal variables Z; were

converted to g and h distributed random
variables via

explgZ.)-1 hz?
YIJ — p(g Ij) exp[ ij j
g 2

when both g and h were non-zero. When g was
2

hz:
zero, Y = Z, exp[—“j. The Z. scores were
i i 2 ij

generated by using RANNOR from SAS (1999).
In particular, the following method to generate
our data was used:

1. Theorigina Y; data (for both groups)

were generated from a desired
population distribution (eg.,
g=.225and h=.225). (NOTE:
The origina Y, data are not yet
transformed)

A bootstrap sample ('Y ) was obtained
from the original sample by sampling
n, observations with replacement from

Y, and n, obsevations with

replacement from Y, .

With the bootstrap data, we determined
o, and ¢, for the desired total
trimming percentage (e.g., 15%) for
each of the seven hinge estimators.

The bootstrapped data for group 2 (Yi;)
were then transformed according to
Y, + 0, X0, where 0, depended on
the hinge egtimator, the tota % of
trimming, and the population distribution
under investigation. For a particular
population distribution and total % of
trimming, ©,, was determined prior to

conducting the study. That s,
1,000,000 observations were first
generated from the population
distribution in question and then the
population trimming strategy was
determined for each of the hinge
estimators under the desired total % of

trimming. The o,, valuesfor the seven

different hinge estimators were then
determined by  computing the
Winsorized standard deviation of the
1,000,000 observations, using the
trimming strategies of each of the
estimators.

The transformed bootstrap data was
then used to compute the trimmed

means (Y, and Y;,) and the pooled
Winsorized standard deviation (S,,)

for each of the 7 different hinge
estimator methods, based on the
trimming strategies previously
determined.
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6. For each estimator, the following was
v _yr

* Yx
computed d = %

w
7. Steps 1 through 6 were repeated 600
times.
8. For each hinge estimator, the 600

bootstrap ES estimates (d) were

ranked and the upper and lower limits
of the Cls were determined in the
following manner. Letting | =.025B,
rounded to the nearest integer, and
u=B-I, an estimate of the .025 and

.975 quantiles of the distribution of dy
is dR(M) and dp .

9. Finaly, steps 1 through 8 were repesated
5000 times.
The nominal confidence level for al intervals
was .95.

Results

Table 1 contains average probability coverage
rates for the seven hinge estimator methods as
well as A&K for setting intervals around the
PES for the effects investigated. Bradley's
(1978) liberal criterion will be used to judge the
robustness of the methods.

Coverage probabilities within the interval
.925-.975 are deemed well controlled, while
those outside this range are regarded as
substantially affected by an investigated
effect(s). Values outside the interval will be
demarcated with boldface type in the tables. The
grand mean coverage probabilities were
obtained over 480 conditions and most apparent
is that the empirical values are not only
contained in Bradley's interval, but, moreover,
are actually quite close to the nominal .95 value,
with the largest deviation between nominal and
empirical values equaling .004. Indeed, the
range of empirical values extends from .946 to
.949. Similarly, none of the remaining Table 1
values fell outside the Bradley liberal criterion.

Thus, by this standard of robustness, all
hinge estimator methods for setting intervals
around the robust PES can be regarded as not
adversely affected by the effects of percentage
of trimming, sample size, PES, and shape of

distribution. Indeed, the number of times each of
the methods' empirical values fell outside the
liberal interval were tabulated and it was found
that, over the 3840 estimates (480 conditions X
8 procedures), only 56 were not contained in the
interval (lessthan 1.5% of the values!).

Not surprisingly, 51 of these values occurred
when n=20; the remaining five values
occurred when n =40. From this tabulation it
was aso found that, of the hinge estimator
procedures, only HSK2 and HSK5 never had a
value outside the Bradley interval. However, if
the n = 20 results are excluded, then HQ, HQL,
and HH3 can be added to this list of procedures
that never had a value over the 480 conditions
outside the Bradley interval. Also noteworthy is
that all 480 of the A&K vaues were in the
Bradley interval.

Nonetheless, one can observe from the
tabled values that there are variations in
coverage probabilities due to the investigated
effects. That is, it appears that coverage
probabilities were closer to .95 when the: (a)
percentage of total trimming was at least 20%
(for A&K the empirical estimates were equal
across percentages of symmetric trimming), (b)
sample size was at least 80 per group, and (C)
nonnormal distribution was not
g=.76 and h=-.098.

Accordingly, exemplars of these empirical
coverage probabilities are presented in Tables 2-
5, where the four tables are for the four
distributions investigated. When PES =0, all
empirical coverage probabilities (not tabled)
were contained within Bradley’s (1978) interval
across al sample size and population
distributions investigated. In Tables 2-5, 28 of
the 1152 empirical values (= 2.4%) were not
contained in the .925-.975 interval. Twenty-five
of the affected values occurred when data were
obtained from the g=.76 and h=-.098
distribution and when n = 20 (Table 4).

The remaining three liberal values also
occurred when n=20 but in these instances
the daa wee g=.225andh=.225
distributed. One should aso notice that

empirical values for the A&K procedure were
always in Bradley’'s (1978) interval across the
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Table 1. Summary Datafor Estimated Coverage Probabilities for Nominal 95% Bootstrap

Intervals
Condition A&K  HQ HQ1 HH3 HQ2 HH1 HSK2 HSK5
Grand Mean .949 947 .948 947 947 .946 .948 .948
% Trimming
10 .943 .945 .944 .944 .942 .948 .948
15 .946 .949 .946 947 .946 .949 .948
20 .949 .949 .948 .948 947 .948 .948
25 .949 .949 .948 .949 .948 947 .948
5 (Symmetric) 949
10 (Symmetric)  .949
15 (Symmetric)  .949
20 (Symmetric)  .949
Sample Size
20 .950 .939 .943 937 .938 .936 .948 .949
40 951 .948 .950 .948 .948 .946 .949 .949
60 .946 .949 .949 .949 .949 .948 947 947
80 .950 .950 .950 .949 .950 .950 .948 .948
100 .948 .950 .949 .950 .950 .950 947 947
PES
0 .946 .945 .945 .945 947 .946 .946 .946
0.2 947 .946 947 .946 .948 947 .948 .948
0.5 .949 .946 947 .946 947 .946 947 947
0.8 .949 .948 .949 947 947 .946 .948 .948
11 .951 .949 .950 .948 .948 .946 .949 .949
14 .953 .948 .949 947 947 .944 .949 .948
Distribution
g=0/h=0 947 .946 .946 .946 947 .947 .946 947
g=0/h=.225 951 .944 .946 .944 941 .936 .946 .944
g=.76/h=-.098 .947 .950 .950 .949 .950 .950 .950 951
g=.225/h=.225 .951 .949 .950 .948 .951 .951 .950 .950

Notes: Based on definitions of tail-length and skewness, Reed and Stark (1996, p. 13) defined
seven hinge estimators that have the capability of asymmetric trimming: HQ, HQ1, HH3, HQ2,
HH1, HSK2, HSK5; Sample Size (n, =n,); PES-Population Effect Size g=X/h=Y
specifies a particular g and h distribution with specific values of skewness and kurtosis.
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Table 2. Estimated Coverage Probabilities for Nominal 95% Bootstrap Intervals

(g=0&h=0).
— Test
PES n THimming — e Ho  HOL  HH3  HOZ  AAL HSKZ  HoKG
02 20 5% 942
10% 943 935 935 935 938 937 939  .940
15% 944 940 941 939 942 942 941 942
20% 945 942 943 941 944 944 942 942
25% 942 942 942 944 94 942 942
60 5% 940
10% 939 945 944 945 945 945 944 944
15% 940 946 945 945 945 945 945 945
20% 938 946 945 946 946 946 944 945
25% 945 946 945 946 946 945  .946
100 5% 048
10% 949 945 944 946 946 946 945 945
15% 948 947 946 947 947 947 946 945
20% 947 946 945 945 947 947 946 946
25% 945 945 945 946 946 946  .946
08 20 5% 046
10% 950  .939 939 939  .940  .940 943 .94
15% 951 946 947 943 946 946 946  .946
20% 953 951 951 950  .950  .949 949  .951
25% 949 950 948 952 952 950 952
60 5% 043
10% 943 947 949 949 950 950  .949  .949
15% 943 949 950 950  .949 949 947 947
20% 947 951 91 950 951 951 950  .951
25% 950 949 950 953 953 951 952
100 5% 044
10% 944 949 949 949 949 949 949 949
15% 945 949 949 948 948 948 947 947
20% 945 950 950 949 949 950  .949  .949
25% 949 948 948 948 948 947  .948
14 20 5% 043
10% 951 939 939 939  .940  .940 942  .943
15% 952 946 950 944 947 947 949 949
20% 954 951 948 952 952 951 954 953
25% 950 951 950 954 953 953 955
60 5% 945
10% 946 947 948 947 950 951  .948 947
15% 946 948 947 948 949 949 948 947
20% 945 951 950 949 948 948 948  .948
25% 950 950 949 950 950 950  .950
100 5% 046
10% 949 948 949 949 949 949 948 948
15% 949 950 950 950  .949 949 948  .949
20% 950  .949 951 950 950  .950  .947  .948
25% 949 949 949 949 948 950  .950
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Table 3. Estimated Coverage Probabilities for Nominal 95% Bootstrap Intervals

(g=0 & h=.225).
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— Test
PES N THimming — e HO  HOl  HA3 HOZ HAL  HSKZ HSKG
02 20 5% 044
10%  .950 .93 937 937 .934 933 942 942
15%  .949 935 946 933 .943 942 946  .947
20% 946 944 947 943 946 945 946  .947
25% 947 947 944 948 947 945 948
60 5% 942
10%  .943 948 948 948 953 952 948 948
15% .94 950 950 950 .950 951  .950  .949
20% 940 948 949 948 949 948 946  .946
25% 949 949 948 950 950  .945 947
100 5% 950
10%  .951 951 950 950 .949 950  .946  .947
15%  .950 .949 948 949 948 948 948 948
20% 950 949 948 947 949 950 949  .949
25% 048 947 947 949 948 949  .946
08 20 5% 949
10%  .959 937 937 937 935 934 946 948
15%  .958 .943 953 940 944 943 952 951
20% 958 952 953 .949 950 950 955  .955
25% 953 953 952 954 953 955 957
60 5% 053
10% 948 949 949 947 952 952 951  .951
15%  .946 951 956 951 .950 952 953  .952
20% 948 957 952 955 953 953 950  .950
25% 954 951 954 953 953 950  .952
100 5% 950
10%  .946 954 955 955 958 950 953  .954
15% .94 955 954 956 953 955 953  .953
20% 947 953 950 953 953 953 951  .950
25% 952 951 952 951 951 943 951
14 20 5% 952
10% .95 .93 933 933 .929 928  .948  .947
15%  .963 941 958 938 .939 937 954 952
20% 963 954 946 946 943 942 957 957
25% 950 948 946 949 948 962  .958
60 5% 960
10%  .955 950 947 945 954 951 956  .957
15% 951 .949 959 948 950 951 954  .954
20% 949 960 953 .957 954 953 952  .953
25% 959 953 955 954 954 950  .953
100 5% 056
10%  .955 957 956 956 .950 950 954  .954
15%  .953 954 951 953 957 957 951  .952
20% 950 956 952 .952 954 954 953 953
25% 954 954 954 954 955 935 951

www.manaraa.com



364

ROBUST CONFIDENCE INTERVALS FOR EFFECT SIZE

Table 4. Estimated Coverage Probabilities for Nominal 95% Bootstrap Intervals

(g=.76 & h=—.098).

— Test
PES N THmming — e Ho HOL HH3 HOZ HHAL HSK2 HOKG
02 20 5% 940
10% 946 927 927 927 926 926 943 .943
15% 947 932 .941 932 930 929 .946 .946
20% 947 941 942 939 935 932 945 946
25% 943 944 942 940 935 945 945
60 5% 036
10%  .938 944 948 944 944 938 947  .948
15% 938 .948 .947 949 945 944 946 947
20%  .938 948 949 949 949 946 948  .947
25% 947 949 949 948 947 949 949
100 5% 048
10% .94 950 949 950 947 946 949  .948
15%  .948 949 950 950 .949 948 949  .949
20%  .949 950 949 948 951 949 948  .947
25% 950 948 948 950 949 947 948
08 20 5% 034
10%  .948 909 914 909 905 895 .940 .941
15% 948 921 .93 922 912 .906 .948  .949
20%  .950 934 939 935 921 909 .948  .949
25% 939 942 941 926 917 951 .948
60 5% 949
10% 949 946 .947 946 941 933 .948 948
15% 944 948 .947 951 946 941 947 947
20%  .944 950 950 951 949 943 945 941
25% 951 951 951 947 .947 945 941
100 5% 046
10%  .948 952 950 951 954 948 946  .947
15%  .945 949 949 950 951 952 .946  .944
20% 946 948 947 947 947 949 944 936
25% 947 948 946 949 949 941 937
14 20 5% 929
10%  .957 903 907 .903 .892 .878 .942  .943
15%  .953 912 932 913 905 .894 .955 .954
20% .95 931 939 931 917 .898 956  .952
25% 938 945 938 924 911 948 .942
60 5% 055
10% 953 .943 951 942 939 921 944 946
15% 950 952 951 .953 .944 938 .948  .943
20%  .949 953 952 953 948 940 944 933
25% 951 954 952 950 946 939 932
100 5% 053
10% 952 951 951 949 946 935 953  .953
15% 952 950 950 .951 .949 945 952  .945
20% 951 950 951 953 952 944 948 932
25% 947 953 950 947 948 936 .93l
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Table 5. Estimated Coverage Probabilities for Nominal 95% Bootstrap Intervals
(g=.225 & h=.225).

365

— Test
PES N THmming — e HO  HOL HHA3 HOZ HAL  HSKZ HSK5
02 20 5% 046
10%  .951 929 930 930 932 931 .943 .94
15%  .950 931 944 930 .94l 940 946  .947
20% 949 941 946 938 946  .944 948  .949
25% 947 947 945 949 948 946  .947
60 5% 044
10% 942 946 946 945 948 948 948  .948
15% 942 947 948 949 951 951 947  .948
20% 939 949 950 950 .953 953 947  .947
25% 950 950 950 952 952 946  .946
100 5% 048
10%  .950 950 951 952 952 953  .947  .948
15%  .949 951 948 950 952 952  .948  .948
20% 950 950 949 949 950 951 950  .950
25% 950 947 948 948 .948 950  .950
08 20 5% 950
10%  .957 926 928 928 932 931 .943 .94
15% .95 .93 950 934 944 943 949 951
20% 956 947 951 942 949 947 953 953
25% 948 948 946 954 952 955 955
60 5% 055
10%  .949 949 949 947 950 950 951  .951
15%  .947 950 955 952 955 957 948  .948
20% 945 957 953 957 954 957 952 952
25% 956 953 955 956 .954 953 952
100 5% 949
10%  .9499 954 956 956 .956 955 951  .951
15%  .946 956 952 954 954 956 950  .951
20% 948 954 951 953 951 954 950  .951
25% 951 950 949 951 951 950  .950
14 20 5% 950
10%  .965 924 926 926 924 923 946  .947
15% .94 930 955 927 .939 940 954 952
20% 963 950 948 939  .946 944 958 955
25% 953 945 943 953 950 957 959
60 5% 961
10%  .955 .949 948 944 951 949 953  .953
15% 952 951 961 949 956 958 952  .952
20% 951 960 958 961 .955 958 951  .949
25% 963 956 956 957 958 953 951
100 5% 058
10%  .957 957 957 955 957 958 954  .954
15% 952 957 955 957 956 .958 952  .953
20% 952 956 955 956 .953 956 953  .952
25% 954 954 956 956 .95 951 952
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Table 6. Ranks
N Test PES=0 PES=.2 | PES=. PES=.8 | PES=1.1 | PES=14 | Total
20 HQ 1 2 5 6 3 6 23
HQ1 5 5 9 8 7 9 43
HH3 0 0 3 3 4 3 13
HQ2 6 4 8 7 4 5 34
HH1 4 3 7 6 6 5 31
HSK?2 7 8 12 10 10 8 55
HSK5 12 9 13 10 10 7 61
Total 35 31 57 50 44 43 260
40 HQ 5 11 10 7 7 8 48
HQ1 9 15 12 10 11 13 70
HH3 7 13 13 5 10 10 58
HQ2 8 5 7 9 8 11 48
HH1 9 6 6 5 9 8 43
HSK?2 6 12 15 10 13 11 67
HSK5 7 12 15 9 9 8 60
Total 51 74 78 55 67 69 394
60 HQ 14 14 8 12 8 10 66
HQ1 13 15 12 14 10 11 75
HH3 13 15 9 10 8 6 61
HQ2 12 14 10 10 9 10 65
HH1 10 13 8 9 11 8 59
HSK2 9 10 3 14 7 9 52
HSK5 11 13 4 13 9 8 58
Total 82 94 54 82 62 62 436
80 HQ 7 12 13 9 10 9 60
HQ1 3 16 12 11 13 10 65
HH3 8 16 15 11 8 11 69
HQ2 14 9 8 10 12 14 67
HH1 11 8 6 10 9 9 53
HSK?2 2 16 16 8 12 13 67
HSK5 4 14 14 9 11 12 64
Total 49 91 84 68 75 78 445
100 HQ 12 16 12 14 9 9 72
HQ1 12 14 11 15 13 14 79
HH3 13 14 13 12 10 11 73
HQ2 16 15 11 12 10 9 73
HH1 16 14 10 11 9 7 67
HSK?2 14 11 1 11 12 11 60
HSK5 13 11 1 12 13 12 62
Total 96 95 59 87 76 73 486
GT 313 385 332 342 324 325 2021
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Table7. Total Number of Top Three Rankings for Each Test
HQ HQ1 HH3 HQ2 HH1 HSK?2 HSK5
269 332 274 287 253 301 305

three tables. (This is expected given the findings
we previously enumerated.) One additional point
important to mention is that the HSK2 and
HSK5 hinge estimators methods as well as the
A&K method resulted in well controlled
coverage probabilities for the conditions where
the affected procedures did not; that is, their
coverage probabilities were not affected even
though sample size was small (n, =n, =20)
and data were @g=.76 and h=-.098

distributed, for any percentage of total trimming.

Based on the preceding descriptions of our
results, it would be difficult to try to pick out the
‘best’ one, two, or three methods for Cls around
the robust PES. Indeed, Table 1 summary results
indicate that all empirical values for all
procedures were contained in the .925-.975
interval and accordingly, based on these results
and the generally robust findings reported in
Tables 2-5 (and those not tabled), specific
recommendations would be challenging, and
perhaps somewhat arbitrary, to make.
Nonetheless, applied researchers usualy like
guidance from quantitative researchers regarding
our recommendation of ‘best’ choice of
procedure for their analyses. Accordingly, an
even finer examination of our data was made.

In our second phase of analyses, the three
hinge estimator methods for setting intervals
having coverage probabilities closest to .95 were
located; this was done for each combination of
sample size, population distribution, total
percentage of trimming and PES. Hinge
estimator methods having identical empirical
coverage probabilities received the same rank
(either 1-closest, 2-next closest, or 3-third
closest). Preferred ranks were given to
deviations that were above .95 as opposed to
below .95. Thus, if procedure ‘A’ resulted in a
.951 coverage probability while procedure ‘B’

had coverage probability of .949, procedure A
received the better rank -- the preference was for
conservative rather than liberal values. Finally,
any value that did not fall into a stringent
criterion [(£20, , for 1-a=.95) i.e, .945
.955] was excluded from ranking.

Accordingly, in Table 6 the total number of
top three rankings as a function of sample size
and PES for the seven hinge estimator ES
intervals are presented. What one can also see
from Table 6 is that: (a) the total number of top
three rankings, not surprisingly, increased with
the size of sample; for
n,=n, =20, 40, 60, 80, and 100, the

total number of top three rankings was 260, 394,
436, 445, and 486, respectively; (b) the
procedures were most disparate (range=48) from
one another in terms of accuracy (i.e., number of

top three rankings) when
n,=n, =20 and 40 and were much more
similar to one another when
n,=n, =60, 80, and 100; and (c) the

number of top three rankings increased with PES
up until PES =.2 and then remained almost
the same for PES=.5-1.4 Findly, the
numbers presented in Table 6 and summarized
in Table 7 indicate that HQ1 had the greatest
number (332) of top three rankings while HSK2
and HSK5 had the second and third most top
three rankings (301 and 305, respectively).

Discussion

Algina and Keselman (2003) and Algina et al.
(2005) compared two estimates of ES and
associated Cls in an independent two-groups
design, in which either least squares or robust
estimators were used and where the critical
values used in computing the interval were
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based on either a theoretical or bootstrap
distribution. The procedures were compared
under different conditions of nonnormality and
for various sample sizes and magnitudes of PES.
It was found that probability coverage for the Cl
was only controlled when the interval used
robust estimators (i.e, trimmed means and
Winsorized variances) and the critical values of
the interval were obtained via a bootstrap
empirical distribution. The authors used a priori
2x100¢ % symmetric trimming to remove the
biasing effects of skewed data and/or outlying
values and only investigated o =.20.

In an unrelated study, Kesedlman &t al. (in
press) found that tests for treatment group
equality based on asymmetrically obtained
trimmed means and Winsorized variances,
resulted in exceptionally good Type | error
control and power to detect effects in nonnormal
heterogeneous one-way models. Consequently,
it is believed that it would be possible to obtain
more accurate probability coverage for intervals
of ES in nonnormal models if the ES statistic
was based on asymmetrically trimmed data
Accordingly, a Monte Carlo investigation was
conducted to probe this hypothesis, varying
population shape, magnitude of PES, sample
size, and total percentage of trimming.

The results from the investigation clearly
suggest that coverage probabilities for robust ES
intervals were very wel controlled under the
conditions of nonnormality that were
investigated. That is, only 56 of the 3840
empirical coverage probabilities (less than 1.5%
of the values) did not fall within Bradley’s
(1978) criterion of .925-.975. And, these liberal
values (i.e, intervals were too narrow), almost
exclusively occurred when sample size was at
the minimum value (n,=n,=20)
investigated. However, coverage probabilities,
with the exception of two cases, were always
within the Bradley interval once sample size
reached our medium sample size condition
(n,=n, =60). Thus, based on these findings,

any of the hinge estimators for setting a Cl
around a robust parameter of ES are
recommended.

Nonetheless, in the interest of trying to
separate the procedures in order to provide a
more specific recommendation for researchers

intending to set an interval around an ES statistic
in a two-groups paradigm, a comparison of the
hinge estimator ES intervals with a more
stringent criterion was made, a criterion where a
procedure would be judged robust if the
empirical estimate did not fall outside a .944-

.956 interval (+20, , for 1-a =.95). Based

on this more stringent criterion, the three hinge
estimator methods were located having
empirical coverage probabilities closest to .95.
Specifically, it was found that HQ1, HSK2, and
HSK5 had, respectively, the highest number of
top three rankings: 332, 301, and 305.
Accordingly, from the set of seven hinge
estimator ES interval estimation procedures, any
one of these three methods are recommended.
Keselman et al. (in press) also recommended
these three procedures for comparing treatment
group trimmed means. Furthermore, the results
suggest that, in general, one needs to have group
sizes larger than 20 and that one can obtain good
coverage with as little as 15% total trimming.
The reader should remember however, that the
differences between the empirical probabilities
among these methods generally occurred in the
third decimal place, and therefore, as stated, any
of the seven hinge estimator approaches to
setting an interval around the PES would be
satisfactory, and in particular, much better than
the usual approach of setting an interval around
the nonrobust PES.

It was also found that a priori symmetric
trimming provided very accurate probability
coverage. All empirical coverage probabilities
were within the Bradley (1978) liberal interval.
Based on the summary values presented in Table
1, one can aso note that the average
probabilities are very tightly bunched around the
target value of .95. Additionally, it is worth
noting that, on average, researchers can obtain a
very precise interval when adopting 5%
symmetric trimming. Accordingly, the choice
between a priori fixed trimming and asymmetric
trimming methods might rest on ones comfort
quotient for fixing the trimming rate prior to an
examination of the data versus letting the data
determine whether data should be trimmed in
each tail of the data distribution and by what
amount.
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The comments provided by Keselman et al.
(in press) regarding the choice of a best method
of analysis are echoed. First, it needs to be
repeated that no one method will be universally
best. It could be that, at times, probability
coverage for the classical method (i.e,, Cohen's
ES statistic) could provide a reasonable CI for
ES. And as Wilcox and Keselman (2003) had
noted, there is no way of knowing a priori
which approach will be best. As they
recommend, one could compute both
approaches, that is, the classical approach and
one of the robust methods enumerated in this
paper. When the conclusions are the same, one
can be comfortable with this common finding,
otherwise, a robust approach to setting a Cl for
ES is recommended.

Kesddman e a. noted that researchers
should always carefully examine graphs of their
data before proceeding with a particular method
of analysis. Indeed, as many others have
previously noted, a careful examination of
outlying values can provide researchers with
insights into the phenomenon  under
investigation.

It is reiterated that the parameter 6 has a
serious shortcoming because it is defined by
using the usual population mean and standard
deviation. These least squares parameters are not
robust. While there are several criteria for
assessing robustness of a parameter: qualitative
robustness, quantitative  robustness, and
infinitesimal robustness (see Wilcox, 2005,
Section 2.1 for a description of these criteria),
the general notion is that a parameter is not
robust if a small change in the population
distribution can strongly affect the parameter. It
can be shown that the least squares mean and
variance are not robust (see, for example,
Staudte and Sheather, 1990) when judged by any
one of these three criteria. Accordingly, many
authors, including us, subscribe to the position
that inferences pertaining to robust parameters
are more valid than inferences pertaining to the
usual least sguares parameters when dealing
with populations that are nonnormal (e.g.,
Hampel, Ronchetti, Rousseeuw & Stahd, 1986;
Huber, 1981; Staudte & Sheather, 1990; Wilcox
& Kesdman, 2003).

By itsdf, Cohen's ¢, or any other ES
(i.e,d;) for that matter, has little value in

assessing whether or not a mean difference is
large or small. What is required is experience in
applying the ES. For example, as part of a
review of the power of studies in abnormal and
social psychology, Cohen (1962) suggested
0.25, 0.50, and 1.00 as small, medium, and large
0s, respectively. In defense of these values,
Cohen argued that the values “were chosen to
seem reasonable” (p. 146) and cited three
research studies on group differences in 1Q
research as judtification for these guidelines.
Cohen was clearly aware of the provisional
nature of these guidelines and subsequently
(Cohen, 1969) modified the guidelines to 0.20,
0.5, and 0.80, as small, medium, and large 05,
respectively, and again emphasized that he
regarded these to be reasonable based on his
experience with research in the behavioral
sciences. Cohen's gquidelines, and his
justification for them, illustrate an important
point: Understanding of an ES measure will
increase through experience with that measure.
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Appendix 1

One question that might be asked about &, is
whether it is necessary to multiply

5R — Mo — My
Ow

by .643 to obtain a robust parameter. The answer
is, of course, no. When the multiplier is not
used, the difference between the trimmed means
is divided by the Winsorized standard deviation.
By contrast, when using the multiplier, the
difference between the trimmed means is
divided by a rescaed Winsorized standard

deviation(i.e., o,,/.643).

The same multiplier would be applied to the
sample ES and, as a result, regardiess of
whether the multiplier is used, coverage
probability is the same. Therefore, our results
have relevance to researchers who prefer to
include the multiplier and researchers who
prefer to exclude the multiplier. Incorporating
the multiplier requires a different value for
different levels of trimming. The multipliers for
10%, 15%, and 25% trimming would be

1/\.824, 1/\/734, 1/\/537 , respectively.

Appendix 2

Huber (1972) and Hogg (1974) noted that the
best way of conceptualizing the unknown

parameter (o, ¢) isthat it is the population

counterpart of m( ey, ¢, ). Hogg (1974, p. 920)
indicated that in the one-sample case the statistic
M(e, x,) - 0(or, x,)]/ s has an

m(ay.a,)
approximate t-distribution with h -1 degrees of
freedom if trimming is reasonably symmetric
about the mode of a unimodal skewed
distribution. Moreover, he noted that, even for
fairly skewed situations, the distribution of this
statistic will “probably be closer to this
approximating distribution than the ratio
[M(e)-6]/s which is the statistic based

on a symmetrically trimmed mean. (p. 920)".

m(e) ?
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A Single, Powerful, Nonparametric Statistic for
Continuous-data Telecommunications Parity Testing

J.D. Opdyke
DataMinelt
Marblehead, MA

Since the enactment of the Telecommunications Act of 1996, extensive expert testimony has justified use of
the modified t statistic (Brownie et al., 1990) for performing two-sample hypothesis tests comparing Bell
companies CLEC and ILEC performance measurement data (known as parity testing). However, Opdyke
(Telecommunications Policy, 2004) demonstrated this statistic to be potentially manipulable and to have
literally zero power to detect inferior CLEC service provision under a wide range of relevant data conditions.
This article develops a single, nonparametric statistic that is easily implemented (i.e,, not computationally
intensive) and typically provides dramatic power gains over the modified t while simultaneously providing
much better Type | error control. The statistic should be useful in a wide range of quality control settings.

Key words: Telecommunications Act, ILEC, CLEC, Location-scale, M ean-variance, Maximum test

Introduction

The major goal of the Telecommunications
Act of 1996, the most sweeping communications-
related public policy to be enacted by Congressin
over half a century (since the Telecom Act of 1934
— see http://www.fcc.govitelecom.html) has been
to deregulate local telephone service in the United
States, making it a fully competitive economic
market. To accomplish this, the Act takes a carrot-
stick approach: it allows the Bell companies (the
incumbent local exchange carriers, or ILECs, now
only BdlSouth, Qwest, SBC, and Verizon) to

JD. Opdyke is President of DataMinelt, a
statistical data mining consultancy specializing in
the banking and credit, telecommunications, retail
and pricing, and advertising and marketing sectors
(JDOpdyke@DataMinelt.com, www.DataMinelt.
com). | owe specia thanks to Geri S. Costanza,
M.S., for numerous and valuable insightful
discussions.
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enter into the previously deregulated long distance
market, something they had been prohibited from
doing because of their status as government
regulated monaopolies. This provides ILECs with
the potentially lucrative opportunity to provide
one-stop shopping telephone service to their
customers, bundling al of their clients
telecommunications needs into a single package
from a single service provider.

In return for this carrot, the Act's stick
requires that the ILECs first must do two things:
(@ alow their competitors (competitive local
exchange carriers, or CLECs, the large long
distance telephone companies like Sprint, as well
as numerous smaller companies) access to and use
of their networks, in some cases to resell services
at discounted wholesale rates, and (b) provide the
CLECs customers with service “at least equal in
quality to” the service they provide to their own
customers (Telecommunications Act of 1996, Pub.
LA. No. 104-104, 110 Stat. 56 (1996), at 8251 (c)
(2) (C); and see 8251 (c¢) (2) (B) for the 14 point
“COMPETITIVE CHECKLIST” of conditions
that ILECs must satisfy to meet the at-least-equal
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service provision standard). This at-least-equal
service provision is the necessary enforcement
mechanism for ensuring that network access (a)
occurs in a meaningful way that truly promotes the
goal of market competition.

To explain by way of example, if it takes a
week on average for a CLEC customer to have a
line installed or repaired by the ILEC, but only a
day on average for an ILEC customer to receive
the same service, no customers would ever switch
from the ILEC to any of the CLECs, and markets
could never become competitive. The mechanism
for properly enforcing the at-least-equal service
provision depends on the appropriate utilization of
the extensive operations support services (OSS)
performance measurement data that ILECs record
when providing service to both CLEC and ILEC
customers (e.g., how fast is a phone line installed;
how fast is a line repaired; how often are repairs
made within a certain humber of days or by a
preset due date, etc.). This utilization has taken the
form of monthly statistical parity testing —
applying statistical tests to the monthly CLEC and
ILEC service data to compare the two groups and
make sure that service s, in fact, at least equal for
CLEC customers (i.e., in parity).

The specific statistical tests used in OSS parity
testing depend on a number of factors, and
foremost among these are the hypotheses being
tested. The appropriate null and aternate
hypotheses for OSS parity testing are listed below
(1), in terms of both average service (the mean)
and the variability of the service provided (the
variance) (see Opdyke, 2004, p. 3-4, for a detailed
explanation of why precisely these hypotheses are
required in this setting).

Ho: uc <uy AND 6 <of
VS. (1)
Ha uc > u, OR 62 > o

A satistical test of this pair of joint
hypotheses will determine, with a specified level
of certainty, whether service to CLEC customers
takes no longer on average than service to ILEC
customers  (i.e,uc <y, ), and whether the
variability of this service is no larger than that
characterizing the service provided to ILEC

customers (i.e., o < o}) (seethe FCC's Notice of

Proposed Rulemaking, 04/16/98, APPENDIX B,
p.B2, for some of the early impetus for testing
both means and variances). If the statistical test
determines, with a specified level of certainty, that
both of these conditions hold, service is deemed to
be at least equal, or in parity. If either condition is
determined, with a specified level of certainty, to
be violated, then service is considered out of
parity, or in disparity.

Findings of disparity carry consegquences for
the ILEC(s) in the form of fines paid to the
CLECs, and sometimes to the relevant state(s).
These fines, or remedies, can be large (US$
millions), and extensive and/or prolonged findings
of disparity can lead to revocation of an ILEC's
approval to provide long distance service
Therefore the choice of appropriate, if not the best
statistics for OSS parity testing is very important,
not only for the individual firms involved, but also
for the entire industry. And of course, the best
statistics simply are those that, under a classical
Neyman-Pearson hypothesis-testing paradigm, are
most powerful under the widest range of relevant
data conditions, given robust and reasonable Type
| error control.

In addition to the hypotheses being tested, the
type of data being compared determines which
statistical tests can and should be used.
Teecommunications OSS performance metrics
contain three types of data, and each is listed
below with an example of a corresponding
performance metric:

e binary data — the percentage of repairs
completed on time, or within a certain number
of days

» count data — the number of troubles on a
telephone line within a specified time period

e continuous data — the average time it takes to
install a phoneline

For continuous data metrics, the modified t
(Brownie et al., 1990) has been supported in
extensive expert testimony proffered by both
CLECs and ILECs, as well as in Opinions and
Rulings by various regulatory bodies, as an
appropriate statistic to test the reevant joint
hypotheses above (see Opdyke, 2004, for
extensive citations; all but one of the four magjor
ILEC performance and remedy plans nationwide
utilizes the modified t as a primary test statistic).
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and degrees of freedom (df) = n, — 1.

However, Opdyke (2004) demonstrated, via an
extensive simulation study and an analytic
derivation, that because the modified t follows
neither the standard normal nor the student’s t
distribution as previously surmised in seven years
of expert testimony (see Opdyke, 2004, for
extensive citations), it potentially remains
vulnerable to what has been termed gaming —
intentional manipulation of its score to effectively
mask disparity. But far more importantly, the
modified t also was shown to be virtualy
powerless to detect inferior CLEC service
provision under a wide range of relevant data
conditions (i.e, larger CLEC variability under
equal or better average service).

Instead, Opdyke (2004) proposed the
collective use of several other easily-implemented
statistical procedures that typically provide
dramatic power gains over the modified t.
Sdection of a specific dtatistic among those
proposed depends on the reative sizes of the two
samples being compared, and on whether the
particular performance metric being tested is long-
tailed or short-tailed (this is the distributional
characteristic known as kurtosis). Years of OSS
data now exist since the Act was passed to
establish such distributional characteristics as
population parameters, not as unknowns requiring
an additional statistical test. However, even though
the FCC itself identified “ data distribution, sample
size and other characteristics inherent in the data’
(FCC NPRM, 11/08/01, p. 37) as factors rdevant
to the choice of the statistical tests used in parity
testing, one expressed concern regarding Opdyke's
(2004) approach is that the potential use of
different statistics for different performance
metrics (and sample sizes) is somehow too
complex for implementation in parity testing.

This article addresses this concern by building
on the results and recommendations of Opdyke
(2004) to develop a single, nonparametric, and

generally powerful statistic for use with all
continuous—data performance metrics. As shown
below, the proposed dtatistic 1) maintains
reasonable Type | error control; 2) is always either
nearly as powerful as Opdyke's (2004) multiple
procedures, or amost as often, even more
powerful; 3) typically provides dramatic power
gains over the modified t; 4) is easily implemented
and not computationally intensive; and 5) should
be widely applicable and useful in other quality
control settings as well.

Methodol ogy

Previously Developed Alternatives to the
modified t

Under the data conditions relevant to OSS parity
testing, Opdyke (2004) found that conditional
statistical procedures combining either O'Brien's
(1988) generalized t test (OBt) or his generalized
rank sum test (OBG) with ether of two
straightforward tests of variances (Shoemaker’s,
2003, F; test, or the modified Levene test of
Brown and Forsythe, 1974) were by far the most
powerful procedures of the over twenty statistics
that were studied. Their combined use is
conditioned on the relative sizes of the two sample
means, as shown below:

Table 1. Conditional Statistical Procedures,
Opdyke (2004)

Conditional Xe>X,, If Xc <X, orOBfals

statistical {

procedure Use... torgect Ho:, use...
OBtShoe OBt Shoemaker's Fy
OBtLev OBt modified Levene
OBGShoe OBG Shoemaker's Fy
OBGLev OBG modified Levene

(Note: see Appendix for the calculation of these
statistics)

Conditioning on the sample means as shown
in Table 1 inflates the size of these tests, so an ad
hoc p-value adjustment of p-value = (5/3 * p-
value) was used to maintain Type | error control
(see Opdyke, 2004, for details). Even after such an
adjustment, these tests maintain reasonable, if not
impressive power under normal and short-tailed
(uniform) data, and somewhat less power under
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long-tailed (double exponential) data, although
still far more power than the modified t under
most of these conditions (Opdyke, 2004, p. 20-26).

The conditions under which each of these four
tests is most powerful and should be used are
summarized in Table 2 below. Notably skewed
data, however, first should be transformed, as
required by one of the largest state PUCs and
strongly endorsed by another of the largest state
PUCs (CPUC Interim Opinion, 2001, Appendix J;
CPUC Opinion (2002), Appendix J, Exhibit 3 p.2-
3; Before the Texas PUC — SBC Testimony,
Dysart & Jarosz, 2004; and for optional use with
some metrics, SBC Comments, 2002, p.48, 56).

Unfortunately, all of the statistics examined
for or used in OSS parity testing suffer from
sometimes severe erosions in power under
skewness (see Opdyke, 2004, for reevant
simulation results; The California Public Utilities
Commission also addresses this issue — CPUC
Interim Opinion, 2001, p. 112-115, 136, 142, 145,
& Appendix J, and CPUC Opinion, 2002, p. 74,
84, & Appendix J). Because these metrics are
widely cited as being lognormal (which is
typically highly skewed — see CPUC Interim
Opinion, 2001, Appendix J, and MCI Worldcom's
Performance Assurance Plan: The SIMPL Plan, by
George S. Ford, Ph.D., p.5), a logarithmic
transformation toward symmetry should provide at
least some needed power to detect disparity
without, in all practicality, causing distortions in
the comparison of CLEC and ILEC service
provision.

Table 2. Conditional Statistical Procedures,
Opdyke (2004)

Normal

gz;r;ple & Short- It_aolr]e% Skewed
tailed
OBt OBG

Bal. Shoe | OBtShoe | OBGShoe | Transform

Unbal. Lev OBtLev OBGLev | Transform

Once transformed (if necessary), the
performance metric is tested with one of the four
combined procedures listed in Table 2. This is
clear-cut if the sample sizes and distributional
characteristics of the metrics being tested
unambiguously fall neatly into these four cells (for
example, if a metricis at least as short-tailed as the

normal distribution, kurtosis = 3, and has very
unbalanced sample sizes, use OBtL ev).

However, further simulations that parallel
those of Opdyke (2004) are required to determine
the tipping points defining exactly when to use
each of these four statistics. Although these
tipping point simulations would be straightforward
to perform, one expressed concern about the use of
Table 2 is that, the FCC's advisory comment
notwithstanding, having to (potentially) use
different tests under different sample size and data
conditions is somehow too complex for the
implementation of parity testing. Although
implementing Table 2 is far less complicated than
at least one of the four major OSS performance
and remedy plans (the BellSouth ‘truncated Z'
plan, which one FCC economist only half-jokingly
refers to as “the balanced averaged disaggregated
truncated adjusted modified Z plan”, Shiman,
2002, p.283), it unarguably would be preferable if,
al ese equal (or close), one statistic could
accomplish what the conditional use of the
multiple statistics in Table 2 does. This is the
motivation for this paper, and the development of
the statistic presented below.

A Single Statistic for Continuous-data Parity
Testing

Maximum tests — statistics whose scores (p-
values) are the maximum (minimum) of two or
more other statistics — have been devised and
studied in a number of settings in the statistics
literature with very favorable results. Neuhduser et
al. (2004) favorably compares a maximum test for
the non-parametric two-sample location problem
to multiple adaptive tests, finding the former to be
most powerful under the widest range of data
conditions.

Blair (2002) constructed a maximum test of
location that is shown to be only dightly less
powerful than each of its constituent tests under
their respective ideal data conditions, but notably
more powerful than each under their respective
non-ideal data conditions (for additional studies
using maximum tests, see Fleming & Harrington,
1991, Fredlin & Gastwirth, 2000a, 2000b,
Freidlin et al., 2002, Lee, 1996, Ryan et al., 1999,
Tarone, 1981, Wechert & Hothorn, 2002, Willan,
1988, & Yang e a. 2005). These findings
demonstrate the general purpose of maximum tests
— to trade-off minor power losses under ideal data
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conditions for a more robust statistic with larger
power gains across a wider range of possible (and
usually unknown) data distributions.

Although the redevant characteristic of the
distributions of continuous-data OSS performance
metrics is, for all intents and purposes, known
because so many years of data now exist to
establish the kurtosis as a population parameter
and not a statistical estimate based on samples, a
maximum test still could be useful here for several
reasons. 1) using only one statistical test
unarguably would be more straightforward to
implement than (potentially) relying on the four
statistics in Table 2 and choosing between them
based on a matrix of sample sizes and performance
metric kurtoses, 2) the expected power losses
compared to Opdyke's (2004) individual tests may
be small or negligible and 3) under some
conditions, depending on the constituent tests
used, the maximum statistic may be even more
powerful than those tests recommended in Opdyke
(2004) and shownin Table 2.

To construct a maximum test here, it must be
recognized that maximum tests are conditional
statistical procedures, and the additional variance
introduced by such conditioning will inflate the
test’s size over that of its constituent statistics (and
if left unadjusted, probably over the nominal level
of the test as shown in Blair, 2002). But the
congtituent  statistics in Table 2 are adready
conditional statistical procedures. Consequently,
the ad hoc p-value adjustment used below for the
purpose of maintaining validity must be large
enough to take this double conditioning into
account (this actualy is triple conditioning
because O’ Brien's tests themselves are conditional
statistical procedures). The adjustment is simply a
multiplication of the p-values by constant factors
(4#'s). The p-value of the maximum test — OBMax
—isdefined in (2):

pOBtShoe'ﬂOBtShoe H
Postev *BosiLer

Poscsnoe * Borcsnoe

Posmax = MiN
> PoscLer " PoBcLey 3 3
Prsv ':Btsv )
1.0
where

,BOBtShoe = :BOBtLev = :BOBGShoe = IBOBGLev =2.8,

and f, =18, and Ppg is the p-value
corresponding to the separate-variance t test with
Satterthwaite's (1946) degrees of freedom (see
Appendix for corresponding formulae). Under the
relevant data conditions, the behavior of OBMax is
compared to that of its constituent tests and the
modified t test in the simulation study described
below. It is also compared with two other maximum
tests — OBMax3 and TVMax — as defined in (2) and
(3) below (TVMax for t test, Variance tests, and
Maximum test).

PostLev * BoriLer

Pogtsnoe * Bostsnoe 1

Prsv ’ :Btsv ’ “)
1.0

where  Sogies = Bosisnoe = 3:0, and S, =1.6

Poemaxz = MiN

ProdLev :BmodLa/ ’

Psoer, Banoor, 1

Prumax = MiN
aX Prsv ':Btsv ’ ©)
1.0
where  Brodier = Benoer, = 3.0, and B, =1.6

Although preferable to ad hoc adjustments based
on simulations, analytic derivation of the
asymptotic distribution of OBMax, and maximum
tests in general, is non-trivial, as Yang e al.
(2005) show under even stronger distributional
assumptions than can be made with respect to the
Table 1 statistics. Derivation of the asymptotic
distribution of OBMax is the topic of continuing
research (Opdyke, 2005).

Level and Power Simulation Study

The level and power simulations in this article
paralld those conducted in Opdyke (2004). Eleven
tests were studied: each of the four conditional
statistical procedures listed in Table 1 — OBtShoe,
OBtLev, OBGShoe, and OBGLev; the separate-
variancet test (with Satterthwaite' s, 1946, degrees
of freedom — df) (tsv); the modified t test (with df
=n, —1, asin Brownie & al., 1990, Comments of
SBC, 2002, p.57, and CPUC Opinion, 2001,
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Appendix C, p. 2.) (tmod); OBMax as defined
above in (1); OBMax3 and TVMax as defined
abovein (2) and (3), respectively; and two tests of
stochastic dominance described below. All of the
conditional statistics using O’ Brien’s (1988) tests
are referenced to the F distribution, rather than
Blair's (1991) critical values, even though doing
so would normally violate the nominal level of the
test under some conditions, because the p-value
adjustment used here explicitly takes this size
inflation into account (see Opdyke, 2004, 2005,
for further details).

The data was generated from the normal,
uniform, double exponential, and lognhormal
distributions for four different pairs of sample
sizes(nc=n=30;nc=30& n =300; nc =30 &
n, = 3000; and nc = n = 300), seven different
variance ratios (o2 /o? = 0.50, 0.75, 1.00, 1.25,

1.50, 1.75, 2.00), and seven different location
shifts

(,Uc =M —20y, 4y -0y, 4y —0.50,, 4, 4, +0.50, !J
H +0,, 1 +20

making 784 scenarios. N = 20,000 simulations
were run for each scenario, except for scenarios
with nc = 30 & n; = 3000, which used N = 5,000.
The normal distribution was chosen as a
universal basis for comparison; the uniform and
double exponential distributions were chosen as
examples of short-tailed and long-tailed
distributions, respectively, to examine the possible
effects of kurtosis on the tests; and the lognormal
distribution was chosen to examine the possible
effects of skewness on the tests, and because
continuous data OSS performance metrics have
been cited widely as often being approximatdy
lognormal. nc = n; = 30 was chosen because many
performance and remedy plans require or allow for
the use of permutation tests if at least one of the
two samples has less than 30 observations (see
The Qwest Performance Assurance Plan, Revised
11/22/2000, p.4-5; SBC Comments, 2002, p. 55,
and 13 state Performance Remedy Plans —
Attachment 17, p.4-5; and Performance Assurance
Plan — Verizon New York Inc., Redlined Version
January 2003, Appendix D, p.3-4.), and nc = n, =
300 was chosen to examine rates of convergence
under equal sample sizes (Pesarin’s, 2000,
combined permutation test, however, appears to
have greater power for the rdevant joint
hypotheses here than the naive Monte Carlo

permutation test currently implemented by these
performance and remedy plans, and at least two
companies produce preprogrammed software that
automatically performs this test — DataMinelt,
http://www.DataMinelt.com, and M ethodologica,
http://www.methodol ogica.it/npctest.html).

The extremely unbalanced sample size pairs of
Nnc =30 & n, =300 and nc = 30 & n, = 3000 were
chosen because such large sample size ratios
actually are not uncommon in OSS performance
metric data. Also, the number of ILEC phone lines
and customers typically dwarf those corresponding
to most individual CLECs. Thus, it is important to
test the behavior of these statistics under these
extreme conditions, even though most simulation
studies would focus on smaller and/or more
balanced sample sizes. nc is very rardy, if ever,
larger than n; and thus, only cases involving (n, /
nc) = 1.0 were examined in this study (Opdyke,
2005, examines n; < nc also). Two hominal levels
were used for all the simulations: oo = 0.05 and o =
0.10, bringing the total number of scenarios to
1,568. These two levels bracket the vast majority
of the levels used in OSS parity testing. (SBC
Comments, 2002, p.49-52; CPUC Opinion, 2002,
Appendix J, Exhibit 3, p.4; and Performance
Assurance Plan — Verizon New York Inc.,
Redlined Version January 2003, Appendix D, p.1).

Two other tests also were included in the
simulations: Rosenbaum’s (1954) test, which
counts the number of observations in one sample
beyond the maximum of the other as a test of H,:
F(x) = G(x) against the alternative of stochastic
dominance, and the (one-sided) Kolmogorov-
Smirnov statistic (using Goodman's, 1954, Chi-
square approximation — see Siegel & Castdlan,
1988, p.148), for a non-parametric test of Hy: F(X)
= G(x) against general (one-sided) alternatives.
Although neither is designed specifically to test
the joint hypotheses relevant to the OSS parity
testing setting, and thus may have less power, they
are included for several reasons. (1) as a basis for
comparison to the other tests; (2) because
researchers often turn to these types of tests when
confronted with the joint hypotheses relevant to
the parity testing context and examined in this
simulation study; and (3) because the
Kolmogorov-Smirnov statistic has been described
as being “able to detect not only differences in
average but differences in dispersion between the
two samples aswell.” (Matlack, 1980, p. 359).
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Results

This simulation study generated 11 x 1,568 =
17,248 level and power results, all of which are
available from the author upon request in a
Microsoft Excel® workbook (along with a
SAS/GRAPH® program  for convenient
visualization). The key results are summarized in
the tables and selected graphs below.

Under symmetry, the p-value adjustments
used in OBMax as defined in (3) provide
reasonable Type | error control for the relevant
range of test levels; as shown in Table 3,
violations of the nominal level are modest in size
and infrequent (14 of 288 symmetric-data null
hypothesis scenarios;, violations occur if the
observed level is equal to or greater than the one-
tailed 95% critical value of the simulation, based
on the common Wald approximation of the
binomial distribution to the normal distribution,
which is very accurate for such large numbers of
simulations and o > 0.05 — see Evans & al., 1993,
p. 39, and Cochran, 1977, p. 58).

Even better level control is possible by
increasing the adjustment factors — say, by
increasing the OB £'s from 2.8 to 3.0 — but the
price paid for this is a loss of power. The
adjustment factors used — 2.8 for the OB tests and
1.8 for the separate-variance t test — are reasonable
as they produce relatively minor level violations,
and relatively minor power losses when OBMax is
compared to its constituent tests. However, nearly
as often as not, OBMax actually provides power
gains over the conditional use of the Table 2
statistics (graphs of these comparisons are
available from the author upon request). OBMax’s
largest power loss is only dlightly over 0.10, and
these minor power losses typically occur under
simultaneously small CLEC samples, large CLEC
variance increases, and decreases in the CLEC
mean (rdative to the ILEC mean).

Its largest power gain, however, exceeds 0.2,
and these power gains occur under simultaneousy
small CLEC samples, typically equal or smaller
CLEC variances, and small increases in the CLEC
mean. The reason for this increased sensitivity to
detect small location shifts is the inclusion of the
separate-variance t test among the constituent tests
of OBMax. Including this test mitigates power
losses in the one fairly narrow range of conditions
where the modified t test has a rdatively slight,

but still noticeable power advantage over the
Table 2 constituent tests: for normal and short-
tailed data, under simultaneously small CLEC
samples, typicaly equal or smaler CLEC
variances, and small increases in the CLEC mean.
Including the separate-variance t test as a
congtituent test of OBMax shrinks this loss of
power relative to the modified t (under only these
fairly narrow conditions) typically by a factor of
one half, so that the largest power loss remains
lessthan 0.1 (Figure 3).

Far more important to note, however, is that
under all other data conditions the power of
OBMax is never less than that of the modified t,
and typically dramatically larger (sometimes a
gain of 1.0! - see Figures 3, 4, and 6). The power
differences between OBMax and the modified t
that are shown in Figure 3 are summarized in
Table 4 below, athough the Figures more
accuratedly and thoroughly convey the story.
Figures 5 and 6 show how dramatically OBMax
dominates the modified t as sample sizes increase.
This demonstration of the reasonable power of
OBMax, under all symmetric alternatives, should
dispd a) expressed concerns in this setting
regarding the lack of power of composite tests of
location and scale (Mallows, 2002, p. 260); b)
admittedly premature conclusions in this setting
about the lack of power of relevant rank-based
tests (Mallows, 2002, p. 260), which is what the
OBG tests are and c) findings of less (and
concerns of too little) power in this setting under
unbalanced sample sizes (Gastwirth & Miao,
2002, p. 273).
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Table 3. Symmetric Data Level Violations of OBMax

Nominal level

oS He Sample sizes Distribution of test (o) Actua size
o? 4, nc=n =30 Normal 0.05 0.0578
o? U, ne =30, N, = 3000 Normal 0.05 0.0532
o? 4, N =N, = 300 Normal 0.05 0.0561
o? n ne = 300, n, =300 Uniform 0.05 0.0546
o? n nc =n =30 Double exponential 0.05 0.0574
0'|2 U, nc =30, n, =300 Double exponentia 0.05 0.0538
ot i nc =30, n; =3000 Double exponential 0.05 0.0556
o? U, nc =n, = 300 Double exponential 0.05 0.0596
o? U, nc =n =30 Normal 0.10 0.1115
o? n nc =n, = 300 Normal 0.10 0.1073
o? 4, nc=n =30 Uniform 0.10 0.1048
o? 4, ne = n =300 Uniform 0.10 0.1044
o? n nc =n =30 Double exponential 0.10 0.1116
o? U, nc =n, =300 Double exponential 0.10 0.1095

Not surprisingly, OBMax is very similar to
OBMax3 and TVMax in terms of both Type |
error control and power, except that, under small
CLEC and large ILEC samples, OBMax has
greater power than TVMax to detect slight CLEC
location shifts, especially under leptokurtotic data
(the largest power advantages are about 0.08, 0.10,
and 0.14 for uniform, normal, and double
exponential data, respectively). OBMax3 is more
powerful than TVMax, exhibiting the same slight
power loss compared to OBMax only under
leptokurtotic data (where the largest loss is only
about 0.08). Because OBMax is unambiguously
more powerful, it is recommended over the other
two tests under symmetry. Under asymmetry,
however, OBMax violates the nominal level of the
test under a specific combination of conditions, for
which the OBG rank tests perform poorly (a. large
and equal sample sizes; b. equal means; and c. a
much smaller CLEC variance). Therefore if
skewed data is not or cannot be reliably
transformed toward symmetry for some reason,

OBMax3 is one good dternative to OBMax.
OBMax3 has dightly less power, but it aways
maintains validity, even under skewed data. In
fact, it maintains validity far better than does the
modified t under skewed data.

However, an even better alternative appears to
be OBMax2, as presented in the preliminary
results of Opdyke (2005). OBMax2 = OBMax3 if

8 <, b) X, <(X,+05s ), and c) the null

hypothesis of symmetry is rejected by the test of
D’Agostino et al. (1990) at o = 0.01; otherwise,
OBMax2 = OBMax. OBMax2 maintains most of
the power gains of OBMax over OBMax3, while
also maintaining validity very well under skewed
data — again, far better than does the modified t, as
shown in Table 5 below (note that when nc > ny,
which rardly if ever occurs with OSS data, all f's
for OBMax2 utilize an additional adjustment:

Bx = Px +min[2.5, logy7 (e /My )J — see Opdyke,
2005, for further details).
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Figure 1. OBMax rejection rate: Empirical Level and Power (o = 0.05)
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Figure 3. OBM

ax Power minus modifiedt Power (a = 0.05)
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Figure 4. All Alternate Hypothesis Simulations with a Power Difference (309 of 444):
OBMax Power minus modifiedt Power (a = 0.05)
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Figure 5. Alternate Hypothesis Simulations of nc = n; = 30 with a Power Difference (90 of 111): OBMax
Power minus modifiedt Power (a=0.05)
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Figure 6. Alternate Hypothesis Simulations of nc = n; = 300 with a Power Difference (52 of 111): OBMax
Power minus modifiedt Power (a=0.05)
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Table4. modifiedt vs. OBMax: Dominant Test, and Corresponding Power Gains Under Symmetry (o =
0.05) by Magnitude of Mean Difference and Variance Difference

Uc > 1y (small difference)

U > K

2
o/ . He < i
H Small nc (=30) Large nc (large difference)
Usually OBM ax Always OBM ax
2 2 Max = 0.223 Max = 1.000
9c > Mesan = 0.038 EQUAL EQUAL Mesan = 0.431
Median = 0.028 Median = 0.361
Usually tmod
2 o 2 Max = 0.051 .
o¢ <o Mean = 0.015 EQUAL EQUAL Ho:
Median = 0.006

OBMax vs. the modified t: Where does it matter in
terms of remedies?

As shown in Figures 3-6 above, OBMax often
provides dramatic power gains over the modified t,
making it much more effective at identifying
disparity when it truly exists. A very important
point to note here is that the narrow conditions
under which the modified t has a dlight power
advantage — small sample sizes and small location
shifts (and a typically smaller or equal CLEC
variance) — are exactly those that are the least
important in terms of the size of the resulting
remedies. Under most performance and remedy
plans, the formulae for calculating remedies are
proportionate functions of the number of lines or
customers affected, as wdl as the magnitude of the
degree to which service is out of parity (i.e, how
much worse CLEC service is relative to ILEC
service). Small sample sizes, and small deviations
from parity, together imply the smallest remedies.
Small power losses under these conditions (always
less than 0.1 under symmetry, and no more than
0.2 under asymmetry when using OBMax2) will
result in missed remedies that should be quite
small, and perhaps even negligible, rdative to
overall remedies.

In contrast, under al other conditions of
disparity, where both sample sizes and deviations
from parity are much larger, the typically dramatic

power gains of OBMax over the modified t will
trandate into much larger remedies that the
modified t will fail to identify. The reative (if not
absolute) size of these remedies missed by the
modified t will dwarf any missed by OBMax when
both sample sizes and location shifts are small.
Thus, not only are the power gains of OBMax over
the modified t much larger and more common than
the losses, but also much more important in terms
of the magnitude of the remedies that should be
identified by the dstatistical test used.
Consequently, from both a statistical and remedy-
impact perspective, OBMax is dramatically better
than the modified t at identifying disparate service
provision to CLEC customers, and thus, is far
more effectively used in parity testing to enforce
the at-least-equal service provision of the Act.
This makes OBMax is a better tool for achieving
the Act’s major objective: moving local telephone
service from regulation to full competition and,
once achieved, preventing backsliding to disparity
into the future.

In other quality control settings, too, OBMax
should be useful and widely applicable as
discussed below, but the questions of how, and
how much, the use of OBMax matters in OSS
parity testing are examined next.
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Table5. Worst Leve Violations of modified t vs OBMax2 Under Asymmetry (Opdyke, 2005)

Statiic o2 Uc Nc n,  Distribution a Actual Size Violation
OBMax2 o2 U, — 0o, 300 30  Exponentia 0.05 0.0553 0.0053
OBMax2 o2 U, — 20, 300 30  Exponentia 0.05 0.0566 0.0066
OBMax2 o} U, 300 30  Exponentia 0.05 0.0665 0.0165
OBMax2 0.75067 A4, 300 30  Lognormal 0.05 0.0581 0.0081
OBMax2 o2 n 300 30  Lognormal 0.05 0.0623 0.0123
OBMax2 o2 n 300 30  Exponentia 0.10 0.1053 0.0053
OBMax2 o2 n 300 30  Lognormal 0.10 0.1073 0.0073
modt o} 4, 30 30  Lognormal 0.05 0.0992 0.0492
modt o} U, 300 30  Exponentia 0.05 0.1003 0.0503
modt 05007 4 300 30  Lognormal 0.05 0.1034 0.0534
modt o} U, 300 30  Lognormal 0.05 0.1082 0.0582
modt 0.750% 4, 300 30  Lognormal 0.05 0.1089 0.0589
modit o} U, 30 30  Lognorma 0.10 0.1451 0.0451
modit o} 4, 300 30  Exponentia 0.10 0.1477 0.0477
modt 0.5007 yz 300 30 Lognormal 0.10 0.1544 0.0544
modt 0.750% 4, 300 30  Lognormal 0.10 0.1630 0.0630
modt o} U, 300 30  Lognormal 0.10 0.1649 0.0649
OBMax vs. the modified t: How Does It Matter, phone lines (eg., average timeto-install).

and How to Decide?

The Act was designed so that, with respect to
enforcing the central requirement of at-least-equal
service provision to CLEC customers, everything
hinges on the performance metric data, and the
inferences made about it based on statistical tests.
The consequences of OSS parity testing results
that indicate disparity undeniably can be large, in
terms of both remedies paid by ILECs to CLECs
and, in the case of backsliding or prolonged and
extensive disparity, the possible revocation of an
ILEC' s long-distance approval (which carries even
larger, long-term financial consequences for both
ILECsand CLECS).

Although not all performance metrics have
statistical tests applied to them (a minority are
comparisons of CLEC service against a fixed
benchmark), and continuous data metrics are only
a subset of all those subject to statistical parity
testing, they still include some of the biggest
metrics — i.e, those containing the most data
reflecting the largest numbers of customers and

Therefore, a statistic used to test these metrics that
fails to identify actual disparity under a wide range
of conditions not only distorts the simple and
crucial incentive structure clearly and explicitly
intended by the Act, but also misses sizeable
remedies that would have been identified by a
more powerful statistic — in this case, OBMax (or
OBMax2).

Therefore, given the results of this study
comparing OBMax to the modified t, one might
ask when using actua OSS data, what is the
magnitude of this distortion caused by the
modified t? How much does it matter in terms of
remedies, which is the bottom line in this setting?
Although it is possible to approximately answer
this question empirically, and the answer could
very well be a sizeable amount, it is actually the
wrong question to ask here for several reasons.
First, it can never be known absolutely whether
saervice provision to CLEC customers is truly
inferior because only monthly samples are being
considered, not entire populations. It could be, due
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to random variation, that CLEC service is not
really inferior, but that the given samples make it
appear so (in statistical parlance, this is a Type |
error). The reverse also can occur (a Type Il
error). What statistical tests provides is a scientific
basis for making an inference, based on the
samples that merely represent the true underlying
service levels, with a specified degree of certainty
(for example, if a = 0.05, onecanbe[1—a] = 95%
certain that an inference of parity is correct).

This guess or hypothesis about whether
service is or is not in parity is the best that can be
done, so a researcher can never evaluate the
statistical properties of competing tests based
(solely) on real data samples. The researcher must
know the true answer in the data ahead of time,
which is only possible with simulated data (as
used in this study), and then see which statistic
gets it right most often under the widest range of
relevant data conditions. Then it will be known
that, if applied to actual data samples that are
based on truly disparate service levels, a statistic
that is proven to be more powerful under well-
constructed simulations will be more powerful
under actual data and correctly detect the disparity
more often.

That said, a general idea may be obtained as to
how much remedies will be affected when using
OBMax vs. the modified t by applying each to,
say, six months of actual data and comparing the
resulting remedies (such a comparison obviously
would need to be based on identical remedy
formulae, with distance-beyond-parity directly or
indirectly based on p-values and «; if Z-scores are
familiar or in current use, then the inverse standard
normal function can be used, eg., ®(p-value) —
@(a) = distance beyond parity). If there are much
larger remedies resulting from the use of OBMax,
then it will be known that its greaster power is
driving this result.

However, even if no appreciable difference in
remedies is observed (which would be surprising),
the question ‘How much are remedies actualy
affected? is not the key question that needs to be
answered because it ignores the important issue of
a deterrent effect. If no appreciable difference in
remedies is observed, that just means that
scenarios under which OBMax is more powerful
are not exhibited in the data being examined. But
there is no telling that these types of inferior
service scenarios will not crop up in the future (or

have not cropped up at different times in the past).
Because the modified t will definitely miss them if
they do crop up, why would it ever be used over
the more powerful statistic, OBMax? The answer
is, it should not, and under a scientifically
responsible implementation of applied statistics, it
would not.

Thus, in evaluating which statistic to use for
OSS parity testing and considering the remedy-
impact of using OBMax instead of the modified t,
the driving question is not, How much will actual
remedies differ under OBMax vs. the modified t?
(athough the answer to this probably is
noticeably, if not a great deal.); instead, the
rdevant question is, Under conditions that we
know to be disparate, which statistic has greater
power to correctly identify the disparity? This
guestion cannot be answered by using actual data
and comparing the remedies resulting from the use
of each of these two datistics (although this
comparison may be interesting), but rather, by the
simulation study conducted in this paper. And the
answer this study provides is that OBMax does
have more power under a wider range of relevant
data conditions, and these power gains are often
dramatic. The general applicability of OBMax in
other settings is discussed briefly below.

General Utility of OBMax (OBMax2)

OBMax, and OBMax2, are useful in any
context where one-sided tests of the first two
moments are the primary or exclusive concern,
and the researcher needs to test for effectsin either
or both moments (in other words, when the
researcher needs to test (1) above). For these joint
hypotheses, just as shown in Opdyke (2004) for
OBMax’s constituent tests, OBMax outperforms a
test of stochastic dominance and a widely-used
nonparametric distributional test against general
alternatives. The Rosenbaum (1954) dtatistic
maintains validity, but generally has much less
power than OBMax, especially if the CLEC mean
is smaller than the ILEC mean, when it often has
absolutdy no power to detect a larger CLEC
variance (which is consistent with its design). The
latter finding aso holds for the one-sided
Kolmogorov-Smirnov statistic which, although
occasionally more powerful than OBMax, often
severely violates the nominal level when means
are identical but the CLEC variance is smaller
(which is consistent with its design, if not the
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reevant joint hypotheses examined here). Thus,
OBMax isfar superior to statistical tests that many
researchers commonly turn to, at least initialy,
when faced with testing the joint hypotheses of (1)
above. Among the settings in which these
hypotheses are central is, of course, OSS parity
testing; possibly the network access rules aimed at
similar telecom deregulation efforts in other
countries (Ure, 2003, p. 42-43); possibly the open
access energy transmission regulations established
by the Federa Energy Regulatory Commission
(Gastwirth & Miao, 2002, p. 278); and numerous
industrial settings with the need to address the
quality control issues of accuracy and/or precision
in manufacturing and other processes (Opdyke,
2005). Some important issues warranting further
inquiry arelisted below.

Further Research

Most of the points below are listed in Opdyke
(2004) and remain important issues for further
inquiry in this setting.

e In regulatory telecommunications, almost
aways neec << nNee, SO scenarios  of
NcLec > Nicec Were not studied in this paper.
However, they are addressed in the further
development of OBMax2 in Opdyke (2005).

e Although typically much more powerful than
the modified t, even under skewed data,
OBMax2 till has low power under asymmetry,
and exploring ways to increase it is worthy of
further study (Opdyke, 2005).

o Although the nominal test levels examined in
this study (o = 0.05 and o = 0.10) bracket the
vast majority of the test levels used in
telecommunications OSS parity testing, (SBC
Comments, 2002, p.49-52; CPUC Opinion,
2002, Appendix J, Exhibit 3, p.4; and
Performance Assurance Plan — Verizon New
York Inc., Redlined Version January 2003,
Appendix D, p.1) other settings may require
very different nominal levels (e.g., o = 0.20 or
a = 0.01). Generdlizing from the findings of
this study to such conditions would not be
advisable without further simulation.

e The one major exception to the above point
regarding nominal test levels is the BellSouth
performance and remedy plan. As previously
mentioned, instead of solely using the modified

t for continuous data performance metrics, this
plan relies primarily on a statistic dubbed the
truncated Z for which a balancing critical value
is used as the nominal level of the hypothesis
test. This critical value purports to balance or
equalize the probability of Type | and Type Il
error (i.e., incorrect inferences of disparity and
parity, respectively). This statistic, however,
may remain insensitive to, i.e, have little
power to detect, larger CLEC variance for two
reasons. first, the formula used to determine
the balancing critical value is admittedly
essentially unaffected by differences in
variances  (BelSouth Comments, 2002,
Attachment 2 (Part 4), Exhibit No. EJM-1,
Appendix C, p.C-9); second, the statistical test
scores that are truncated and combined to
obtain the truncated Z score are simply scores
of modified t tests adjusted for skewness
(BellSouth Comments, 2002, Attachment 2
(Part 3), Exhibit No. EIM-1, Appendix A, p.A-
5, with correction from Attachment 2 (Part 2),
Appendix D — Technical Description, p. 37). It
isnot at all clear that a combined statistic based
on such truncated t-scores has much or any
power to detect differences in variances, and a
thorough simulation study like the one
completed in this paper would be useful to
allay or confirm these suspicions.

Although not the focus of this study, some
performance and remedy plans use the general
form of the modified t statistic as the basis for
modifications to statistical tests designed for
binary data, like that based on the common
Wald approximation to the normal distribution
(Comments of SBC, 2002, p. 59). In light of
Opdyke's (2004) findings, and all of the
problems inherent in using the modified t
statistic with continuous data performance
metrics, such modifications should be viewed
with skepticism until subjected to careful
analytic scrutiny and empirical simulation. No
objections to using the modified t for
continuous data OSS parity testing were raised.
Mulrow (2002) raised no objection to using the
modified t for continuous data OSS parity
testing, although concern was expressed about
making modified t-like changes to the Wald
approximation test for binary data: “This does
not seem right to me” (p.280). Instead of this

www.manaraa.com



A NONPARAMETRIC STATISTIC FOR CONTINUOUS-DATA PARITY TESTING 387

test, Mulrow (2002) advocated the use of
Fisher's exact test. It is a viable and easily
implemented alternative already in wide usage
in OSS parity testing, although sometimes only
for smal(er) samples (SBC Peformance
Remedy Plan — Attachment 17, p. 3). Y, it
can be used for large samples as well because,
even as a conditional exact test, it can be
implemented very quickly with modern
statistical  software packages (e.g., SAS®).
Agresti and Caffo (2000) provided a simple and
effective, although not exact test for both small
and large samples, and even better (more
powerful), if dlightly more complex
alternatives, are the unconditional exact tests of
Berger and Boos (1994) (available at
http://www4.stat. ncsu.edu/~berger/tables.html)
and Skipka et al. (2004) (Berger, 1996; Kopit
& Berger, 1998). These all are carefully studied
and well designed tests for binary data: thereis
no need to turn to unverified methods of
questionable utility in this setting.

e Although not the focus of this study, some
performance and remedy plans rely on a normal
approximation Z-test for comparing CLEC and
ILEC sample rates from count data
performance metrics, even when those rates are
very small (e.g., trouble report rate) and almost
certainly highly non-normal (SBC Performance
Remedy Plan - Attachment 17, p.3-4;
Ameritech Michigan — Performance Remedy
Plan — Attachment A, p. 2; and SBC
Performance Remedy Plan — Version 3.0
SBC/SNET FCC 20 Business Rules —
Attachment A-3, p.A-88). Yet, powerful and
easily-implemented tests for comparing two
Poisson means have been developed, and may
be far superior datistically for such
comparisons (Krishnamoorthy & Thomson,
2004). Examination of these metrics
distributions, and a straightforward simulation
study, would adequately address this question.

Unheeded Warnings

As mentioned in Opdyke (2004), it is
important to note that not everyone has supported
the use of the modified t in this (and other)
settings, although  dissension has  been
conspicuougly rarein the OSS parity testing arena.
O'Brien (1993), in his discussion of Blair &

Sawilowsky's (1993) empirical study unfavorably
comparing the modified t to O’ Brien's (1988) OBt
and OBG statistics, points out that the Type | error
rates of the modified t dstatistic will severdy
violate the nominal level of thetest under avariety
of conditions. Within the parity testing arena, over
five years ago GTE voiced a lone, cautionary, and
seemingly prescient dissent, given the findings of
this current study, regarding use of the modified t
in OSS parity testing:

The modified Z-test [t test] should not be used
since it follows no standard formulation of the
test statistic. In the absence of a rigorous
derivation, its sampling properties and
maintained hypotheses are unknown. It has been
asserted that the modified Z-test [t test] isajoint
test of the equality of the means and variances of
the two distributions; however no rigorous
derivation has been provided. It would
clearly be foolish to accept a new and unknown
test statistic without further documentation and
consideration. (COMMENTS OF GTE, Before
the Michigan Public Service Comm., 11/20/98,
Attachment B, p.15-16)

(Opdyke, 2004, has since provided an analytic
derivation of the asymptotic distribution of the
modified t: as stated previously, it is not standard
normal or student’s t distributed, although it has
been described as such in the expert testimony of
Dysart & Jarosz, 2004 which, on pages 27-29,
egregiously misquotes the derivation and major
findings of Opdyke, 2004.)

Meanwhile, others have hedged their bets.
While being deposed as an expert witness for
AT&T and other CLECs, Dr. Gerald Ford was
asked:

DO YOU BELIEVE THE MODIFIED Z-
TEST SHOULD BE REPLACED WITH
THESE PROPOSED ALTERNATIVES?

No. The development of the particulars of the
performance plan took many months of hard
work by some very smart people. It was only
after considerable analysis and debate that the
Modified Z-test [modified t test] was selected
as the best test statistic for the performance
plan. ... see no reason to alter the test
procedures of the existing plan without strong
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evidence that the other tests represent an
improvement.

SO YOU BELIEVE THE MODIFIED Z-
TEST [modified t test] SHOULD BE USED?

Yes, at least until some strong evidence is
provided to indicate an alternative test is
preferred. (Before the Texas PUC, Rebuttal
Testimony of Dr. Gerald Ford for the CLEC
Coalition, 08/23/04, p.36)

The goal of this article, with its development of a
single, nonparametric, yet generaly powerful
statistic for continuous-data OSS parity testing,
has been to provide the “further documentation
and consideration” implicitly requested by GTE
(1998), as wdl as the “strong evidence” of “an
improvement” over the modified t that Ford
(2004) implicitly requested much more recently.

Conclusion

As summarized in Opdyke (2004), under the
Teecommunications Act of 1996, ILECs are
required to provide CLEC customers with local
telephone service “at least equal in quality to” that
which they provide to their own customers if they
are to be allowed into the long distance telephone
market (Telecommunications Act of 1996, Pub.
LA. No. 104-104, 110 Stat. 56 (1996), at §251 (c)
(2) (C)). The goal of this carrot-stick approach —
the carrot being the potentially lucrative long
distance market, and the stick being this
requirement of at-least-equal service provision —is
to promote competition in the newly deregulated
local teephone markets. Implementing and
enforcing the at-least-equal service provision
requirement has taken the form of OSS parity
testing — statistically testing the service data
represented in thousands of operations support
services performance metrics to ensure that the
service provided to CLEC customers is, in fact, at
least equal.

Results from these statistical tests indicating
average service and/or service variability that is
not at least equal, i.e, findings of disparity,
typically require an ILEC to pay fines (sometimes
US$ millions) to the CLEC(s), and sometimes to
the state(s); disparity that is consistent and
widespread over time (i.e,, backsliding) can serve
as cause for the revocation of an ILEC's approval

to provide long distance service. These stakes are
high, not only for individual firms but also for the
entire industry, so choosing the correct, if not the
best statistics to use in OSS parity testing is a very
important decision.

To date, the modified t statistic (Brownie et
a., 1990) has been approved and used in OSS
parity testing across the country. It is used on
continuous-data performance metrics as a test of
whether average service and/or service variability
are at least equal for CLEC customers compared to
their ILEC counterparts. However, Opdyke (2004)
demonstrated that the modified t is an ineffective
and misleading choice for this purpose in this
setting. It remains potentially vulnerable to
gaming — intentional manipulation of its score to
mask disparity — but far more importantly, it
remains absolutely powerless to detect inferior
CLEC service provision under a wide range of
relevant data conditions. Opdyke (2004) proposed
the use of several other easily implemented
conditional statistical procedures that are not
vulnerable to gaming and typically provide
dramatic power gains over the modified t. The
selection of which among them to use, however,
depends on the relative sizes of the two data
samples and a distributional characteristic (the
kurtosis) of the specific performance metric being
tested. Although thisis arguably straightforward, a
single test that could accomplish the same thing
would be preferable, and the development of such
a datistic is the motivation for this article.

In this article, an easily-implemented
maximum test — OBMax — was developed based
on the multiple statistics proposed by Opdyke
(2004). OBMax maintains reasonable Type | error
control and is always either nearly as powerful as
its constituent tests, or almost as often as not, even
more powerful. More importantly, it typically
provides dramatic power gains over the modified t.
The one set of narrow conditions under which the
modified t has a slight power advantage (always
less than 0.1 under symmetry) are exactly those
under which consequent fines or remedies
imposed on ILECs will be the smallest — small
CLEC sample sizes and small location shifts (and
equal or close-to-equal variances).

In contrast, the typically dramatic power gains
of OBMax over the modified t under most other
conditions of disparity (sometimes gains of even
1.0!) trandate into the appropriate identification of
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vastly larger amounts of remedies that the
modified t will miss. From both a statistical and
remedy-impact perspective, therefore, OBMax is
superior at detecting disparity, and thus, at
enforcing the at-least-equal service provision of
the Tdecommunications Act of 1996. It
consequently is an unambiguously better statistic
than the modified t for use in OSS parity testing to
achieve the major objective of the Act: the
movement of local tdephone service from
regulation to full market competition.
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Appendix

OBt and OBG: O'Brien's OBt test involves
running the following ordinary least sguares
regression on pooled data including both samples:

Yi=PBot+ X%+ Box’ +¢, (6)

where y is a dummy variable indicating inclusion
in the CLEC sample, and x is the performance
metric variable. If the parameter on the quadratic
term (53,) is (positively) statistically significant at
the 0.25 level, use the critical value of the overall
equation to regect or fal to rgect the null
hypothesis; if it is not, use the critical value of the
overal equation of the following ordinary least
sguares regression instead:

Vi =Bot X té& (7)

O'Brien's OBG test is identical to the OBt test
except that the pooled-sample ranks of x are used

in the regressions instead of the x data values
themselves.

Modified Levene test: The modified Levene test
requires a simple data transformation: take the
absolute value of each data point’s deviation from
its respective sample median (as per Brown and
Forsythe, 1974), and then calculate the usual one-
way ANOVA statistic using these transformed
values (as per Levene 1960). The resulting
statistic (8) is referenced to the F distribution as
usual.

Let 7 =‘Xij —x‘ where % is samplei’s median (8)

i i

where =Yz /n and Z=>">"z/n

However, because this test is designed as a two-
tailed test, and the hypotheses being tested in this
setting are one-tailed, the p-value resulting from
this test, when used conditionally with O’'Brien’s
tests as in Table 1, must be subtracted from 1.0 if
the CLEC sample variance is less than the ILEC
sample variance. Or, if one does not need to
calculate a p-value that is be known to be larger
than o (as when the CLEC sample variance is
smaller), the calculation simply can be skipped.

Shoemaker’s F; test: Shoemaker's F; test is simply
the usual ratio of sample variances referenced to
the F distribution, but using different degrees of
freedom:

Sé/ s ~ Far o, 9)

where df —on /| #a_N~1
0-4 nl _3

wherei = C, | corresponds to the two samples, and
u, and ¢* are estimated from the two samples

when pooled:

=33 x) finem) 0
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& =[ (-1 +(n-1)) /(n+n,)] A1)

Shoemaker (2003) notes that the biased estimate
for ¢* isused for improved accuracy.

Separate-variancet test: The separate-variancet
test, also known as the Welch or Behrens-Fisher t
test, is presented below:

X=X )= (e -
tw=( c .2) (e —u) 12
S, s
n N
n _ c
o (XI _XI) Z(XQ XC)
whee 2: i=1 , 2 — i=1 ,
T YT (e
FI‘ nc
X; in
X, ==, and X =%
n Nc

If df is not an integer, it should be rounded down
to the next smallest integer (Zar, 1999, p. 129)

Test of D’Agostino et al. (1990): The test of
D’Agostino et al. (1990) is calculated as follows:

s

_k_ (n=B(n-2) _(n-2)g
% s® (52)3 \/E n(n-1)
A=b % (14)

~ 3(n”+27n-70)(n+1)(n+3)
B (n-2)(n+5)(n+7)(n+9)

1
C=,2(B-1)-1, D=yJC , E=
( ) NJInD
A 2
F= . Zy =EIn(F+JF?+1)~¢(01)

c-1
(~ standard normal)

For onetailed testing of skewness to the Ieft,
check Pr(Z<Zz,); for skewness to the right,

check Pr(Z>Z, ). See Zar (1999), p. 115-116,
for further details.
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The modeling of variation through interactions is appealing in crossed array design as it leads to greater
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Introduction

Robust design has been widely used in industry
to improve productivity and achieve higher
quality at a lower cost. The main idea in robust
design is to develop product and process designs
that can deliver at aminimal cost units of target
performance which are usable or functional with
maintained quality under all intended operating
conditions.
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Thus, one major approach in robust
design is to reduce variation in the quality
characteristic without actually eliminating the
causes of variation (the noise factors). Instead of
replacing some components with more
expensive ones to achieve smaller variation from
target, robust design methodology seeks
combinations of levels of factors affecting the
quality characteristics that are least sensitive to
environmental changes in production or
operating conditions. This adjustment to the
optimal levels are usually less expensive and are
achieved through parameter design.

In parameter design, techniques of design of
experiments are widely used to obtain data for a
number of experimental runs corresponding to
different combinations of the factors. An
analysis of the resulting data is performed to
approximate the optimal combination yielding
the smallest variation from the target. In these
regards, Taguchi-type experiments consisting of
crossed arrays are sometimes performed, and the
experimental data are analyzed using signal to
noise ratio as a performance measure. A factor
affecting response or product characteristic can
be classified as a control factor or a noise factor
(internal or external). Control factors are factors
the levels or values of which are controllable
during production. In contrast, the levels of the
noise factors are expensive to control in
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production or uncontrollable during use in the
lifetime of the product. However, for the
purpose of assessing their effects on the quality
characteristics, the levels of the noise factors
may also be controlled in the experimental runs
in parameter design. In crossed array designs,
each treatment combination of the control
factors considered appears with every member
in a set of treatment combinations of noise
factors.

Taguchi’s crossed array design and the
signal-to-noise ratio analysis were criticized in
the literature (Box, 1988). Some major
difficulties in Taguchi's approach are
summarized in Barreau et al. (1999). Crossed
array design generally calls for a larger number
of experimental runs which may be deemed
unnecessary when some of the interactions may
be safly assumed to be zero (Shoemaker et al.,
1991). Furthermore, the use of signal-to-noise
ratio may not always be appropriate as a
performance measure to be minimized (Box,
1988), and modeling directly the signal to noise
ration as the response in ANOVA is generally
not intuitive and problematic. As an alternative
design, the use of combined arrays has been
suggested in the literature (Welch et al., 1990;
Shoemaker et al., 1991).

In combined array design, both the control
and noise factors are integrated into the same
array, resulting in less number of experimental
runs. The resulting data are then analyzed
differently, with the control factors affecting
variance through their interactions with the noise
factors (O’'Donnell and Vining, 1997; Myers,
1997). Engd and Huele (1996) used a
generalized linear modeling approach to analyze
combined array designs.

It isinteresting to note that similar approach
of modeling through interactions between the
control and the noise factors is in fact more
appropriate for crossed array designs (Barreau,
e a., 1999). Despite some of its major
drawbacks, Taguchi's approach is still embraced
by many practitioners, largely because of its
conceptual simplicity and easier implementation
that requires less sophisticated analytical tools.
Furthermore, the combined array methodology,
though more economical, is less robust than the
crossed array design to model misspecification
especially when certain significant interactions

among control factors are accidentally omitted
in the design and analysis.

The number of experimental runs
required in a crossed array design can be
substantially reduced by employing fractional
factorial designs for the inner (involving control
factors) and outer array (involving noise
factors). Barreau, et al. (1999) examined the role
of interactions between control and noise factors
in a Taguchi type experiment. These approaches
of design and analysis have the advantages of
being more economical, and yet are capable of
retaining the benefits of having crossed inner
and outer arrays.

The use of interaction analysis also
throws light on how the noise variables affect
the response, and provides a more natural
analysis than a direct modeling of the signal-to-
noise ratio as a response variable. Design of
resolution 11l can be used for the inner array
without any adverse effects on the study of
variation or performance measure even if some
interactions exist between control factors.
However, complication arises when two factor
interactions exist between noise factors. Such
interactions do not appear in the true unknown
objective function to be minimized for finding
optimal levels, but it is shown in this paper that
they can seriously bias the estimation of this
objective function.

It is suggested that this potential bias be
corrected based on a smal confirmatory
experiment. It is also proposed to use orthogonal
polynomials in the analysis to facilitate the
identification of adjustment variables, variables
that only affect variation through the mean
function. It is well known that the use of
adjustment variables grestly simplifies the
process of minimizing variation while having
the mean on target. Furthermore, the use of
orthogonal polynomials when some variables are
quantitative allows one to better relate the
analysis to response surface methodology and to
obtain interpolated values for improved results
in variance minimization.

Methodol ogy
In this section, an outline of a systematic

approach for analyzing data from a crossed array
design is given. The details are best explained by
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a practical example, which will be left to the
next section. Let y be the response variable
representing a certain product characteristic.
Suppose there are ¢ control variables each with
k. levels, and n noise variables each has k, levels.
For the ease of discussion, all the control and
noise variables are assumed to be quantitative,
but the necessary modifications when there are
both quantitative and qualitative variables will
be demonstrated with a real example in the next
section.

Suppose that there are N, treatment
combinations in the inner array, which is an
orthogonal resolution 1Il main effect plan.
Similarly, there are N, treatment combinationsin
the outer array, which is an orthogonal
resolution 11l main effect plan. Assume all
interactions involving three or more factors
(both control and noise factors) are non-
significant. For the i control factor x;, there are
k. levels corresponding to k. numeric coded
values. Denote the set of the k. numeric coded

values by W. Let U(X),...u(X) be

orthogonal polynomials where u;(X) is a

polynomial of degree | such that
, _n, foral

Zuj(X)zo Zuj(X)uj'(X)—o o

X eW xeW

jand j# ] .

The n noise factors z,...,z, are random

variables assumed to be independent and,
without loss of generality, to have mean 0 and
standard deviation 1. Thus if al the two factor
control-control and noise-noise interactions are
suppressed, a linear model for the response y
conditional also on z,...,Z, can be formulated

as

y=f (% X2 ) +€
:,u+ZOJiTU()§)+Z7i'Z'

Y fux)z e,

i'=1i=1

where o is a k X1 vector, y, is a scdar,
B, is a k x1vector of unknown coefficients,
and u(xX) = (Uy(),....u, ,(x))". Here the error
term e has mean 0 and constant varianceo? .
Thus for givenx,,...,X., treating z,...,Z, as

" Cc !

random, the variance of y is therefore

0%, x) =3V +o: @

where
Vo=t S AUK)

Thus to estimate the unknown o, , 7,
and ,B.. can be estimated by the least squares
estimators ¢, 7, and 15:' using data collected

from a crossed array design where the outer
array is an orthogonal Resolution Il main effect
plan with each noise factors set at two levels -1
and +1 (corresponding to *1 standard
deviation). The optimal solution for achieving
smallest variation is obtained by minimizing the
objective function (1). To obtain an approximate
solution for smallest variation, one can minimize
with respect to X;,..., X, the estimated objective

function:

ﬁ(xl,...,xc) :ZH:\Z,Z

i'=1

= (7 + Y BTux)).

How is this variance minimization
procedure affected if some or all of the two
factor noise-noise interactions are in fact non-
negligible? It is not difficult to see that in such
cases, for given X;,...,X, the variance of y

differs from (2.1) by a positive term that does
not involveX,,...,X,. Thus one might want to

minimize the same functionﬁ(xl,...,xc).
However, because the main effects in the outer
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array are aliased with certain two factor noise-

~

noise interactions, the estimator . no longer

estimates 7/| alone, but the sum of 7/| and the

effects of the two factor noise-noise interactions
in the same alias set. Thusit is not appropriate to

minimize  directly  h(x,,...,X.)  without

adjustment. It is proposed here that a follow up
2"factorial (or afaction of 2") experiment of the
n noise factors be performed to estimate all the
two factor noise-noise interactions
independently. The estimates obtained are used
to correct for bias of the estimated coefficients

in the function ﬁ(xl,...,xc) . This procedure will

beillustrated with the example in next Section.
If for a control factor x , the vector g -0

for al i- =1,...,n, then x does not appear in the
objective function and the optimal solution does
not depend on x. This kind of control factor is
called adjustment factor. Their existence grestly
simplifies the procedure of minimizing variance
while the mean is made on target, as the
variation can first be minimized using the non-
adjustment control variables, and then the values
of the adjustment variable is set to give the
targeted mean value. The identification of
adjustment variables can be done by examining
the magnitudes of the two factor control-noise
interactions using graphical technique such as
the half normal probability plot (Box, 1988).

With the present formulation through
orthogonal polynomials, one can also examine
the sum of squares of the orthogonal contrasts
corresponding to these interactions. It is also
suggested that the effects of the interactions of
each control variable with the noise variables on
the results of variance minimization be studied
for this purpose.

These approaches will also be illustrated
with an example in the next section. If the
constant variance in the assumed modd is
violated, one might have to transform the
response variable to attain approximate
homogeneity of variances. As explained in Box
(1988), the minimization of variance in the
transformed metric can be seen as approximately
minimizing a performance measure independent
of the mean (PerMIA).

Results

The new methods are outlined to re-analyze the
data from a crossed array design, studied by
Vandenbrande (2000), using signal-to-noise
ratio. The data involve a car body paint spray
process in which it is required to spray paint on
a plate evenly to a desirable width. Although the
surface has to be adequately covered, overspray
would result in unnecessarily higher cost in paint
aswell as causing quality problems on other part
of the car body. The response measurement y is
the width of the paint pattern.

There are four control variables: type of
gun x; (a qualitative variable with values 1, 2
and 3 representing three different guns), paint
flow xp, paint airflow x; and atomizing airflow
X4. The last three variables are quantitative and
each is set at 3 levels (low, medium and high)
which we take to be equally spaced and coded as
-1, 0, +1. There are three noise factors: color z,
input air pressure z,, and paint viscosity z;. Each
of the three noise factors has two levels: -1 and
+1. A Taguchi type of crossed array experiment
is performed using the Ly and L, orthogonal
arrays for, respectively, the inner and outer
arrays, asdisplayed in Table 1.

There are therefore 36 experimental
runs, determined by crossing the 4 treatment
combinations in the outer array with each of the
9 treatment combinations in the inner array. The
observed data are given in (Vandenbrande,
1998, 1999).

The first step in the analysis involves
defining indicator variables for any qualitative
control variables and finding orthogonal
polynomials for the quantitative control
variables. Here, only type of gun is qualitative
and we define Xy, to be equal to 1 for type 1 and
0 otherwise, x> equal to 1 for type 2 and O
otherwise. The linear and quadratic orthogonal
polynomials used for X,y % and x4 are uy(X)=x,
Ux(X)=2-3%°.

The coefficients of the linear contrast
corresponding to x =-1, 0, +1, are u;(x)=-1, O,
+1, and that of the quadratic contrast
corresponding to x =-1, 0,+1, are uy(x)=-1,2,-1.

www.manaraa.com



398 ESTIMATION OF PROCESS VARIANCES IN ROBUST PARAMETER DESIGN

Table 1. Inner and outer array layout

Inner Array
X1 X2 X3 Xa
1 0 0 0
1 1 1 1
1 -1 -1 -1
2 -1 0 1
2 0 1 -1
2 1 -1 0
3 -1 1 0
3 0 -1 1
3 1 0 -1

Outer array
2 -1 1 1
2 -1 1 -1
Z3 -1 -1 1

Our model, suppressing two factor control-
control, noise-noise as well as higher order
interactionsis therefore:

Yy=4u+ (0% +04,%,)
4
+ 2 (@, (X) + (X))
i=2

3 3
D 1.2+ (B %z + B, %02)
=1 =1

+ZZ(IHH1U1()§)Z +ﬂ,i.2U2()§)Z,)+e %)

i=2 i'=1

The least squares estimates of ¢, 12 and ﬁ“,j,

i=1.4,i'=123, j=12, and the broken
down sum of squares for each degree of freedom
aregivenin Table 2.

In the second step, one may proceed if
desirable to identify adjustment variables which
do not interact with any of the noise variables.
Specifically, we look for quantitative adjustment
variables as these variables can be used to make
continuous adjustment of the mean to the target
value. By looking at the sum of squares (SS)
corresponding to the orthogonal contrasts

u(x;)z., it is seen that the control factor paint

flow X, has small SS of interactions with all
three noise factors. This suggests that using X, as
an adjustment variable and drop it from the
variance function (1). The effect of excluding x,
from the study of variance will be examined
later.

In step 3, minimize the estimated objective

function h defined in Section 2, or equivaently,
the estimated variance function of y given X, X,
and X,. In principle, the mean and variance
(treating Z,,Z,,Z, asrandom along with €) of y
given X;,X,,X; and X, can be estimated based
on the analytical expression for the mean and
variance derived from (3.1). However, an
equivalent but more intuitive and easly
programmable procedure is to calculate the
mean and variance based on generated pseudo
observations.

To generate these pseudo observations, we
first set a new variable z,to two levels at -1 and

+1 as other noise factors. Also let 7, =+ MSE .
The pseudo observations are generated using
(3.1) with the least sguare estimates replacing
the unknown coefficients and also the error e

by 7,z,. Here, the z, i=1,..., 4 can be -1 or +1,
yielding a total of 2* pseudo observations. The
conditional mean and variance of y given
X;, X5, X3 and X, can then be estimated by the

usual mean and variance of the pseudo
observations (with 2* as the divisor in
calculating variance). This procedure is justified
as it is equivalent to using Gaussian Quadrature
to evaluate the first two moments, and the two
point Gaussian Quadrature is known to yield
exact integral for polynomial of degree 3.

The added advantage of using the
approach of pseudo observations is that it can be
readily applied to evaluate any expected loss
function L(y), not just the quadratic loss
function, by calculating the mean loss at the
values of the pseudo observations. This can be
particularly helpful if an analytical expression
for the expected loss is difficult to obtain.
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Table 2. Estimates and sum of squares:

399

9 = 39.6+ 1.02 X11- 2.57 X1, + 3.84 U1(X2)+0.604 Uz(Xz) + 3.64 U1(X3)-l.69 Uz(Xg)

-2.99 uy(X4) +1.37 Up(Xy) -3.63 1+ 0.308 2, - 0.0417 z3 + 3.48 X131 23 + 2.58 X1 Z3
+ 0.550 X33 Z; - 0.0500 X1 Z5- 1.15 X33 Z3 + 0.233 X32 Z5 - 0.0125 uy(X7) 21

+ 0.0931 uy(Xz) 21+0.438 uy(X2)Zz +0.121 uy(Xz) Z5-0.221 uy(X2)25+0.290 uy(Xy) Z3
-1.46 uy(X3) 23-0.253 Uy(X3) Z3-0.550 Uy (X3) Zo+0.717 ux(X3) Z» 0.783 Uy(X3) 23

- 0.889 Up(X3) Z5+1.73 Uy(Xs) Z1-0.519 Uy(X4) 21-1.08 Uy(Xs) 22-0.717 Ux(X4) 22

+ 0.850 U1(X4) Z3+ 0.369 U2(X4) Z3.

Control factor Control factor Control factor
X2 X3 Xa

Sum of Sum of Sum of
Effects squares Effects squares Effects squares
U1(X2) Z1 0004 U1(X3) Z1 51.042 Ul(X4) Z1 72.107
Uz(Xz) Z1 0.623 U2(X3) Z1 4.601 U2(X4) Z1 19.427
U]_(Xz)Zz 4.594 U]_(Xg) Zo 7.260 U]_(X4) Zo 27.735
U2(X2) Zo 1.051 Uz(Xg) Zo 36.980 Uz(X4) Zo 36.980
U]_(Xz)Zg 1.170 U]_(Xg) Z3 14.727 U]_(X4) Z3 17.340
Uz(Xz) Z3 6.067 Uz(Xg) Z3 56.889 U2(X4) Z3 9.827

Table 3 gives the estimated standard

deviation (column (1)) for al 27 treatment
combinations of X;,X;, and X,. The
combination X, =3, X;=-1, X,=1, vyields
the smallest value of standard deviation of 1.6.
However, because of practical consideration,
high atomizing air must be combined with

somewhat higher fan air.
One might consider the next best

combination at X, =1, X,=-1 X, =0, with
an estimated standard deviation of 1.8. The use
of orthogonal polynomials allows interpolation
to obtainimproved resultsat X, =1, X; =-1.1,

X, =04,

yielding a smale standard

deviation of 1.6. The last few columns of Table
3 give the mean and standard deviation for each
of X, = -1, 0, +1 when X, is also included in the
variance analysis. The difference in standard
deviations from column (1) is minimal.
Furthermore, if a target mean of 45 is
desired, then x, should be set around %, = 1. As
pointed out in the last section, the procedure of
minimizing variance can be adversely affected if
some of the two factor noise-noise interactions
are non-zero. Thus we suggest, as a safeguard
against this potential problem by assessing these
interactions with small number of additional
experimental runs. Inthe present example, each
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Table 3. Means and standard deviations

Xo= -1 X=0 Xo= +1

X1 X3 X4 @) 2 mean D mean SD mean SD

1 -1 -1 37 35 35.8 31 415 33 435 40
1 -1 0 18 30 36.9 14 42.6 09 446 10
1 -1 1 42 47 29.8 3.8 355 40 375 39
1 0 -1 6.3 56 344 59 40.0 59 421 6.7
1 0 0 33 31 355 29 41.2 25 432 35
1 0 1 38 35 284 3.3 341 34 361 40
1 1 -1 34 39 431 29 48.8 29 508 34
1 1 0 36 49 44.2 3.6 49.9 33 519 30
1 1 1 21 39 371 1.8 42.8 20 448 10
2 -1 -1 26 32 32.2 1.8 379 22 399 27
2 -1 0 23 40 334 22 39.0 20 410 12
2 -1 1 34 46 26.3 3.0 319 34 339 28
2 0 -1 55 51 30.8 5.0 36.5 50 385 58
2 0 0 31 37 319 2.8 37.6 25 396 31
2 0 1 24 29 248 15 30.5 19 325 24
2 1 -1 39 50 395 3.6 45.2 36 472 37
2 1 0 51 65 40.6 52 46.3 50 483 45
2 1 1 31 50 335 3.0 39.2 31 412 21
3 -1 -1 41 44 34.8 3.7 40.5 37 425 43
3 -1 0 36 48 35.9 3.6 41.6 33 436 32
3 -1 1 16 34 28.8 0.9 345 12 365 03
3 0 -1 72 69 334 6.9 39.0 68 411 76
3 0 0 55 58 345 54 40.1 50 422 55
3 0 1 31 34 274 25 330 25 31 32
3 1 -1 6.3 69 42.1 6.1 47.7 6.0 498 6.3
3 1 0 6.9 80 43.2 7.0 48.9 68 509 6.6
3 1 1 39 55 36.1 3.8 418 38 438 33

main effect in the outer array is aliased with the
interaction between the remaining two noise

factors. For instance, the coefficient 7, of the
noise factor “viscosity” is small, but since z is
aliased with zz, it actually estimates the sum of
Vst ¥, Where y,, isthe coefficient of zz,.

In the last step, we propose to have a 22
factorial (or a factional factorial so that the
interactions suspected to be significant are
estimable) of the noise factors conducted at the

solution obtained in step 3, i.e X =1
X;=-11 X,=-0.4. To estimatey,,, first

subject the fitted value based on (3.1) from each
of the y values from the new experiment and

estimate y,, by the slope of the regression of
theadjustedyon 7,7, - z,.

As an illustrative example, suppose an
estimate 7,, =—1.855 is obtained. Then the

coefficient y, can be re-estimated as -0.042-(-

1.855) = 1.813. Column (2) of Table 3 now
gives the standard deviations based on the new
model (model (2) together with the additional

termy,,2,Z,). The results are markedly different
from column (1), and the smallest value no
longer occurs at X, =3, X;=-1 X,=1
suggesting that such adjustment might be
necessary.

Conclusion

We have suggested in this article a systematic
approach in analyzing crossed array designs,
where fractional factoria design may be
employed in the outer array. This kind of
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designs is still popular because of its simplicity
and its greater robustness than combined array
designs to certain type of mode mis
specification. It is however demonstrated that
non-ignorable noise-noise interactions may still
create problems with the crossed array design. A
method of rectifying these difficulties is
proposed, but the problem of finding cost
effective follow up design to complement the
original design is worth studying.

Our approach also assumes the constant
variance assumption conditional on values of
both the control and noise factors. If this
assumption is violated, the response variable
may have to be transformed to attain constant
variances before the suggested analysis can be
carried out.

Alternatively, the use of generalized
linear model (Nelder and Lee, 1991) or the
approach of Engd (1982) may aso be
appropriate. The choice of an appropriate
transformation may be facilitated using the
graphical plot of Box (1988), or the analysis of
Chan and Mak (1997). However, even if the
quadratic loss function is used in the original
metric, the induced loss function in the
transformed scale is no longer quadratic. In this
case, the expected loss can be approximated
using the idea of pseudo observations. This
approach is equivalent to using Gaussian
Quadrature to carry out the integration in
computing the expected loss. As is well known
the approximation can be improved by using
more data points for the noise factors in
generating the pseudo observations. Details will
not be given here.
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Testing Normality Against The Laplace Distribution
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Some normality test statistics are proposed by testing non-nested hypotheses of the normal distribution
and the Laplace distribution. If the null hypothesis is normal, the proposed non-nested tests are
asymptotically equivalent to Geary’s (1935) normality test. The proposed test statistics are compared by
the method of approximate slopes and Monte Carlo experiments.
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Introduction

In statistical analysis, many models and methods
rey upon the assumption of normality, which
should be examined by some adequate tests.
However, in several data (eg. economic and
financial data), the existence of outliers is much
frequent, and the observations or disturbances
may have some leptokurtic distributions, where
the kurtosis is larger than three. In order to
detect such leptokurtic non-normal distributions,
we apply the method of non-nested testing
which has high sensitivity (power) for an
explicit alternative hypothesis.

Based on Cox (1961, 1962) and
Atkinson (1970), it this article non-nested test
statistics between the normal distribution and the
Laplace (or double-exponential) distribution,
which is a typical leptokurtic distribution are
proposed. All of the proposed test statistics
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are asymptotically normal. When the null
hypothesis is normal, these test statistics are
asymptotically equivalent to Geary's (1935)
normality test statistic.

In the context of regression models, the
maximum likelihood estimator with the Laplace
distribution error is the least absolute deviation
(LAD) estimator. Therefore, these test statistics
are aso useful to decide whether the LAD
regression or the conventional OLS regression
should be applied.

By applying Pesaran's (1987) strict
definition of non-nested hypotheses, we find that
the norma distribution and the Laplace
distribution are globally non-nested, and that the
power analysis using Pitman-type local
aternatives is not available. Therefore, these
non-nested test statistics are compared by the
method of approximate slope (or Bahadur
efficiency) developed by Bahadur (1960, 1967).
Furthermore, Monte Carlo simulations are
caried out to compare the small sample
properties of the proposed tests and other
conventional normality tests. Simulation results
indicate that these tests show reasonable
performances in terms of the size and power.

Non-nested Test Statistics

Throughout this article, demeaned
observations are considered, i.e, the mean is
assumed to be zero. Let Y =(Y,,...,Y,) be

independently and identically distributed (iid)
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random variables. Consider the following non-
nested hypotheses:

1 2
H,: f(y;a)=me><p{—g—a} 1)

Hy:a(y; 8) =$exp{—|—zl] )

where H, isthe normal distribution with zero
mean, and H ; is the Laplace distribution with

zero mean. H; and H, belong to separate

parametric families and are called non-nested
hypotheses. In order to test non-nested
hypotheses, Cox (1961, 1962) proposed a testing
procedure based on a modified likelihood ratio.

When H isthe null hypothesisand H, isthe

aternative hypothesis, the Cox test statistic is
written as

T, =L (@)-L, (A -Ey(L (@-L,(B). 3

where L (@) => log f(y;; @) and

Lg(,B):Zn:Iogg(yi;,B) denotes the log

likelihood functions of the hypotheses H, and
H., respectively, @ and B denote the

g i)
maximum likelihood estimators under H, and
H,, respectively, E; (") is the expected value
under H, when « takes the value ¢, and
B, =plim 3 is the probability limit of /3
under H; as n— . Define

F =log f(Y:a), G, =logg(Y;;5,),
_dlog f(Y;) @

Fai
Ja
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Cox (1961, 1962) showed that T, is

asymptotically normal with zero mean and
variance

C.(F-G.F,)
Va(Fai)

V. (T)=n V,(F-G) , 5
where V, () and C,(-,-) denote the variance

and the covariance under H, , respectively.

In the same manner, set the Laplace
distribution H ; as the null hypothesis and set

the normal distribution H, as the alternative

hypothesis. In this case, the Cox test statistic T
iswritten as

T,=LA-L@-ELAB-L (). ©

where E[}(-) is the expected value under H

when A takes the value /3, and oy =plim o
is the probability limit of ¢& under H, as
N—oo. T, is also asymptotically normal with
zero mean and variance V,(T,), which is
defined in the same manner as (4). If V,(T;)
and V,(T,) ae consistently estimated by
V,(T,) and V,g (T,) , respectively,

N, :Tf/JV&(Tf), Ng =Tg/ /V/}(Tg) (7
can be used as test statistics which follow the

standard normal limiting distribution.
In setup (1) and (2), obtain

a=Yy Ym, =Y 1%Imn, ®

B,=pim,B=E,(Y =207,
o, =plim,a =E,(Y?) =25°. 9)

www.manaraa.com
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Therefore, when the null hypothesis is normal
and the alternative hypothesis is Laplace, the
Cox test statisticis

j, (10)

gl B\ z
T, _nlog{ﬂ—&j_nlog(\/;

with the asymptotic variance V,(T,;)=%-3.

p
Jé

On the other hand, when the null hypothesis is
Laplace and the alternative hypothesis is normal,
the Cox test statistic is

T, =glog{§j=g|09[2iﬁzja (11)

with the asymptotic variance V,(T,) =7 .

Next, derive Atkinson's (1970) test. The
Atkinson test procedure is derived from the
comprehensive probability density function
(pdf), which includes f(y;er) and g(y; /) as

special cases. When H, is the null hypothesis

and H, is the alternative hypothesis, the
Atkinson test statistic is written as

A =L (@-L(B)-EL @A) (12

Comparing (3) and (12), the difference between
T, and TA, is their second terms. Because the

Atkinson test TA, and the Cox test T, are
asymptotically equivalent under H,, the
asymptotic variance of TA, is same as (5) (see
Pereira, 1977). Analogous results are obtained
for the casewhere H ; isthe null hypothesis and
H, is the aternative hypothesis. In order to
conduct the Atkinson test, we can use

NA =TALN M), NA=TA/ V) (13

as test statistics which follow the standard
normal limiting distribution. When the null
hypothesis is normal and the aternative

hypothesis is Laplace, the Atkinson test statistic
is:

o[ B[ [F 2
TAf_n{ﬁ& 1} n{\/;

~11, 14
\/Ej (14)

and when the null hypothesis is Laplace and the
aternative hypothesis is normal, the Atkinson
test statisticis

nl a nl o
TA, _E[Z_lj_ﬁ[z_ﬁz_lj' (15)

B

Because the computation of our non-nested test
statistics (i.e, Ny, Ny, NA;, and NA,) needs

only & and ,3 their implementation is quite
easy.
T, and TA, are related to another

normality test suggested by Geary (1935). The
Geary test statistic is written as

(16)

oo 2l _ B
Jn2 ¥ e

From (10) and (14), the relationships among G,
T, ,and TA, are

T, :nlog{\/ng,TAf :n{\/gG—lj. (17)

Therefore, if the standardized test statistics is
compared, it can be shown that under H; the

Cox test and the Atkinson test are asymptotically
equivalent to the Geary test.

Power Comparison

This section considers theoretical
properties of the proposed non-nested tests. We
first investigate the consistency of the Cox test
and the Atkinson test. Pereira (1977) showed
that the Cox test is always consistent, but the
Atkinson test is not always consistent. From (14)
and (15):
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plim,n*TA, =yz/2-1~-01138,  (18)

plim,n"TA, = (U2)(w4-1) =-0.1073. (19)

Because both TA; and TA, converge to non-

zero constants, the Atkinson test is consistent in
our particular setup.

Using Pesaran’s (1987) strict definition
of the non-nested hypotheses, which is based
upon the Kullback-Leibler information criterion
(KLIC), next examine the relationship between

the normal distribution (H, ) and the Laplace
distribution (H,). The KLIC for the pdf
f (y;) against thepdf g(y; ) isdefined as

| 4@ B)=E,(log f (y;)—logg(y: £)). (20)

Assume that | (&, ) has a unique minimum
at f.(«) . Pesaran (1987) defined the closeness
of H, to H, as

Cyl@)=14(a p.(2)). (21)

Similarly, define the KLIC for g(y; )
againgt f(y;a) (denote 1, (B,¢)) and the
closeness of H, to H_  (denote C,(5)).
Using C, (o) and C,(f), Pesaran (1987)

classified the relationship between two
hypotheses into three categories, i.e, nested,
globally non-nested, and partially non-nested. In

the case of (1) and (2), | (a,f) and
Igf(,B,a) are written as

1 1200 1
|fg(04ﬂ)——2|0§12ﬂv!)+|0£12,5)+ﬁ\/; > (22)

Fy (23)

|4 (5.0) =%|Og(27za)—log(2ﬁ)+;_

oTsu
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Because f3, (@) =+ 20/7 and e, (B) = 2/3%,

Cy () =log [%j + % ~(0.04842, (24)

C, (8)=log(W7) —% ~007236. (25

Because both C,, («r) and C (B) are nonzero

constants, H, and H, are globally non-nested

and the power analysis using a local alternative
is not available (see Pesaran (1987)).

Because the Pitman-type power analysis
cannot be applied, compare the Cox test and the
Atkinson test by the method of approximate
slopes developed by Bahadur (1960, 1967). The
method of approximate slopes compares the
convergence rates of the significance levels of
tests (to zero) under some fixed alternative
hypothesis with some fixed power.

Thus, approximate slopes are useful to
analyze the power properties of tests under
globally non-nested hypotheses. Let ¢, be the

asymptotic significance level of some test with a
given sample size n. The approximate slope is

defined as lim(-2n"logg,) . If atest T, hasa
greater approximate slope than another test T, ,
we call that T, is Bahadur efficient relative to
T, . Pesaran (1984) showed that the approximate
slopes of the Cox test and the Atkinson test are
given by plim,(n™*N7) and plim,(n™NA?),

respectively. Therefore, from (10), (11), (14),
and (15),

2
log(Z
pIimﬂn‘le:( ﬂ( 23)) ~0206L  (26)
27 2
N 2
I N 2_(7_1) _ 2
plim;n~NAf = 3 ~(0.1828, (27)
2 2
2
plim, n"*N? =[|og[%jj ~0.05835 (28)
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Table 1. Finite sample rgjection frequencies of the null hypothesis at the one side 5% level
DGP n T, T TA, TA, BS SW DA AD

g
20 0.0429 0.1812 0.0368 0.0239 0.0234 0.0469 0.0526 0.0512
Normal 50 0.0451 0.6167 0.0410 0.4438 0.0353 0.0494 0.0488 0.0509
100 0.0498 0.9291 0.0469 0.8875 0.0434 0.0484 0.0525 0.0522
20 03427 0.0311 0.3012 0.0014 0.2118 0.2498 0.3556 0.2663
Laplace 50 0.7072 0.0418 0.6945 0.0190 0.5107 0.4105 0.6927 0.5498
100 0.9377 0.0460 0.9339 0.0254 0.7783 0.5386 0.9175 0.8265
20 0.1184 0.0995 0.1066 0.0108 0.0931 0.1102 0.1497 0.1052
Logistic 50 0.2549 0.2859 0.2428 0.1678 0.2313 0.1459 0.2984 0.1682
100 0.4072 0.535 0.3957 0.4512 0.3673 0.1289 0.4531 0.2367

2
plim,n"NA? = [% —1j ~0.04605.  (29)

In both cases (i.e, the null is normal, and the
null is Laplace), the Cox test is Bahadur efficient
relative to the Atkinson test. Thus, the Cox test
has better global power property than the
Atkinson test.

Results

In order to analyze the finite sample properties
of the proposed tests, we conduct Monte Carlo
simulation. In addition to the non-nested test
statistics in (10), (11), (14), and (15), consider
the normality tests by Bowman and Shenton
(1975) (BS), Shapiro and Wilk (1965) (SW),
D’Agostino (1971) (DA) and Anderson and
Darling (1954) (AD), which is a modified
Kolmogorov-Smirnov test, as alternative tests.

As the data generating process (DGP), employ
the standard normal, standard Laplace, and
standard logistic distribution. The sample sizes
are set as Nn=(20,50,100). The number of

replications is 10000.

Table 1 shows finite sample regection
frequencies of the null hypothesis at the 5%
level. From this table, the following may be

seen. First, the Cox test T, with the normal null

hypothesis demonstrates better performances
than the Atkinson test TA, in terms of the size

accuracy and power. This power superiority of
T, is consistent with the relative Bahadur
efficiency of T, . Second, comparing to the other
normality tests, T, has the highest power when

the DGP is the standard Laplace distribution.
Also T, is second best when the DGP is the
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logistic distribution. Third, the Atkinson test
TA, with the Laplace null hypothesis shows

enough power when the DGP is the standard
normal distribution. Note that T, and TA, can

provide additional information, which cannot be
obtained by the conventional normality tests
based on the normal null hypothesis.

Conclusion

By applying the Cox and Atkinson test, we
propose the non-nested test statistics of the
normal and the Laplace distribution. The
proposed test  dtatistics proposed are
asymptotically normal, and are easily computed.
Approximate slopes show that the Cox test has
better power properties than the Atkinson test. In
simulation, the Cox test with the normal null
hypothesis shows higher power for leptokurtic
distributions comparing to the other normality
tests. The Atkinson test with the Laplace null
hypothesis is aso wuseful to anayze
distributional forms of data.
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A Discretized Approach to Flexibly Fit Generalized Lambda Distributions to Data
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This article presents a flexible approach to fit statistical distribution to data. It optimizes the bin-width of
data histogram to find a suitable generalized lambda distribution. In addition to the default optimization,
this approach provides additional flexibility akin to the concepts of loess and kernel smoothing, which
allow the users to determine the amount of details they would like to smooth over the data. The approach
presented in this article will allow users to visually compare and choose the parameters of generalized

lambda distribution that best suit their purposes of study.

Key words: generalized lambda distributions, quantile distributions, fitting distributions to data

Introduction

An essential problem in data analysisisto find a
probability distribution that will adequately fit
the empirical data. Considerable literature exists
in this area, ranging from the parametric work of
generalized lambda distribution (Ramberg &
Schmeriser, 1974; Ramberg, Tadikamalla,
Dudewicz & Mykytka, 1979; Ozturk & Dale,
1985; Freimer, Mudholkar, Kollia, & Lin, 1988;
Okur, 1988; King & MacGillivray, 1999; Karian
& Dudewicz, 2000; Lakhany & Massuer, 2000)
to nonparametric work of kernel  density
estimation (Silverman, 1985). In gpite of these
works, no current work exists on alowing a
range of possible generalized lambda
distribution (GiD) fitsto data, pending on users
desire to suppress or accentuate certain features
of the data based on prior knowledge of the
distribution. This is important when a particular
method fails to provide a fit that highlights the
essential features of the data exhibited and
known by the analyst. In these situations, it will
often be preferable to explore other plausible
Gi.Ds.

Steve Yu Shuo Su is a Research Fellow at the
Epi-stat Division of the George Ingtitute,
affiliated with the University of Sydney. His
research interests are in applied statistical
methods in business and epidemiology. Email:
ssu@thegeorgeinstitute.org.
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This article proposes an extension of the
existing fitting method using GAD which offers
more flexibility and in many cases can highlight
features of the data not considered by the King
and MacGillivray (1999)'s starship method.
Instead of optimizing using goodness of fit
method, this article suggests an aternative
approach which is to optimize based on the
number of classes or bins of the data. The
number of bins of the data can be determined by
the user, offering flexibility to suppress or
highlight details, much like the concept of
smoothing a data set using different weights in
loess or kernel smoothing. Thisisa valuabletool
in practice because the real distribution of the
data set is almost never known and the methods
developed in this article can be used to conduct
sensitivity analysis to assess the effects of using
different yet plausible distributions.

The principal emphasis in this article is
to allow the user to fit a wide range of different
distributions to data set rather than to satisfy the
goodness of fit statistics. Also, the exclusive use
of goodness of fit statistics in the fitting of
distribution to data as was done in previous
works (King & MacGillivray, 1999; Lakhany &
Massuer, 2000) does not guarantee the resulting
distribution fit will satisfy the goodness of fit,
but merely tries to maximize it. The beauty of
the approach in this article is that it allows the
data to be represented in different angles. Thisis
important because unlike theoretical simulated
data, real life data is often messy. Very often,
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real life data does not have a nice continuous
range of values one can get from theoretical
simulations. Due to this imperfection, it is often
desirable to have an alternative data fitting
method that could provide aternative fits
beyond the traditional goodness of fit methods.
This will give the user a possible range of
distribution fits that could arise from the data set
and this can lead to valuable sensitivity analysis
on the impact of different distributions. The use
of goodness of fit criteria could also enhance the
credibility of fit under different fits but should
not discredit it. This is because it is only
possible to test the goodness of fit of one
redlization of the real life data from its
underlying distribution, which may or may not
be representative.

The article begins with a literature
review on the existing methods of Gi.D
parameters estimation, which progressively
result in the development of this new method.
Results of the application of the new methods on
real life data are then presented and the article
concludes with a discussion on the shortcomings
of this new method.

Review of Literature

This literature review begins with the
basic theory of GLD and discusses some of the
fitting methods reported in literature. The
literature review then presents two methods that
appear to give promising results. These two
methods are extended and discussed in the
method section.

The Ramberg-Schmeiser (1974) (RS)
GiD is an extension of Tukey's lambda
distribution (Hastings, Mosteller, Tukey, & C
1947). It is defined by its inverse distribution
function:

u® —(1-u)™

1
A, D

Fru)=A4+

In Expression (1), 0<u<l, ik, # 0 and %,
Ao, k3, hg are respectively the location, scale,
skewness and kurtosis parameters of generalized
lambda distribution G)\,DO\,]_ 2, 7\,3, )\,4) In

particular, Karian, Dudewicz and MacDonald
(1996) noted that Gi.D is defined if and only if:

Ay
AU+, L-u) Tt
ue[0J]

&)

Ancther distribution known as FMKL
GiD also exists, due to the work of Freimer
Mudholkar, Kollia and Lin (1988). This
distribution is dlightly different to RS GAD and
they overlap when xs=h4. The FMKL GAD can
be written as:

ut -1 (1-u’-1
A

Fi=4+

3
A

Under Expression (3), 0<u<1, and %1, 2,
h3, k4 are consistent with the interpretations in
RS Gi.D, namely i ,i, are the location and scale
parameters and %3, &4 are the shape parameters.
In particular, if i3=is=0, both RS and FMKL
GiD have:

In(u) —In(1—u)
4

The fundamental metivation for the
development of FMKL GiD is that the
distribution is proper over al k3 and i, (Freimer,
Mudholkar, Kollia, & Lin, 1988). This adds
convenience to users who wish to program this
function as there are fewer restrictions on the
values of i3 and X4 The only restriction on
FMKL GiD isi>0.

The extensive use of FMKL G)D is
reported in Freimer et al (1988). Dueto the wide
range of shapes GiD possesses, for example: U
shaped, bell shaped, triangular, and
exponentially shaped distributions and its
simplicity, it has been used in Monte Carlo
simulations (Hogben, 1963), the modeling of
empirical distributions (Ramberg, Tadikamalla,
Dudewicz, & Mykytka, 1979; Okur, 1988), and
in the sensitivity analysis of robust statistical
methods (Shapiro, Wilk, & Chen, 1968). Other

Fiu) =4+

(4)
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research works on GAD concentrate on
estimating the parameters of the GiD from
empirical data and these are discussed below.

In any optimization problem, it is necessary to:

1. Find suitableinitial values, and
2. Choose the appropriate optimization
scheme.

Perhaps the most common approach has
been to use method of moments to estimate the
parameters of GLD as demonstrated in Ramberg
et a (1979) and Karian and Dudewicz (1996,
2000). These works covered only the RS Gi.D
and often use tables based on the third and
fourth moments or percentiles of the data to find
suitable initial values. The appropriate
optimization scheme involves finding a GiD
with parameters iy, %o, ks, A4 that matches
closely with the first four moments of the
empirical data. Thisis done numerically through
either the Nelder-Simplex (Nelder & Mead,
1965) agorithm as in the work of Ramberg, et
a. (1979) or the Newton-Raphson algorithm or
tabulated values (Karian & Dudewicz, 2000).
Karian and Dudewicz (1996) also discussed the
use of the generalized beta distribution to model
the distributions that were not covered by the
original RS GiD. In Karian and Dudewicz
(2000), an dternative method is also
demonstrated which matches the RS Gi.D with
the parameters &y, Ao, k3, 4 based on the first
four percentiles of the data set. This is a
variation on the same theme of the matching of
moment method but one in which Karian and
Dudewicz (2000) reported can produce better
fits than in the case with other methods of
moment matching under RS Gi.D.

In a different line of work, Ozturk and
Dale (1985) used a version of least sguares
estimation to find the parameters of RS GiD.
They derived the squared distance between
empirical data points with the expected values of
the order statistics, and numerically minimized
this measure using Nelder-Simplex method to
derive parameter estimates for the RS GLD.

The literature recognizes that matching
the first four moments or using the “least
squares’ method by Ozturk and Dale (1985)
does not necessarily produce a good fit to the
data (Karian & Dudewicz, 2000; Lakhany &

Massuer, 2000). This is due to different
parameters of the Gi.D can results in the similar
first four moments. For example, in the case of
the least squares method by Ozturk and Dale
(1985), the goal of minimizing the squared
distance between empirical data points with the
expected values of the order statistics of GAD
does not necessarily coincide with the formal
goodness of fit objective such as the
Kolmogorov-Smirnov Goodness-of-Fit Test.

It is precisdy the need to assess the
resulting fit with the goodness of fit objective
that King and MacGillivray (1999) used the
starship methods. In the starship method, grid
points comprising of i, iz, ks, Ag @med at
covering a wide range of Gi.D, calculated from
the sample quantiles. Then, for each of the grid
points the theoretical GLD was transformed into
uniform distribution and goodness of fit
statistics like Anderson-Darling test statistics or
Kolmogorov-Smirnov ~ test  statistics were
calculated. The set of grid points with the lowest
Anderson-Darling statistics was then being
chosen as the initial values for optimization,
usually through the Nelder-Simplex algorithm.
The resulting values from the optimization
scheme are the parameter estimates of the Gi.D,
given by starship method.

Lakhany and Mausser (2000) suggested
a variation of using resampling method
combined with the method of moments and a
goodness of fit test via the FMKL GiD. They
first generated initial values for the method of
moment matching via quasi random number
generator (i.e, the Sobol sequence generator
(Bratley & Fox, 1988)), and then found the set
of values %4, Ay, A3, A4 that matched optimally
(through the Nelder-Simplex algorithm) with the
first four moments from the data. This set of
values was then evaluated through a goodness of
test statistic such as adjusted Kolmogorov-
Smirnov test statistics. Under this method, any
solution that results in a p-value > 0.05 is
accepted. Lakhany and Mausser (2000)
commented that this method is much more
efficient time-wise than the starship method
developed by King and MacGillivray (1999) and
allows for automatic restarts from different
initial values to help to find a distribution that
will adequately fit the data. The use of p-values
in the optimization scheme, however, can be
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somewhat problematic. The deficiency of p-
values is well known, since failure to reject does
not mean the hypothesis is true since it may be
that the sample size is too small to be able to
detect differences between the empirical and
fitted data. Conversely, rgection of the
hypothesis does not mean the fitted modd is
inappropriate, as the user may have a different
purpose to fitting the data other than to satisfy
the goodness of fit criteria.

An important improvement of Lakhany
and Mausser (2000)’s approach is the flexibility
of fits it offers to the users. As different initial
values are chosen, different results can be
obtained. However, this flexibility is rather
limited as the users have no real control over the
amount of smoothing they would liketo achieve.

The current literature does not appear to
cover a comparison of the method of percentiles
from Karian and Dudewicz (2000) with the other
methods like starship by King and MacGillivray
(1999), nor with the automatic re-sampling
methods of Lakhany and Massuer (2000). The
method below will consider both the method of
percentiles under RS GiD and the method of
moments under the FMKL GAD. Therationaleis
that the existing literature appears to recommend
these two methods hence these methods are
chosen for extension to offer greater flexibility
of fit than the methods previously reported.

A detailed discussion of the method of
percentiles using the RS Gi.D and the method of
moments using FMKL GAiD is outlined below.

Method of percentiles using the RS Gi.D:

The following is obtained directly from
Karian and Dudewicz (2000). For a given data
set X with values x3, Xz, Xn, the p-th percentile
defined by Karian and Dudewicz (2000) is

”p = yr +k(yr+1+ yr) ’ where Y= Y1, Y2,... Yn

are sorted values of X in ascending order andr is
the truncated value of (n+1)xp with k being
(n+1)xp-r.

Instead of using the first four moments,
thefollowing statistics are used:

Tos— v 5
o Fosm Ty ©
Tliv—7T o5
" Tom—Toxs
4=
P

wherev is an arbitrary number from 0 to 0.25.

The relationship between the theoretical
P11, P2y P3 P4 and 7\41, 7\,2, 7\,3, 7\,4 intheRS GiD isas
follows:

05t -05"
+—
2,
W Y

102 — F—l(l_v)_F—l(V) — (1 V) \/4;2(1 V) \/E (6)

_ F09-F') (@~ ~v:+09* (09"

CFV)-F09 @Vt +09* (05"
pie F'(75-F*(09 _(Q79* (029" +(75" (025"

4
2 2

A=F09=4

The condition—co<p, <ep, >0p, >0p, €[0]
must also be true, which is a direct consequence
of the definition of py, p2, ps, ps. IN Karian and
Dudewicz (2000), a fit for the GAD is found by
solving Expression (7) through the use of tables.
This can also be solved this numericaly via
Newton-Raphson method.

N

P3P

N

<=10"%,|p,— p.|<=10"° @)

In the extended method described
below, however, the following minimization
scheme in Expression (8) is used. Once ks, k4 @re
obtained, %;, %, can be obtained directly via
Expression (6).
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\/(ps_psj +[p4_p4j (8)

Method of Moments under the FMKL GAD:

In an alternative approach, Lakhany and
Mausser (2000) used the method of moments for
the FMKL GLD. The following are extracts
from Lakhany and Mausser (2000):

For a given data set X with values Xy,
X2,... Xn, the i-th moment o is defined in
Expression (9).

n
R Zn:(xi _051)2

— =1

a2 =
n
n A 9
A Z(Xi _051)3 ( )
o3 = i=1 _
n(er,)"
A Z(Xi _051)4
="
n(e,)’
. 1
Putting a= — and b=
A
1 1 . .
A ———+——, with Y=(X-b)/a, using
AA, AN,

E(X¥) = j(F‘l(u))k du and  binomia

expansion gives Expression (10).

s =E(Y")
_l u)»3 (1_u)7»4
s“_j[x3_ N

_l k 'k N u7»3(k—) (1 U)MJ (10)
S‘_£Z{j]( D [ }%k—J XJ ]d

(k)Y
SK—Z(J}L _JKJB(K s(K=1)+1A,j+1)

In Expression (10), B(*) denotes beta
function. Note that both arguments of the beta
function must be positive, implying that min(is,
L) > -1k if the distribution is to have finite k-th
moments. The k-th central moment (except for
the first which is the mean) of the distribution

F*(u)denoted as . are hence given in
Expression (11).

1
0, ¢ 1)_x WY
1
[P :h_(sz )
f (11)
s :h_g(s.?; - 35S, +25§)
2
1
W, =7u_4(84 —4ss, +651252 _3311)

2

The theoretical oz and a4 are given in
Expression (12).
_S;-3sS,+ 251
(s,-5)2 12)
s, —4s5,+65’s, — 35,
4= 2
(s,-s)

3
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The same methodology now follows as
from Lakhany and Mausser (2000). They
propose to find i3, A4 by minimizing Expression

(13), where a3 and o4 are sample values using
sample moments.

\/(ogs—asj +[0;4—0:4j (13)

Once A3, k4 isdetermined it is possible to find iy,
%2 as shown in Expression (14).

/12 — SZA_Sl
(4] (14)
" 1 1 1
A= 051+/1—2(/13 +1 A, +1j

Extension of previous methodology

The principle underlying earlier
methods (King & MacGillivray, 1999; Lakhany
& Massuer, 2000) is to use goodness of fit as a
criteria to determine whether the resulting GAD
fits the data adequately. However this, as will be
demonstrated later, does not give the potential
for a wide range of different plausible
distribution fits to data.

The new method described here uses the
percentile method from Karian and Dudewicz
(2000) and the method of moments with the
FMKL GAiD. It also uses quasi random numbers
to find initial values, but the optimization can be
based on the number of classes or bins the user
specifies. This optimization scheme allows users
to suppress or accentuate part of the distribution
as desired, a feature that is not explicitly
considered in other methods. Therange of initial
values should be chosen based on the shape of
the distribution shown by the histogram, or they
maybe left unspecified with a default set of
values chosen.

A full description of the algorithm is
provided be ow:

1. Specify a range of initial values for is,
), and the number of initial values to be
selected. Here, the %3, A4 are set by
default to range from -1.5 to 1.5 for the
RS GiD percentile method and -0.25 to
15 for the FMKL GAD method of
moment. These default values are from
author’s clinical experiences and appear
to work wel in most situations. It is
possible to change these initial values if
desired.

The quasi random generator used is
based on the work of Hong and Hickernell
(http://www.mcgmec.org/Software.html) and the
scrambling method of Owen (1995) and Faure
and Tezuka (2000). This code is available from
the beta resample library in Splus 6.0 and
scrambling methods are applied so that the
numbers generated fills uniformly onto the iz, i4
two dimensional space. To increase the speed, it
is possible to set the initial values where 2.3= %4.
This appears to work well in many situations. By
default, 100 of such initial values are chosen in
this case and used in step 2.

2. Evaluate iq, %, for each of the initia
values i3, 4. Remove dl the set of
values that do not:

a. Result in a legal
parameterization of GLD.

b. Span the entire region of the
data set.

From these sets of initial points, find the
values of %3, A4 that matches closely with the
data. This is to generate a set of initia values
that produce the lowest values in Expression (8)
and Expression (13), to be used as initial values
in the optimization process.

3. Sort the sample data in ascending order,
and divide the data set into evenly
spaced classes with bin edges that span
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the data set. Calculate the proportion of
the sample out of the total sample in
each class. Hence Table 1 maybe
constructed:

Table 1 Calculating proportion of datain each class

Classes 152| 2-25(253| 3-35| Sum

Proportion 0.1 06| 0.2 0.1
of data

Table 1 shows four classes, with the
proportion of the data set falling in each classin
the second column. Let the proportion of datain
each class be denoted d; for i=1,2,3..n classes
and the proportion of data from the theoretical
GiD be the vector t; for i=1,2,3...n classes. The
quantity that one wants to minimizeis:

idi (d —t,)? (15)

Expression (15) is the weighted squared
deviation of the theoretical proportions with the
actual data proportions. This is weighted so that
the data with higher proportions are given
priority in the minimization scheme. The
resulting fit will then be more likely to capture
the majority of the data. The weighting factor d;
can be removed if desired. In addition, this
optimization scheme also rejects estimations that
do not span the entire data set.

The number of classes, n, can be solely
determined by the user, or determined by the
formula devised by this article (discussed
below), or via previous literature works as in
Sturges, Scott (1979; 1992) or Freedman and
Diaconis (1981).

Sturges' formulais based a bin width of

range(data) /(log, m+1) (16)

This strategy often results the bin width being
too wide as reported in Venables and Ripley
(2002), and has the disadvantage that “outliers
may inflate the range and increase the bin width
in the centre of the distribution.”

Hyndman (1995) also argued that the use of
Sturges' formula should be avoided since there
is no sound statistical backing to its derivation.

Scott (1979) used 350om™? |
although Freedman & Diaconis (1981) proposed

2Rm ™3, where R is the inter-quartile range

and o isthe estimated standard deviation from
the data, and m is the number of observationsin
the data. Freedman & Diaconis's (1981) use of
inter-quartile range is more robust against
outliers and tends to choose smaller bins than
the formula by Scott (1979). More complicated
rules are also available in Scott (1992) but they
arenot discussed here.

The methods developed in this article
calculate the default number of classes to be
optimized over as the one that gives {: the
minimal squared error between the first two
moments of the categorized data with the actual.
For example, in the context of Table 1, the first
two moments of the categorized data can be
calculated using the following table, which takes
the mid point of the class intervals and treat the
data as discrete. The mean and variance of data
shown in Table 2 ae 24 and 0.1525
respectively; this is then compared with the
actual mean and variance of the continuous data
with the squared error subsequently calculated.
The number of classes chosen for optimization
would be the one with minimal squared error or
. It is possible to choose any other number of
classes such as the formula in Scott (1979) and
Freedman & Diaconis (1981).

Table 2 Calculating mean and variance from Table 1

Obsarvation | 1.75 | 2.25| 2.75| 3.25| Sum

Proportion 01| 06| 02| 01 1
of data

The philosophy for this approach is to
choose the number of classes that best represents
the first two moments of the data, so that the
distribution fitted would resemble more or less
an accurate representation of the data set.

Although formulas for determining the
optimal bin width for the histograms interval do
exist, users can exercise their judgments by
choosing the number of classes. Generaly
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speaking, higher number of classes will result in
details of the distribution being accentuated,
while lower number of classes will tend to
suppress details of the distribution.

4. The optimal result can be obtained via
the Nelder-Mead Simplex algorithm or
another suitable numerical optimization
algorithm. It is advisable to re-use the
initial values in the optimization process
to ensure the result obtained is a global
minimum rather than a local minimum.
Steps 1 to 3 may be repeated if
necessary, where the number of classes
and the range of initial values can be
adjusted until the results are deemed
adequate. The final fitting result can be
examined by plotting the result on the
histogram with the fitted line as well as
testing the goodness of fit using the
Kolmogorov-Smirnov (KS) test.

Results

The analysis below is divided into two parts.
The first part is a theoretical comparison
between data fitting methods with well known
statistical distributions. A two sample KS test is
carried out by sampling 100 points from the
theoretical and fitted distributions and the
number of times the p-value exceeds 0.05 is
recorded over 1000 times. Thiswill givethe user
an independent measure as to the adequacy of
fits beyond a visual comparison. The second part
shows the fitting method over some red life
data, and the goodness of fit test is carried out on
the comparison between sampling 90% of the
real life data with the fitted data using two
sample KS test over 1000 runs.

This is also known as the Monte Carlo
KStest in this article. It is worth cautioning that
the use of goodness of fit as a measure for
quality of fit would bias methods that seek to
maximize goodness of fit. In fact, it isa circular
logic. The use of goodness of fit to assess the
quality of fits used in this article will not suffer
from this problem, but it needs to bear in mind
that the objective of fit in this article was not to
maximize the goodness of fit, and so it may
not aways be as high as starship method
(STAR) which uses standard statistical goodness

of fit such as Kolmogorov-Smirnov and
Anderson Darling test statistics in its data fitting
algorithm.

The following compares between the
revised percentile method of the RS GiD
(RPRYS), the revised method of moment under
the FMKL GiD (RMFMKL) and the STAR
method. Previous literature such as King and
MacGillivray (1999), Lakhany and Mausser
(2000), and Karian and Dudewicz (2000) have
adready covered comparisons between the
starship methods, the GLD under the RS and
FMKL GAD using the method of moments and
percentiles as well as the least square method
used by Ozturk (1985); hence these will not be
repeated here.

Commentary

The modified methods RPRS and
RMFMKL are perhaps not appropriately termed
as the percentiles and method of moments are
not used in the optimization step but only for
choosing the initial values for the optimization
process. However, the differences in the two
methods highlight the fact that the choices of
initial values and type of GAD are important in
the outcome of these extended methods, since
different results are abtained even though both
methods undergo the same optimization scheme.

Comparison with Theoretical Distributions

Figure 1 and Table 3 show the resulting
fits of RPRS, RMFMKL and STAR on wdll
known statistical distributions. Using the default
fitting method described above, RPRS and
RMFMKL ae vey close to the actua
distribution in Figure 1. This result is further
confirmed in Table 3, where more than 90% of
the time, the Monte Carlo KS test will indicate
there is no difference between the fitted and
actual distributions.

The redl interest of the method of this
article is not in the fitting of theoretical
distributions. In the theoretical simulation it is
possible to compare between the actual and
approximate distributions, but not so in practice.
It is precisely the reason that one does not know
the real underlying distribution of real life data,
one needs a flexible fitting method that could
allow us to assess different distribution fits and
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the stability of distribution fits under different
data representations by the histogram.

The following real life examples will
compare different cases where different methods
work well under different situations. It will also
use the Monte Carlo KS tests results to
demonstrate the quality of fit under the goodness
of fit objective.

Normal 0,1

Table 3: Monte Carlo KS goodness of fit tests results
over 1000 runs. A value close to 1000 indicates high
level of confidence of a good fit.

Log Nomnal 0,113

T5 Exponential 1 Gamma’,3

I\

012 3 4

Chi-Square 5

42024 42024

Weibull 5,2 Betall

ACTUAL =
RPRS =
RMFMKL

SR —

o
=

0012 3 4 00 04 08 00 04 08

Figure 1: Demonstrating the distribution fits of well
known statistical distributions.

Distribution RPRS | RMFMKL STAR
normal (0,1) 941 966 955
student(5) 943 940 960
exp(l) 945 905 944
gamma(5,3) 957 960 961
lognormal (O, 967 977 969
weibull(5,2) 964 968 952
beta(1,1) 970 963 970
beta(3,3) 966 966 959
f(6,25) 939 964 961
chisg(5) 962 966 958
Dataset used

The datasets used in here were supplied
by research works of Sabri Hassan and Victoria
Clout at School of Accountancy in Queensland
University of Technology, Australia. The dataset
by Sabri Hassan is based on 44 Australian
extractive industries firms, listed on the ASX
(Australian Stock Exchange) from 1998 to 2001.
The dataset used is based on the mean value of
each individual company over four years.
Market to Book values (sh.mth), transparency
(sh.transp), and profit (sh.profit) variables were
extracted and used in this demonstration. There
are 176 observations in this data set and the
goodness of fit test below will sample 160
observations from this data set and the fitted
distribution.

Victoria Clout’s data consisted of 361
US firms, listed on the S&P500. The selection
requirements were December year-end firms for
the 1977 to 1995 period. Similarly, the data used
is based on the mean values for each company
over the 12 years period. Market to Book ratio
(ve.mbr), Ratio of cash and marketable
securities over current assets (vc.flex), return on
assets (vc.roa) were used in this demonstration.
There are 143 observations in this data set and
the goodness of fit test below will sample 130
observations from this data set and the fitted
distribution.

In addition to financial data, geological
data (faithful) on the duration of 272 eruptions
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from the Old Faithful geyser in Yelowstone
National Park (Hardle, 1991) was also used.

The following examples are designed to
demonstrate the flexibility the new methods
which can fit adlternative, convincing
distributions other than suggested by the starship
method. It also designed to offer a balanced
view on some of the possible deficiencies of this
method in relation to satisfying the goodness of
fit tests.

Figure 2 is an example of graphical
over-fitting by the STAR method, and how the
use of default settings described in this article
appears to give a more adequate fit. The number
of classes to be optimized over is 12, using the
default calculations. The histogram shown in
Figure 2 is plotted using 100 classes. Using the
Monte Carlo KS test, the results are 0, 7 and 732
for RPRS, RMFMKL and STAR respectively.
This suggests that STAR is the best fit among
the three under the Monte Carlo KS test. It is
however possible to improve the Monte Carlo
KS test of the RPRS fit by increasing the
number of classesto befitted.

Example 1: sh.mtb

Data RPRS

00 005 010 015 020
00 005 010 015 020

-800 -600 -400 -200 0 200 -800 -600 -400 -200 0 200
sh.mtb sh.mtb

RMFMKL STAR

\
|

Ao

-800 -600 -400 -200 0 200 -800 -600 -400 -200 0 200

00 005 010 015 020
00 005 010 015 020

sh.mtb sh.mtb

Figure 2: Fitting of sh.mtb data using RPRS,
RMFMKL and STAR methods. The extreme scale is
due to an extreme outlier, which is retained for
illugrative purposes. For example, a certain process
may have a huge loss with a very small probability,
but it is nevertheless important to modd that
scenario.

Data RPRS

, 0.0 005 010 015 0.20
, 0.0 005 010 015 0.20

sh.mtb sh.mtb

RMFMKL STAR

0.0 005 010 015 0.20
0.0 005 010 015 0.20

-800 -600 -400 -200 0 200 -800 -600 -400 -200 0 200

sh.mtb sh.mtb

Figure 3: Fitting of sh.mtb data using RPRS,
RMFMKL and STAR methods using 150 classes.
This shows how it is possible to fit using different
histogram bin widths to improve the goodness of fit.

Figure 3 shows the result of such fit
graphically and the Monte Carlo KS results are
585, 561 and 749 for RPRS, RMFMKL and
STAR. A redl strength of the method developed
in this article is that it gives a range of plausible
fits which the goodness of fit could be assessed
objectively. For example, it can be considered
that the results in Figure 2 are less likely to be
thereal representation of the data than Figure 3.

Example 2: sh.trang, dternatives suggested by
RPRS, RMFMKL.:

RPRS —
RMFMKL
STAR

60
1

50
|

40
1

’ | MJ/II/I/ ¢ /
1 L ' I- | \ == W h
0.8 09 1

sh.transp

0
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35
3

RPRS —
RMFMKL
STAR

30
1

25
|

0.6 0.7 08 0.9 10

sh.transp

Figure 4: Figures showing fitting of sh.transp data
usng RPRS, RMFMKL and STAR, the first
histogram uses 100 classes while the second
histogram uses 50 classes.

The graphs in Figure 4 show two
histograms with 100 and 50 classes with the
default optimization classes to be optimized over
being 31. STAR failed to capture the upward
trend of the data. If it is desirable to reach the
peak of the histogram data with 100 classes, it is
possible to refit RPRS and RMFMKL over 100
classes, resulting in Figure 5. Using 50 or 100
classes will result in Monte Carlo KS test results
of 0, 0, and 300 for RPRS, RMFMKL and
STAR.

RPRS ——
RMFMKL
STR —

06 0.7 08 09 10

shiransp

Figure 5. Fgure showing dternative fitting of
sh.trangp sh.transp by RPRS and RMFMKL using
100 histogram classes.

This suggests that none of the methods
appear to work well in this case, as STAR
although the best out of the three in the Monte
Calo KS test, only redly can be said to
represent the data 3 times out of 10. In situation
like this, where none of the method appears to
work well, it is useful to explore other plausible
fits and conduct sensitivity analysis to examine
the impact on a particular analysis using
different distributions.
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10

RPRS ——

06 07 08 09 10

sh.transp

Figure 6. Figure showing dternative fitting of
sh.transp using 12 histogram classes.

Figure 6 shows how STAR captured a
different representation of the dataset; by
manually adjusting the classes of histograms to
12, the fit by STAR appears to be more
plausible. Alternative fits by RPRS and
RMFMKL using 12 classes appears to represent
the data well. This example highlights the
importance of allowing alternative methods,
since they can give different and possibly valid
representations to the same data set. The Monte
Carlo KS test results are 23, 2 and 290 for
RPRS, RMFMKL and STAR. It also shows the
flexibility of RPRS and RMFMKL which can
give different fits to the data set depending on
the number of classes specified. An additional
analysis showing the effect of changing number
of classes from 5 to 55 and the corresponding
RPRS and RMFMKL fits is shown in Figure 7.
All the Monte Carlo KS test results under each
of the class suggest 0, 0 and 300 for RPRS,
RMFMKL and STAR respectively. The graphs

show how different fits may be obtained by
varying the number of classes and it is possible
these may not change the result of the Monte
Carlo KS tests at all. The sharp spike exhibited
in Figure 7 for 15 classes is characteristic of
RPRS fits, as will be shown in more examples
below.

number of class = 5 number of class = 15 number of class = 25

RPRS =
RMFIKL

AR

RPRS ==
RVFMKL

AR e

uf ol |

06 07 08 09 10 06 07 08 09 10 06 07 08 09 10

shiransp shiransp shiransp

number of class = 35 number of class = 45 number of class = 55

RPRS = L — RPRS ==
RMFIKL RVFIKL RVFMKL

AR AR c— SR —

ekl LA - L.

06 07 08 09 10 06 07 08 09 10

T

06 07 08 09 10

shiransp shiransp shiransp

Figure 7: Figure showing dternative fitting of
sh.transp using different histogram classes.

Example 3: vc.leverage, similar results:

This example shows that consistent
results can often be obtained between different
methods. RPRS and RMFMKL used 89 classes
by default calculations in this case. The result is
shown in Figure 8 below with the histogram
exhibiting 100 classes. The Monte Carlo KS
tests suggest 882,887 and 945 for RPRS,
RMFMKL and STAR respectively. It is
normally the case that STAR has somewhat
higher goodness of fit score, owing to its fitting
objective.
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the data set. For example, foor RMFMKL, the
most plausible fits are from classes of 15 and 35.
v — This example at Table 4 also shows that the
RVFVKL method developed in this article can be as good
e as STAR method, in addition to offering
flexibility to provide convincing fits.

0.010 0.012 0.014

0.008

RPRS ——
RMFMKL
STR ——

0.004 0.006

0.002

‘lk 1
[ [ ! 1

-500 0 500 1000 1500 2000 2500

0.0

ve.leverage

RPRS, RMFMKL and STAR. All methods give 24
similar results.

Figure 8: Figure showing fitting of vc.roa data using

Example 4: vc.mbr S i !
RPRS and RMFMK L used 20 classes by 0 ! s ¢ g

default calculations in this optimization scheme. verly

Figure 9 shows a histogram with 100 classes,

and all methods give different representations to

the dataset. They are all valid representations as

suggested by Monte Carlo KS tests, with 929,
887 and 934 for RPRS, RMFMKL and STAR. A
striking feature is that RPRS is similar to

Figure 9: Figure showing fitting of vc.mbr data using
RPRS, RMFMKL and STAR. RPRS and RMFMKL
appear to represent the peak of the data better than

RMFMKL and they appear to capture the peak STAR.
of data better than the STAR method. An
additional analysis showing the effect of
changing number of classes from 5 to 55 and the
corresponding RPRS and RMFMKL fits is
shown in Figure 10. This example shows how
plausible fits can be gauged by using the method
described in this article. Table 4 shows the Classes
resulting Monte Carlo KS tests for different
number of classes and it can be used to as a
rough guide asto how credible certain fits are to

Table 4. Monte Carlo KS test for vc.mbr over different
number of classes

Method 5 15 25 35 45 55

RPRS 481 940 | 933 | 905| 908 | 873

RMFMKL 354 | 929 | 713| 932 | 812 | 778

STAR 932 | 930 | 923| 917 | 942 | 925
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number of class = 25

number of class = 15

number of class =5

- RPRS =
RUMFNKL
STAR

RPRS =
RNFMKL

AR e

0.0 02 04 06 08 1.0 12 1.4
0.0 02 04 06 08 1.0 12 1.4

01 2 3 4 5 01 2 3 4 5 01 2 3 4 5

wmbr vembr vembr

number of class = 45 number of class = 55

number of class = 35

bRy ——
[N R
S p—

0.0 0.2 04 0.6 08 1.0 12
00 02 04 06 08 1.0 12 1.4

Figure 10: Figure showing alternative fitting of
vc.mbr using different histogram classes.

Example 5: faithful, bimodal data, splitting fits by
STAR, RPS and RMFMKL.:

This last example shows cases where it
may be difficult to fit the data adequately when
one encounters a bimodal shaped data. In such
cases, the data can be divided into two with two
different distributions fitted on each side
Problem can arise when the end points do not
match as appeared to be possible with the STAR
method in this case. However, as shown in
Figure 11, this can be easily corrected for
example, by setting the optimization scheme to
only include distributions that have maximum
values less or equal to 3 for the distribution on
the Ieft hand side, and the distribution to have
minimum values bigger or equal to 3 on theright
hand side.

The original default number of classes
was 52 on the RHS of Figure 11 and it does not
satisfy the Monte Carlo KS test well, with 614
and 187 for RPRS and RMFMKL. Instead of
using the default class calculation, the number of
classes was manually adjusted to 20 and this
result in Monte Carlo KS test of 855, 873 and
890 for RPRS, RMFMKL and STAR. On the
LHS the default setting of 15 classes satisfy the

Monte Carlo KS test well, resulting in 921, 927
and 917 for RPRS, RMFMKL and STAR and
very similar fits. Figure 11 shows three plausible
aternative fits and it is possible some data set
may require a mixture of RS and FMKL GD.
The aternative fit by KDE is also provided in
Figure 12 for comparison purposes. Figure 12
shows two different fits using KDE. However,
the KDE fit, in an attempt to reach the more
extreme points of the histogram became less
smooth. This rugged appearance will not occur
from using generalized lambda distributions.

Old Faithful Geyser

RPRS —
RMFMKL
STAR

eruptions

Figure 11: Figure showing fitting of eruptions data
using RPRS, RMFMKL and STAR and the use of
splitting techniques in fitting bi-moda shaped data.
The values below 3 are fitted first and the values
above 3 arefitted | ater.

2.0

15

1.0

05

N

o CAUMBVA < <A AL A T

I L [ I T I .
15 20 25 30 35 40 45 50 55

eruptions

Figure 12: Graph showing two different KDE fits for
the eruptions data.
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Application of fitting distributions to data using
GiD, and a comparison to Kernel Density
Estimation method

The use of RPRS or RMFMKL can help
users to model a wide variety of distributions as
well as acting as a smoothing device with the
flexibility of increasing or decreasing levels of
details of the data. Another method that allows
for density estimation is Kerne Density
Estimation (KDE) (Silverman 1985). This is a
nonparametric method of estimating the
distribution of the data and can often result in a
rather rugged appearance compared to the
smooth fits from using Gi.D. Another advantage
of using Gi.D is that the parametric form of the
function is known. Consequently, mathematical
analysis on the function is possible In
considering re-sampling from the modeled
distributions for simulation purposes, both KDE
and G).D could be used.

Simulation from KDE and GALD

Simulation from KDE is a simple
exercise. KDE calculations give k sets of
(X1,Y1)... (XkYx) co-ordinates which span the
distribution of the data. For each consecutive set
of points, the area under the line is a trapezium.
Let thisareabet, t,,... ty1.

Assume one want to sample n numbers
from the KDE distribution. For each of the
interval i=1,2,3,... k-1, cdculate nt, and
generate nt; numbers from a uniform distribution
on the interval, repeating the process for all k-1
intervals.

Simulation from GiD simply requires
generating n uniform distribution over [0, 1] and
substituting the result into Expression (1) for the
RS GiD and Expressions (3) for the FMKL
GAD.

Shortcomings of the RPRS AND RMFMKL

All methodologies  have  ther
shortcomings, and the method devised hereis no
exception. The design of the RPRS and
RMFMKL can suffer from the following
deficiencies.

1. Different resultsin different runs for the
same settings. RPRS and RMFMKL is
based on re-sampling methods over the
specified range of initial values, hence
different runs will result in different

initial values being chosen. This is the
reason sampling is based on scrambled
quasi random sampling (Owen 1995;
Hong & Hickernell, 2002) available
from the Splus beta resample library, so
that the values span evenly throughout
the ranges each time. In most cases
there are no dramatic changes between
each run; however situations do occur
when the one run results in a better fit
than other runs. This problem can be
minimized by increasing the number of
values to be sampled in the region. For
example, if one million points were
chosen over the span of [-1.5, 1.5] then
dramatic changes in the result between
different runs would beless likely.

Optimization method converges falsely
or do not converge. This is a problem
associated  with  all numerical
optimization schemes, rather than
rdated to this method directly. The
program written for RPRS and
RMFMKL allows for the quasi-Newton
method, conjugate gradients method
(Fletcher & Reeves, 1964), the Nelder-
Mead algorithm (Nelder & Mead, 1965)
and SANN (Belide 1992). Hence if one
optimization method fails, the other
methods can be used instead. So far the
use of Neder-Mead algorithm has
proven to be effective in the cases
examined here and no case of non
convergence have occurred in the
application of this  optimization
procedure.

Subjective choice of the number of
classes required. Considerable
difficulties can arise when choosing
number of classes for optimization.
While this flexibility is intended, it also
may allow data analysts to manipulate
the results and choose a method that
appears to suit their needs, rather than
one that is the most representative of the
data. This deficiency does not affect the
starship method, which only allows one
optimal output based on the goodness of
fit measure.
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Conclusion

The exposition in the result section shows the
methods developed in this article can offer good
aternatives of fitting distribution to data in
terms of satisfying Monte Carlo KS tests. While
the use of RPRS and RMFMKL offers great
flexibility, it also offers rooms for subjective
bias in selecting the adequate fit. The use of
goodness of fit statistics, however, can help the
user to determine the likelihood of a certain
distribution fit in the absence of expert
knowledge of the underlying data set.

In some situations, where the goodness
of fit statistics cannot be adequatdly satisfied the
user could use the methods developed in this
article to conduct sensitivity analysis on the
impact of results using different distributions.
Lastly, improvement on the current RPRS and
RMFMKL is also possible by at least two ways,
by either improving the optimization algorithm
or set an algorithm to quickly find plausible
initial values.
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Testing Goodness Of Fit Of The Geometric Distribution:
An Application To Human Fecundability Data

Sudhir R. Paul
Department of Mathematics and Statistics
University of Windsor

A measure of reproduction in human fecundability studies is the number of menstrual cycles required to
achieve pregnancy which is assumed to follow a geometric distribution with parameter p. Tests of
heterogeneity in the fecundability data through goodness of fit tests of the geometric distribution are
developed, along with a likelihood ratio test statistic and a score test statistic. Simulations show both are
liberal, and empirical level of the likelihood ratio statistic is larger than that of the score test statistic. A
power comparison shows that the likelihood ratio test has a power advantage. A bootstrap p-value

procedure using the likelihood ratio statistic is proposed.

Key words. Beta-geometric distribution; bootstrap p-value; fecundability data; geometric distribution;

likelihood ratio test; score test.

Introduction

The geometric distribution is important in many
real life data analyzes. For example in
fecundability studies (Weinberg & Gladen,
1986), the number of cycles required to achieve
pregnancy would be distributed as a geometric
distribution with parameter p. However, in red
life data situations, the actual variation of the
data may exceed that of the geometric
distribution, as the parameter p may not remain
constant in the course of the experiment. It is
then useful to assume that the parameter p varies
from observation to observation. One can
assume one of many continuous distributions for
p in the parameter space O<p<1. But, the most
convenient and most sensible distribution for p
is the beta distribution, because it is the natural
conjugate prior distribution in the Bayesian
sense.

Paul R. Sudhir is University Professor, Professor
of Statistics, and Chair, Graduate Studies. His
research interests are in correlated data, frailty
models, generalized linear models, categorical
data analysis, zero-inflated and over-dispersed
count data regression models, & dose-response
modeling. Email him at smjp@uwindsor.ca.
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It also produces a convenient mixed distribution,
namely, the beta-geometric distribution. The
parameters of this mixed distribution have
practical interpretation. In some other analogous
applications, such as in Toxicology, the beta-
binomial distribution arises as a beta mixture of
the binomial distribution (Weil, 1970; Williams,
1975; Crowder, 1978; Otake & Prentice, 1984).
It is assumed that Y |p ~geometric

distribution. Let g=1-p. Then, the
probability function of Y is

P(Y¥=yla)=g""p.

In human reproduction the random
variable Y may be the number of menstrual
cycles required for conception in which the
parameter p may be interpreted as the pre-cycle
conception probability or a measure of
fecundability (Weinberg & Gladen, 1986). It is
assumed that the parameter p isfixed for a given
couple, but across couples it varies according to
some unspecified underlying distribution which
is assumed to be beta with probability density
function given by

a—l(l_ p)ﬂ—l
B(a, f)

f(plas B) =L 0<p<l,
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where

3 I'a+f)
B = )

is the beta function and where 77(a) is the
gamma function:

r@@)= j:xa-le—xdx.

The mean and variance of the beta random
o

o+ [
respectively. The

and

variable p are M=

2_ of
(o+ ,B)Z(a+,8+1)

marginal distribution of Y, then, is
P(Y =)
1
=] POY=ylp) f(pla

1 1 a(1_ y+p-2
5D [ p(@-p)y o

_Bla+ly+5-9)
Bla.s)

o

This distribution is known as the beta-
geometric  distribution.  In the  human
reproduction literature P(Y=y) is the probability
that conception occurs at y for a randomly
selected couple. The beta-geometric distribution
can be written in terms of the parameter
r=olla+ B)and €=1/(a+ ), where p is
interpreted as the mean parameter and 6 as the
shape parameter (Weinberg & Gladen, 1986),
which is given in what follows.

7 [T-{(L-7)+16)

P(Y =y |n)=
(V=ylm J7)5{1+16}

The distribution has mean 1;6; and variance
7z' —_

r(l-7)(1-6)

(r-0)2(n-20)
corresponds to the geometric distribution with

Obviously, =0

1 _ 1-
mean — and variance ——.

p p2

The purpose of this article is to develop
tests of goodness of fit of the geometric
distribution  against the  beta-geometric
distribution. A score test and a likelihood ratio
test are developed. The score test (Rao, 1947) is
a special case of the more general C(«r) test
(Neyman, 1959) in which the nuisance
parameters are replaced by their maximum

likelihood estimates which are +/N consistent
estimates (N=number of observations used in
estimating the parameters) . The score or the
C(a) class of tests (i) often maintain, at least
approximately, a preassigned level of
significance (Bartoo & Puri, 1967), (ii) require
estimates of the parameters only under the null
hypothesis, and (iii) often produce statistics
which are simpleto calculate.

These tests are robust in the sense that
their optimality remain true whatever the form
of the distribution assumed for the data under
the alternative hypothesis - a property called
robustness of optimality by Neyman and Scott
(1966). The C( ¢ ) test has been shown by many
authors to be asymptotically equivalent to the
likelihood ratio test and to the Wald test (Moran,
1970; Cox & Hinkley, 1974). Potential
drawbacks to the use of the likelihood ratio and
Wald tests include the fact that both require
estimates of the parameters under the alternative
hypotheses and often show liberal or
conservative behaviour. Examples of this may
befoundin Barnwal & Paul (1988), Paul (1989),
Paul (1996), Paul & Banerjee (1998), and Paul
and Islam (1995).

In the present context, although the
score test statistic has a very simple form, both
the score test and the likelihood ratio test have
been found, by simulation, to be liberal. A
power comparison, using the empirical quantiles
derived from the corresponding size simulation
to ensure that each test had approximately the
nominal size, has been conducted. This
comparison shows that the likelihood ratio test
has power advantage over the score test. A
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bootstrap likelihood ratio test is therefore
proposed to test the fit of a geometric model
against the over-dispersed geometric model. The
bootstrap  likelihood ratio test provides
approximately correct p-value (Davison &
Hinkley, 1998). McLachlan (1987) uses the
bootstrap likelihood ratio test to test for the
number of components in mixture of normal
distributions. McL achlan notes that the bootstrap
and the true null distribution of the likelihood
ratio statistics are the same. The bootstrap
likelihood ratio test was also used by others in
similar contexts (Aitkin, Anderson & Hinde,
1981; Karlis & Xekalaki, 1999).

For the situation in which the data are
found to be heterogeneous, maximum likelihood
estimates of the parameters of the beta-
geometric distribution and the elements of the
exact Fisher information matrix are obtained.
Two sets of data including one on human
fecundability study from Weinberg & Gladen
(1986) are analyzed.

Tests of Goodness of Fit

Estimation of the Parameters
Suppose data are available on n

individuals as yj,i=1,---,n. The maximum
likelihood estimate of the parameter p of the
geometric  distribution is  p=1/Y, where

y=2..,¥i/n. Thelikelihood function for

the data based on the beta-geometric distribution
isgivenas

n
n

I -7+ (116}
[T 1+ (-1}

and the corresponding log-likelihood can be
written as

log{1- 7+ (r —1)6}

Zlog{1+ (r—

n Yi -1

I =nlog(z)+> | Y

i=1| r=1

)6} |.
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The maximum likelihood estimates 7 and @ of
the parameters 7 and @ are obtained by solving
the maximum likelihood estimating equations
ol
=0
or

solving

and %—O simultaneously. That is, by

yi—1

2

r=1

)

1-7+(r-18 r11+(r_1)9} 0

2

g

simultaneously subject to the constraints
O< p<land#>0. Note that there is no
closed form solution for these equations. So
these equations are to be solved using a
numerical procedure such as the Newton-
Raphson method or a numerical subroutine, such
asthe IMSL subroutine ZBRENT or NEQNF.

The Likelihood Ratio Test
The maximized log-likelihood under the
geometric distribution is

lo =nlog(p)+n(y—-1)log(1- p) D)

and that under the beta-geometric distribution is

[ st 7+ -0
l, =nlog(7)+ Z_Z|og{1+(r—1)9}

i=1| r=1

Then, the likelihood ratio statistic to test
for Hp:6=0 against
Ha:0>0isLR=2(I; —1p). Under standard
conditions, the asymptotic null distribution of
this likelihood ratio statistic would be chi-square
with 1 degree of freedom. However, since the
parameter @ is necessarily nonnegative, thereis
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a boundary problem and the regular asymptotic
likelihood theory breaks down in this situation.
In the course of a general discussion of
asymptotic properties of likelihood procedures
when some of the parameters are on the
boundary, Sdf & Liang (1987) derive a
representation for the asymptotic distribution of
the likelihood ratio statistic. Since the parameter

value under Hg is on the boundary of the

parameter space it can be easily seen from the
results of Sef & Liang (1987) that the correct
distribution of the LR test is a 50:50 mixture of
zero and chi-square with 1 degree of freedom
provided O< p<1.

The Score Test
Define

ol
Szﬁlezo’

27l 27l
l e =B =5 loco |l ae = B === loo |
74 (87[2 |9—0j 74 (87[8¢ |90j

and

24
l oo = E[W |9—0j-

Then, a score test statistic for testing Hp: 8 =0
against Ha:60>0 is given by

Z=S/,/(l —12,/1 ). If the nuisance
00 'mp! '

parameter 7 is replaced by its maximum
likelihood estimate under the null hypothesis,
then, asymptatically, as n — oo, the distribution
of Z is standard normal. Note, under the null
hypothesis 7 becomes p. Then, the following

is obtained

1 0 yi—1 n vy
S=—> > (r-)->>(r-)=0, (2
—Pisir o i—1r—1

| 2z =K p° (A= P)},| zp =0/ p?, and

|~ M2-5p+p°(4-p)-(p-D(p-21-p)’}
" {Pa-p%

It can be shown that
Var(S) =1 4y 154/ 7 =n/ p?. Thus, the
score test statistic for testing
Ho:0=0againstHp :0>0 is gven by

Z=S/,/(n/ p2). If pis replaced by p,

where P is the maximum likelihood estimate of
the parameter p of the geometric distribution, in
Z, then, under the null hypothesis Hg: 6 =0,
the statistic Z will have an asymptotic standard
normal distribution. Sincethis is a one-sided test
the null hypothesis is rejected at 100(1- )%

level of significanceif Z > z,,where, z isthe

100(1—-t)% point of the standard normal
distribution.

Simulations

A simulation experiment was conducted
to study size properties of the likelihood ratio
statistic LR and the score test statistic Z. Data
have been generated from the geometric
distribution with values of the geometric
parameter p=.1,.2,.3,.4,.5 sample sizes,
n =10, 20, 50, and « =.05, .10. Each
simulation experiment was based on 5000
replications. Empirical size values are given in
Tablel.
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Table 1: Empirical sizes, in percent, for Hy of scoretest statistics Z and the likelihood ratio statistic

LR

p

n a Statistics 0.1 0.2 0.3 0.4 0.5
10 0.05 Z 8.0 6.9 7.2 6.5 6.6
LR 12.0 10.6 10.6 10.5 10.0

LR1 12.0 10.6 10.6 10.5 10.0

20 Z 11.2 10.2 10.2 115 13.3
LR 13.0 114 114 12.7 15.0

LR1 12.0 10.6 10.6 10.5 10.0

50 Z 13.3 12.6 12.3 138 16.4
LR 14.2 133 13.2 14.6 16.6

LR1 12.0 10.6 10.6 10.5 10.0

100 Z 13.3 12.6 12.3 13.8 16.4
LR 14.2 13.3 13.2 14.6 16.6

LR1 12.0 10.6 10.6 10.5 10.0

500 Z 13.3 12.6 12.3 13.8 16.4
LR 14.2 13.3 13.2 14.6 16.6

LR1 12.0 10.6 10.6 10.5 10.0

10 0.10 Z 14.0 12.6 124 12.8 12.8
LR 19.0 171 16.6 18.0 18.3

LR1 12.0 10.6 10.6 10.5 10.0

20 Z 17.9 16.7 16.6 17.9 21.8
LR 20.0 18.2 18.2 19.7 23.0

LR1 12.0 10.6 10.6 10.5 10.0

50 Z 21.6 20.2 19.9 21.9 255
LR 21.2 20.6 20.0 225 25.6

LR1 12.0 10.6 10.6 10.5 10.0

100 Z 13.3 12.6 12.3 13.8 16.4
LR 14.2 13.3 13.2 14.6 16.6

LR1 12.0 10.6 10.6 10.5 10.0

500 Z 13.3 12.6 12.3 13.8 16.4
LR 14.2 13.3 13.2 14.6 16.6

LR1 12.0 10.6 10.6 10.5 10.0
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Table 2: Empirical powers, in percent, for Hy , at & = 0.05, of scoretest statistics Z and the
likelihood ratio statistic LR. The extra-geometric variation is .01(.05)(.1)

p
n  Staistics 0.1 0.3 05

10 Z 6(32)(67) 8(20)(39)  5(9)(15)
LR 7(38)(82) 9(25)(52)  5(10)(18)

20 z 11(53)(88) 22(49)(70)  10(19)(39)
LR 10(57)(96) 25(64)(86)  12(24)(46)

50 z 15(81)(99) 53(93)(97)  8(38)(70)
LR 16(84)(99) 54(97)(99) 13(44)(81)

From Table 1 it is seen that both the
score test statistic and the likelihood ratio
statistic are liberal. Empirical level of the
likelihood ratio statistic is larger than that of the
score test statistic. Also, empirical level
increases as the sample size increases. A mean-
variance correction of the score test statistic
using Taylor series expansion (Paul, 1996)
produces empirical levels that are too small
compared with the nominal levels.

A powe comparison of the two
statistics was also conducted. The empirical 95%
quantiles derived from the corresponding size
simulation have been used to ensure that each
test had approximately the nominal size of 0.05.
Empirical quantiles were calculated based on
20,000 replications and empirical power
calculations were based on 1000 replications.
Empirical power values are given in Table 2.
The likelihood ratio statistic, in general, shows
power advantage, over the scoretest.

The Bootstrap Goodness of Fit Test

As seen from the simulation results in
Section 3, both the likelihood ratio test and the
test based on the score test statistic are liberal.
However, the likelihood ratio test has some
power advantage over the score test. So,

following Davison & Hinkley (1997), a
bootstrap test of the null hypothesis

Hg:6=0against H, : 6 >0 is proposed. The
bootstrap likelihood ratio test procedure
proceeds according to the following steps:

Step 1. Obtain pof the parameter pof the

geometric distribution from the data. Calculate
the value of the likelihood ratio statistic LR, say
LRo, from the data.

Step 2. Generate n observations from the fitted
null distribution, i.e., the geometric distribution
with parameter p=p and calculate the

likelihood ratio statistic LR .

Step 3. Repeat step 2 B times obtaining B values
of the bootstrap likelihood ratio statistic, say,

LRY)  b=1,2,..B.

Step 4. Egtimate the bootstrap p-value by

. 1#LRDo > LRy}
Pboot = Bil -

This gives the level at which to reect or not to
rgect Hp. A typical value of B is 1000.
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Elements of the Expected Fisher Information
Matrix of the Beta-geometric Distribution

In this section, the elements of the
expected Fisher Information matrix for the
estimates of the parameters of the beta-
geometric  distribution are derived. The
calculations are quite involved, so the details
were omitted. The exact expressions aregivenin
what follows.

2 oo
|11=E(ﬁJ=n/ﬂ2+nZ P(er)

on? Sa-r+(r-262

o ~92 o (r=2)P(Y2r)
BTN onae ) Ega-r+(r-20)2

and

(r—=2)%P(Y 1)

(-0 | & {@-7+(r-2)6)°
'”‘E[awj_” 2

: _Zz {1+ (r —2)6)?

Calculations of the above terms do not
pose any difficulty if e intheupper limit of the
summation is replaced by a sufficiently large
number, say, 5000. Thus, the estimated variance

of 7and @ are

Va’(ji'):?ﬂ2
lulzz_llz )
and
. )
Va‘(9) =+

2
11'22 - |12 )

respectively, where IA11, IA12 ,andIA22 are estimates
of lqq,112,andly, respectively obtained by

replacing the parameter p by its maximum
likelihood estimate.

= (r=12P(Y =1) |
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Examples

Example 1: The data, given in the Table 3 from
Weinberg & Gladden (1986), refer to times,
taken by couples that were attempting to
conceive, until pregnancy results.

Table 3: Data from Weinberg and Gladen (1986)
on the number of menstrual cycles to pregnancy

Cycles Number of
Women
227
123
72
42
21
31
11
14
6
4
7
28

e
NEhEBowo~v~ourwNhrk

The data were obtained retrospectively,
starting from a pregnancy in each case
Wenberg & Gladen (1986) analyzed
fecundability data for a total of 586 women,
contributing a total of 1844 cycles. See
Weinberg & Gladen (1986) for more details
regarding the data. For these data, the data for 12
or more cycles has been combined.

An estimate of the parameter p of the
geometric distribution for these data is
p=.3177874. An estimate of the variance is

(1- p)/ p>= 6.76. The observed variance,
however, is 8.68 which is much larger than the
variance predicted by the geometric distribution.
This indicates that an over-dispersed geometric
distribution may fit the data better than the
geometric distribution. Now, the value of the
likelihood ratio statistic is LR=14.97 with a p-
value (using the 50:50 mixture of 0 and chi-
square with 1 degree of freedom)=0.00000006
and the bootstrap p-value is 0.002. In calculating
the bootstrap p-value B=500 have been used.
The data shows very strong evidence in favor of
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the beta-geometric distribution. Note that in this
example the p-value of the likelihood ratio
statistic is much smaller than the corresponding
bootstrap p-value. This is in line with the
simulation results in Section 3 that the
likelihood ratio test is liberal.

The maximum likelihood estimates of
the parameters 7 and @ of the beta-geometric

distribution are 7 =0.36596 and @ =0.0745 and

the standard errors of the estimates 7 and é are
.0162 and .0204 respectively.

Example 2: In example 1 the data produce a
value of 14.97 for the likelihood ratio statistic.
This is rather large and therefore it is not
surprising that both the ordinary likelihood ratio
test and the bootstrap likelihood ratio test
provide same conclusion. Moreover, the
observed variance is about 28% larger than what
is predicted by the geometric distribution. Thus,
the data given in Table 4 was produced; it was
obtained by modifying the data set in Table 3.

Table 4: Modified data of Table 3 on the number
of menstrual cycles to pregnancy

Cycles Number of
Women
180
123
72
42
21
31
11
14
6
4
7
18

e
NEhEBoo~v~ourwNnrk

For these data an estimate of the
variance predicted by the geometric distribution
is (1-p)/ p°= 6.88 and the corresponding
observed variance is 7.72. These two variances
are much closer than the two corresponding
variances for the data in Table 3. This indicates
that the geometric distribution might fit these

data well. For these data the value of the
likelihood ratio statistic is LR=2.51 with a p-
value (using the 50:50 mixture of 0 and chi-
square with 1 degree of freedom) = 0.025 and
the bootstrap p-value is 0.14. For these data, the
bootstrap likelihood ratio procedure shows that
the geometric distribution fits the data well at
5% level of significance which is contradicted
by the ordinary likelihood ratio test. The reason
for thisis that the likelihood ratio test isliberal.
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Little research has been done on sample size and power analysis under repeated measures design. With
detailed derivation, we have shown sample size calculation and power analysis equations for time-
averaged difference to allow unequal sample sizes between two groups for both continuous and binary
measures and explored the relative importance of number of unique subjects and number of repeated
measurements within each subject on statistical power through simulation.
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Introduction

Sample size calculation and power analysis are
essentials of a statistical design in studies. As
statistical  significance is likely the desired
results of investigators, proper sample size and
sufficient statistical power are of primary
importance of a study design (Cohen, 1988).
Although a larger sample size yields higher
power, one cannot have as large a sample size as
ohe wants, since sample subjects are not free and
the resources to recruit subjects are always
limited. As aresult, a good statistical design that
can estimate the needed sample size to detect a
desired effect size with sufficient power will be
critical for the success of a study.

Some research has been done for sample
size calculation and power analysis regarding
different designs with cross-sectional data, such
as difference between correlations, sign-test
(Dixon & Massey, 1969), difference between
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means with two group t-test or analysis of
variance (ANOVA) (Machin, Campbell, Fayers,
& Pinol, 1997), contingence tables (Agresti,
1996), difference of proportions between two

groups, F-test (Scheffé 1959), multiple
regressions and logistic regressions

(Whittemore, 1981; Hsieh et al., 1998).

However, little research has been done
about sample size calculation and power
analysis with repeated measures design,
especially for unbalanced designs, which is
widely used in biological, medical, health
services research and other fields. For example,
in research for diseases with low incidence and
prevaence, designs where the non-diseased
group is much larger than the diseased group to
ensure a sufficient large sample size for
multivariate modeling.

Unbalanced repeated measures
situations also emerge in cluster randomized
trials (Eldridge et al., 2001). Diggle et al. (1994)
proposed a basic sample size calculation formula
for time-averaged difference (TAD) with both
continuous and binary outcome measures for the
situation only with equal sample size in each
group. Fitzmaurice et al. (2004) proposed a two-
stage approach for sample size and power
analyses of change in mean response over time
for both continuous and binary outcomes.

Statistical software and routines have
made sampl e size calculation and power analysis
process much easier and flexible for researchers.
With statistical software, one can efficiently
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examine designs with different parameters and
select the best design to fit the need of aresearch
project. Currently, there are many types of
statistical software that can conduct sample size
and power analyses. These include the general
purpose software which contain power analysis
routines such as: NCSS (NCSS, 2002), SPSS
(SPSS Inc., 1999), and STATA (STATA Press,
2003); general purpose software that can be used
to calculate power (i.e, contain non-central
distribution or simulation purpose) such as. SAS
(SAS Ingtitute Inc., 1999), S-Plus (MathSoft,
1999), and XLISP-STAT (Wiley, 1990); and
stand-alone power analysis software such as.
NCSS-PASS 2002 (NCSS, 2002), nQuery
advisor (Statistical Solutions, 2000), and
PowerPack (Length, 1987). A comprehensive
list  of sample size and  power
analysis software can be found at
http://www.insp.mx/dinf/stat_list.html.

Although a lot of software can conduct
sample size and power analyses, they are
basically al for data with different cross-
sectional designs. The only software that can
conduct sample size and power analyses with
repeated measures design is NCC-PASS 2002,
which handles power analysis for repeated
measures ANOVA design. Thereis, however, no
software available for TAD with repeated
measures design.

In this article, a formula has been
developed for sample size calculation and power
analysis of TAD for both continuous and binary
measures to allow unequal sample size between
groups. In addition, the relative impact and
equivalence of number of subjects and the
number of repeated measures from each subject
on statistical power was examined. Finaly, a
unique statistical softwarefor conducting sample
size and power analysis for TAD was created.

Methodol ogy

Sample size Calculation and Power Analysis
Sample size calculation and power
analysis are usually done through statistical
testing of the difference under a specific design
when the null or aternative hypothesis is true.
Although there are many factors that influence
sample size and power of a design, the essential
factors that have direct impact on sample size

and statistical power aretypel error (H ,may be
rgected when it is true and its probability is
denoted by «), type Il eror (Hymay be

accepted when it is false and its probability is
denoted by f), effect size (difference to be

tested and it is usually denoted by A) and
variation of the outcome measure of each group
(for example, standard deviation ). Sample
size and power are functions of these factors.
Sample size and power analysis formulas link all
of them together. For example, the sample size
calculation formula for a two group mean
comparison can be written as a function of the
abovefactors:

0, = (7 + 20 ) (A )2 1A+ 1Y),

where n, is the sample size for group2, Sisthe
common standard deviation of the two groups,
r O<r <1 isaparameter that controls the ratio
between the sample sizes of group 1 and group 2

(e, n=n,/r). z_, isthenormal deviate for

the desired power, z__,, isthe normal deviate

for the significance level (two-sided test) and
A isthedifferenceto be detected.

For given levels of atypel error, atype
Il error and an effect size sample size and
statistical power are positively related: the larger
the sample size, the higher the statistical power.
Type | eror is negatively related to sample size:
the smaller Type | error, the larger sample size
that is required to detect the effect size for a
given statistical power. The larger type Il error,
the smaller power and thus one will need smaller
sample size to detect a given effect size.

Repeated M easures Design
Time-Averaged Difference (TAD)

In many biomedical or clinical studies,
researchers use the experimental design that
takes multiple measurements on the same
subjects over time or under different conditions.
By using this kind of repeated measures design,
trestment effects can be measured on “units’
that are similar and precision can be determined
by variation within same subject. Although the
analyses become more complicated because

www.manaraa.com



436 SAMPLE SIZE CALCULATION AND POWER ANALY SIS

measurements from the same individual are no
longer independent, the repeated measures
design can avoid the bias from a single snapshot
and is very popular in biological and medical
research.

Suppose there are two groups, group 1
and group 2, and one would like to compare the
means of an outcome, which could vary from
time to time or under different situations
between the two groups. With cross-sectional
design, one will directly compare the means of
the outcome between the groups with one single
measure from each subject, which may not
reflect the true value of theindividual.

For example it is known that an
individual’s blood pressure is sensitive to many
temporary factors, such as mood, the amount of
time slept the night before and the degree of
physical exercise/movement right before taking
the measurement. This is why the mean blood
pressure of a patient is always examined from
multiple measurements to determine his/her true
blood pressure level. If only a single blood
measurement is taken from each individual, then
comparing mean blood pressure between two
groups could be invalid as there is large
variation among the individual measures for a
given patient. To increase precision, the best
way to conduct this is to obtain multiple
measurements from each individua and to
compare the time-averaged difference between
the two groups (Diggle, 1994).

Notations
Suppose that there is a measurement for

eachindividua Y, , where g =1,2 indicating
which group, i=1...m (with k=12)
indicating the number of individuals in each
group, and j =1,...,n indicating the number of

repeated measures from each individual subject.
Then TAD will be defined as:

M n m n
d= ((Ejz:l)’mj))/n* I’T]))— ((Ejz:lyzm))/n* mz) .

The following notations will be used to define
the different quantities used in sample size
calculation and power analysis for TAD:

1. o:Typel error rate

2. [:Typell eror rate

3. d: Smallest meaningful TAD
difference to be detected

4. o : Measurement deviation (assumeto
be equal for the two groups)

5. n: Number of repeated observations per
subject

6. p: Correation between measures
within anindividual

7. m;, m,: Number of subjectsin group 1
and group 2, respectively

8. M =m +m,: Total number of subjects
in the design

9. z=m,/M : Proportion of number of
subjects within group 1 (7 = 0.5gives
equal samplesize.

m =zaM,m, = (1-7)M )

Using the above notations, the next two sections
will derive the sample size calculation formula
for TAD between two groups with the flexibility
of possible unequal sample size from each group
for continuous and binary  measures,
respectively.

Continuous responses

Consider the problem of comparing
the time-averaged difference of a continuous
response between two groups. Supposed the
model is of thefollowing form:

Yij ::B0+151X+8ij1 i=1---,M; ] =1---n

where x indicates the treatment assignment,
x=1for group 1 and x=0for group 2. To
test if the time-averaged difference is zero is

equivalenttotest H,: 3, =0vs. H,: 3, #0.

Without showing details of derivation, Diggle
et al. (1994) have shown the sample sizein the
situation when group 1 and group 2 have the
same sample size. With step by step
derivation, here it is shown generally to the
cases that the sample sizes of two groups
could be unequal. Assume that the within
subject correlation
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Corr(y;,yy)=p forany j=Kk
and
Var (y;) =07.
Without lost generality, it is assumed that the

smallest meaningful difference d >0, and It
the power of thetest be 1— 4. Under H,:

A,
z= N(02)
=(f)

The above model can be written in matrix form:
=X'f+¢
where
1
X, =|. .|forgroupl
or

X, =|. . |forgroup?2

and

The variance-covariance matrix (compound
Symmetry) can be written as

1L p - p
s_of? 1 P

The estimates of regression coefficients of such
amode are

= [Z X;'TX Jl[z X; '2—1\4} :

and the estimates of variance estimate are

var(f) =az[z xi'z-lxij_

_ o1+ (n-Dp] {mz —ml}
n{(my+my)m, -] —m m,+m,

By definition, it is known that

Power =1- 4
=PR(rgedingH, [H)) =P (z>27_,, |H)

S0,
Poner
TR
~R( Seé 520 M) +R( SE(% 2 IH)

itisssunedthet d >0, thardfare thessoord tamean
keingored

o A-d d
I:T( g&)>21—05/2 g&) ||_h)
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Therefore,
- 21 — 21 _L
7 ()
or
d2
+ 2 = -
(Zl—aIZ Zl—ﬁ) Var(ﬁl)

__n(m +m,)m, —ny]d®
c’[1+(n-1)p](m +m,)

In other words, given powerl— /3, the total
sample size needed to detect the smallest
meaningful difference d > Ois

M = (Zgso +25)°[1+(n-D)p]S*
- n(l—z—7x?)d?

: D)

where s is the estimate of standard deviation.
When m =m,=m, the above formula

becomes the same as that shown in Diggle et al.
(1994) for balanced design:

Azt 2,) Bt (0-DpIS

m
nd?

(2

Given samplesize,

d
L p ==L g2t —=C

se(,)
\/nM Q- -n?)-d

J1I+(n=-1)p -s

Therefore, the power of the test can be written
as.

==L 40t

Powerl-f=1-d 7 ,,

nMl-z—7)-d -
JIH(M-Dp-s

Binary responses

Suppose a binary response variable is to
be compared between group land group 2.
Assume

PI’(Y” 1) :{ P, ?n group 1
p2 in group 2

To test if the proportions of responses
being lof the two groups are equal, the
following model is considered

E(Yij |)§j):Pr(Yij zll)(ij):ﬂo—'_ﬂl)gj’
i=1-,M;j=1--n

where x indicates the treatment assignment,
x=1for group 1 and x = 0for group 2. this test

will be equivalent to test H,:5,=0 vs

H,:B,#0. Without showing the details,

Diggle et a (1994) have shown the sample size
in the situation when group 1 and group 2 have
the same sample size With step by step
derivation, here it is generalized to the case that
the sample size could be different between the
two groups.

Suppose d=p,—-p,>0 and the
power of the test is 1- /4. Under H,, the
estimateof o is
62=mm+mm@@_mm+mm1

m, + m, m, + m,

0

— (ml p, + M, pz)(mlch + szz)
m; +m,

where g, =1-p, and g, =1-p,. Under H,,
the estimate of &2 is

m,

2
! m, + m,

m,
P4y +
m, + m,

m, P9, + M, P,4,
m, + m,

o

P24,

The variance estimator of ,31 is
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o’(m,+m,)[1+(n-1)p]
n[(ml + mz)mz - m12]

var( Bl) =

’

and it is denoted as 7
BiH,

when replacing o by

when replacing
o? by 62, and G,

0! BiH
62.

The power of thetest is:

Power

A

A

~

=Px(

) > Zi—a/Z I Hl)

~R( ’8£ >7 .| H) becaseweasumed >0
=A)

3 —d d
A, %11

BHo BHo
A-d G4, d
=R(———=—>Z2 5 |H)
B BHo B.Ho

B-d O d
N SR 2 IH,)
O. H O.

A

A %% fn
Therefore,
O 4., d
—Zyp = "Ly g12 T = )
ﬁerl ﬁAerl
Or
n 2 )
0 d
B1.H
61 O'Zl—a/z"'zl—ﬁ _62
ﬁAerl ﬁer
i.e,

[ J(mpﬁn&pz)(mﬁnaqz)
M PG, + M, P, 0,

_ nM (1- 7 —7%)d?
[1+(n-1) p][7 p,q, + (- 7) P,G, ]

2
gt Zl—ﬂj

In other words, given powerl— /3, the total
sample size needed to detect the smallest
meaningful difference d > Ois

(Mp+mp,)(Mg +ma,) 2
U MpG +mpg Z“”Zﬁ”’j
v L (0-Dal[7pg +(-7) PG|
n(l-z—7°)d?
@)

When m =m,, the above formula is the same

as shown in Diggle et al. (1994) for balanced
design. Given sample size, the power of the test
can be calculated using the following equation:

0; d
POWG= 1—ﬂ= ,\BDHO : Zl—a/2 DN (5)
Oph, Ohh,

The Rdative Impact of Number of Subjects and
Number of Repeated Measures on Power

As the cost and the amount of effort to
recruit subjects or to increase the number of
repeated measurements for each participant is
often different, it will be useful for investigators
to know the rdative impact of number of
subjects and number of repeated measures on
statistical power for testing TAD. The relative
importance of the total number of subjects M
and number of repeated measures n, which have
nonlinear effects on the power, is now
investigated. For easy derivation, let’s examine
the situation of continuous measure.

First, if the within subject correlation is
p =0, then it can be seen that the number of

subjects M and number of repeated measures n
will have exactly the same impact on statistical
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power. Using formula (3) and plugging in
p =0, the power then becomes:

Poweﬁl—ﬁ=1—@(zm,2 ”W—:_ﬂz)'d}a

It can be explained that when p=0 al the
observations are independent and thus there is
no digtinction between the repeated
measurements and different subjects. Second,

when p =1, the number of repeated measures
has no more impact on power because it just
repeats the same observations over again. This
can be seen by pluggingin p =1 informula (3):

Powerl-43 =1—G{Z1_a/2 M(l_z_ﬂz) ' d} (7

To examine the impacts of M and n on
the power when 0< p <1, the amounts that
need to be increased on M and n to achieve the
same power are calculated. With other factors
fixed and for a given nand M, how much does n
need to be increased to achieve the same impact
on power when increasing M by 1? Recall the
power function is

PowerL -1 a{ . JM@-7-72)-d

1+(n- 1)p S

With other factors fixed, all that is required isto
make the term,

nM
1+(n-1p’

a constant to achieve the same power. Let n' be
the new n that will have the same impact on
power as M increased by 1. Then the following
equation can be solved

nM+1)  n'M
1+(n-0p 1+(n-Dp’

and the following equation is obtained:

o (M (- p)

(8
M—-(M+n)p
Thus increasing n by the amount,
N —ne n(l— p+np) ©)
M—-(M+n)p

isthesame asincreasing M by 1. This amount of
increment depends on M, n and p. For
example, if p = 0.5, then n needs to increase by
n(l+n)/(M —n); if p=0.05 n needs to
increase by Nn(0.95+ 0.05n)/(0.95M —0.05n)
in order to have the same impact on power as M
increased by 1.

To examine which variable, M or n, has
a larger impact on the power, it is required that
one checks which variable needs to increase
more to get the same power. The larger amount
that needs to increase, the lower impact the
variable has on statistical power. Set (9) equal to
1 and obtain the following equation.

pn’+n—(1-p)M =0 (10)

This is a quadratic function of n, and thus it has
two roots

_—1+J1+4p(1- p)M
- 2

(11)
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Figure 1. The Rdationship of n*, p and M.
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Because n is always greater than O, the
positive root is taken. To say that the amount (9)
is greater than 1, is equivalent to stating that
equation (10) is greater than O, or n is greater
than n*, the root of (10). In other words, the
impact of n on power is smaller than the impact
of M when n is greater than n*. Based on (11),
one can see that n* depends on both M and p

nonlinearly. Figure 1 below shows the non-
linear relationship among M, nand o .

[l=lululu Tl

This 3-D figure reveals that the
threshold n* will increase when M increases but
for a same M value, the threshold will be larger
when p smaller. Figure 2 and Figure 3 are
special slides of the 3-D figure of Figure 1.
Figure 2 shows the rdationship between the
threshold n* andp for M=300 and Figure 3
shows the relationship between the threshold n*
and M for p=0.4.
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Figure 2. The Rdationship of n* and p , with M = 300 fixed.
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Figure 3. The Rdationship of n* and M, with p = 0.4 fixed.
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%SP_TAD Software, Syntax and Parameters

To implement the algorithm for
calculating the sample sizes or power for time-
averaged difference, we have written a statistical
macro procedure %SP_TAD, where SP stands
for sample and power, TAD stands for time
averaged difference in SAS/MACRO.

The syntax of the macro is simple and
straightforward. To use this macro, one simply
needs to invoke the macro with specific values
for the parameters required. Here is the list of
parameters that need to be specified:

Q) type----- continuous (=1) or binary (=2)
responses. This sets up the tone of the type of
the outcome measure to be analyzed. The
following parameters of (2) to (9) must be
provided for continuous responses:

(2) apha----Typel error rate

(3) beta----- Typell error rate

u} 200 400 B0O0 s00

1000 1200 1400 1600 1800 2000
kA

(4) d-------- Smallest meaningful difference to be

(5) sigma---Measurement deviation (for
continuous responses)

(6) n-------- Number of repeated observations per
subject

(7) rho------Correlation among each subject

(8) pi-------- Proportion of number of subjects
within group 1

(9) M-------- Total number subjects

For binary outcome, sigma is not
needed. Instead, two more parameters need to be
provided:

(10) pa------- Pr(Y_ij=1) ingroup 1

(12) pb------- Pr(Y_ij=1) ingroup 2

To run the macro, one needs simply to issue:

%sp_tad(type=, apha=, beta=, d=, sigma=, n=,
rho=, pi=, pa=, pb=, M=),
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where pa and pb should be left as blank for
continuous outcome, and sigma should be left
blank for binary outcome. Beta and M should
not be provided at the same time. To calculate
required sample size, beta must be provided. To
calculate power, M must be provided. Typeis1
or 2, where 1 stands for continuous responses
and 2 stands for binary responses. The software
code is available upon request from the author.

Application

Repeated measures design has wide
applications in social, biological, medical and
health service research. To avoid possible bias
from snapshot of data collection at one time
point and to reduce the cost of collecting data
from different subjects, repeated measures data
are often collected. Through areal example, this
section demonstrates the input, output and the
functionality of the %SP_TAD software and
how the procedure works with continuous
outcome measures. For binary outcome
measures, the process will be similar.

For continuous measures, an example of
a patient’s diastolic blood pressure between a
trestment and control group is examined
(generally, diastolic blood pressure below 85 is
considered “normal”). The level of a person’'s
blood pressure could be affected by many
temporary factors, such as the amount of time
that the person dept last night, the person's
mood, physical activity right before taking blood
pressure measurement, etc. Thus, a one time
snapshot of blood pressure will likely not be
accurate. To accuratdy estimate the level of
blood pressure of a patient or a group of
patients, means of multiple measurements of
blood pressure from a patient are usually used.

Suppose that a design is required to
examine the difference of diastolic blood
pressure between the treatment and control
groups. To avoid bias from one time snapshot,
five repeated measures of blood readings were
taken from each patient within a week (one
reading each day). Based on previous studies,
intra-class correlation at the level of 0.4, type |
error 0.05 and type Il error 0.15 and a common
standard deviation of 15 was used. Assume that
a difference in mean blood pressure as small as
10 points between the treatment and control
groups is desired. Since the treatment is more

expensive than the control and more controls
than treatment participants is desired, with a
ratio of 3:2. Using these parameters, the
calculation with the following syntax can be
established:

%sp tad(type=1, alpha=0.05, beta=0.15, d=10,
sigma=15, n=5, rho=0.4, pi=0.6, pa=, pb=, M=);

Execute the procedure and the answer is
158 in treatment group and 105 in control group.
Assume that the control group had a mean
diastolic blood pressure 88. Then, the given
sample size of 158 in the treatment group and
105 in the control group with 5 repeated
measurements from each patient will alow one
to detect a mean diastolic blood pressure of the
trestment as low as 78.

For the same question, assume 158
patients in treatment group and 105 patients in
the control group with 5 repeated measures of
blood pressure. With a type | error 0.05, what
kind of power will is needed to detect a
difference in mean blood pressure of as small as
10 points? Using the same procedure, these
parameters can be instituted and the macro with
the following syntax can be executed:

%sp tad(type=1, apha=0.05 bea=, d=10,
sigma=15, n=5, rho=0.4, pi=0.6, pa=, pb=,
M=263);

The answer for power will be 85%.
Conclusion

Time-averaged difference of repeated measures
data has wide applications in many fields of
research. TAD provides the opportunity to
examine the difference in means between groups
with  higher  precison using repeated
measurements from each subject. This article
deals with sample size and power analyses
issues for time-averaged difference of repeated
measures design. It presents the details of
derivation of the general sample size calculation
and power analysis formula for TAD with
unequal sample size between two groups.
Allowing unequal sample size will enable
researchers to have the opportunity to choose an
unbalanced design so that smaller number of
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subjects could be used for the group that is either
more expensive, hard to recruit or with limited
number of available subjects.

Repeated measures data points also arise
from cluster randomized trials, where it typically
has repeated individuals within randomized
clusters. There is growing literature on the topic
starting with initial work involving balanced
equally sized groups, but is now extending to
more complex situations, of which unequal
group sizes is also a possible scenario (Eldridge,
2001).

Repested measures data has two
dimensions of sample sizes: the number of
different individuals and the number of repeated
measurements from each individual. As shown
in the article, because data from different
individuals are independent, the number of
different subjects seems to have a larger effect
on power than the number of repeated
measurements from the same subject. However,
there is a threshold of the number of repeated
measures, which will yield a larger impact by
increasing the number of repeated measures than
by increasing the number of subjects on
statistical power. However, increasing the
number of subjects by 1 means to increase the
number of observations by n (the new subject
gets n repeated measurements as others) and
increasing the number of repeated measures by 1
means to increase the number of observations by
M (every subject increases one repested
measurement). Thus, when pis very small (i.e.

about zero), one will need a larger n to exceed
n*, the threshold, in order to have a larger
impact of increment of nthan M on power.

In most of the situations, n is not large
and much smaller than M, thus likely M will
have larger impact than n. For the two extreme
cases where p =0 or p =1, the impact of the

increase of the number of repeated measures will
be the same as the increase of the number of
individuals in each group (o = 0) or there will
be no impact of increasing the number of
repeated measures ( 0 =1) on power.

The software created is easy to use and
can handle both continuous outcome measure
and dichotomous outcome measure by issuing a
valueof “1” or “0” for the parameter “type”. For

the same software, one can also estimate the
underlying statistical power for a given sample
size with a given type | eror, type Il error,
variation and effect size.
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Type | error control accuracy of four commonly used pairwise mean comparison procedures, conducted
as protected or unprotected tests, is examined. If error control philosophy is experimentwise, Tukey’s
HSD, as an unprotected test, is most accurate and if philosophy is per-experiment, Dunn-Bonferroni,

conducted as an unprotected test, is most accurate.

Key words: Type| error control, experimentwise vs. per-experiment error, protected vs. unprotected tests,
pairwise comparisons, Tukey’s HSD, Dunn-Bonferroni, Dunn-Sidak, Holm's sequentially rejective

Introduction

Whenever a researcher has more than two
comparisons to test, control of the Type | error-
rate becomes a concern. Soon after Fisher
developed the process of analysis of variance
(ANOVA), he recognized the potential problem
of the error-rate becoming inflated when
multiple t tests were performed on three or more
groups.

He discussed this problem in the 1935
edition of his famous book, The Design of
Experiments. His recommendation of using a
more stringent alpha when performing his Least
Significant Difference Procedure (LSD) is based
on this concern. However, researchers still
criticized the LSD as providing inadequate
control of Typel error. This early recognition of
the problem has resulted in hundreds of multiple
comparison procedures being developed over the
years.

J. Jackson Barnette is Senior Associate Dean for
Academic Affairs and Professor of Biostatistics
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The earliest example of what is now
known as a multiple comparison procedure
could be found in 1929, when Working and
Hotelling applied simultaneous confidence
intervals to regression lines. The Fisher (1935)
reference cited earlier was thefirst application to
the process of ANOVA. The Type | eror-rate
control problem was also referred to by Pearson
and Sekar in 1936 and Newman in 1939.
Newman described a multiple comparison test
that used the “ Studentized Range Statistic.” It is
said that his work was prompted by a discussion
he had with Student. Years later, Keuls
published an updated version of the procedure
(1952) using the Studentized range. That
multiple comparison procedure is now known as
the Student-Newman-K euls procedure.

Most studies of Type | error rates for
follow-up of pairwise mean differences have
been based on what is refered to as
experimentwise or familywise error control
philosophies. These tems were more
extensively described by Ryan (1959) and Miller
(1966). Experimentwise (EW) Type | eror
rdates to finding at least one significant
difference by chance for the specified alpha
level. In these cases, the only difference of
concern is the largest mean difference
Experimentwise Type | error control ignores the
possibility of multiple Type | errors in the same
experiment. The pairwise mean differences for
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those other than the largest mean difference are
not considered. Type | error control is such that
not all possible Type | errors are evaluated. In
these cases, many procedures such as Tukey's
HSD are considered to have conservative Type |
error control since the actual probabilities of
finding at least one Type | error are lower than
the nominal alphalevel.

Per-experiment (PE) Type | eror
control considers al the possible Type | errors
that can occur in a given experiment. Thus, more
than one Type | error per experiment is possible
and reasonably likely to occur if there is an
experimentwise Type | error on the highest
mean difference. Klockars & Hancock (1994)
pointed out the importance and risks associated
with this distinction. They found, using a Monte
Carlo simulation, that there was a difference of
.0132 in the per-experiment and experimentwise
Type | error rates for Tukey’s HSD when alpha
was set at .05. This discussion was expanded in
their 1996 review titled “The Quest for o
(Hancock & Klockars). Thus, when one has
exact control of Type | eror in the
experimentwise situation, the per-experiment
Type | error probability is higher. One of the
purposes of this research was to examine how
much of a difference there may be between
experimentwise and per-experiment Type | error
rates for four of the most commonly used
pairwise multiple comparison procedures when
used with alphalevels of .10, .05, and .01, and to
determine the relative influence on this
difference of number of groups and number of
subjects per group. While most Type | error
research is based on an experimentwise mode,
the per-experiment Type | eror is more
consistent with the reality of pairwise hypothesis
testing. It considers not only the largest mean
difference subjected to error control, but all the
pairwise differences.

There seems to be an inconsistency of
logic when comparing the power of various
methods and manners of Type | error control.
When it is stated that the Student-Newman-
Keuls is more powerful than Tukey's HSD or
Holm's procedure is more powerful than Dunn-
Bonferroni; the notion is that one method leads
to more regections of partial null hypotheses.
However, if one considers the notion of
experimentwise Type | eror (the largest

pairwise difference or more being rejected), then
SNK and HSD have the same power and Dunn-
Bonferroni and Holm have the same power.
Differences in power only come when
considering pairwise differences that are found
beyond the k number of means steps. Thus,
should not error rate take into account the
possible false rejections in the entire structure of
mean differences, not just the largest one? Per-
experiment Type | error control is more
consistent with actual pairwise hypothesis
decision-making.

Four multiple comparison procedures
were selected for this research: Dunn-
Bonferroni, Dunn-Sidak, Holm's sequentially
reective, and Tukey’'s HSD. Based on a review
of current literature and commonly used
statistical texts, it was concluded that these are
among the most frequently used pairwise
procedures and represent a variety of approaches
to control for Type | error. Since the names of
these procedures tend to vary dlightly in texts,
statistical software, and in the literature, each is
described briefly below:

The Dunn-Bonferroni procedure uses
the Bonferroni inequality (ope < Xopc) as
authority to divide equally the total a priori error
among the number of tests to be completed,
often following the application of the Fisher
LSD procedure. The LSD procedure is
equivalent to conducting al parwise
comparisons using independent t tests with the
M Serror @S the common pooled variance estimate
(Kirk, 1982). An example of the application of
the Dunn-Bonferroni would be identifying the a
priori oo as .05 where tests are required to
compare means of five groups using 10
comparisons, running each individual test at the
.05/10= .005 level (Hays, 1988). Sidak's
modification of the Dunn-Bonferroni procedure,
referred to as the Dunn-Sidak procedure
substituted the multiplicative computation of the
exact error-rate, ope = 1 — (1 — opc)® Where c is
the number of comparisons for the Bonferroni
Inequality (ape < Zopc), otherwise following
the same procedures (Kirk, 1982).

A procedure proposed by Holm in 1979,
Holm’s Sequentially Reective procedure is also
referred to as the Seguentially Reective
Bonferroni procedure. Assuming a maximum of
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¢ comparisons to be performed, the first null
hypothesis is tested at the o/c level. If the test is
significant, the second null hypothesis is tested
at the o/(c — 1) leve. If this is significant, the
testing continues in a similar manner until all ¢
tests have been completed or until a
nonsignificant test is run. The testing stops when
the first nonsignificant test is encountered
(Hancock & Klockars, 1996).

Tukey’s Honestly Significant Difference
procedure (HSD) was presented originaly in a
non-published paper by Tukey in 1953. Its
popularity has grown to the point where it is,
possibly, the most widey used multiple
comparison procedure. The HSD is based on the
Studentized Range Statistic originally derived by
Gossett  (ak.a, Student) (1907-1938). This
statistic, unlike the t statistic, takes into account
the number of means being compared, adjusting
for the total number of tests to make all pairwise
comparisons (Kennedy & Bush, 1985).

Many researchers follow the practice of
conducting  post-hoc  pairwise  multiple
comparisons only after a significant omnibus F
test. Protected tests are conducted only after a
significant omnibus F test, while unprotected
tests are conducted without regard to the
significance of the omnibus F test. Many
common statistical texts either recommend or
imply the use of a protected test for all post-hoc
multiple comparison procedures (eg., Hays,
1988; Kennedy & Bush, 1985; Kirk, 1982;
Maxwell & Delaney, 1990). While these texts
provide a logical basis for this, and excellent
reviews of multiple comparison procedures are
available (e.g., Hancock & Klockars, 1996;
Toothaker, 1993), little empirical evidence is
presented, either analytically or empirically, to
justify this practice.

The research questions addressed in this
research are

1 Which of these four multiple
comparison procedures has the most
accurate control of Type | error
across the three alpha conditions?

2. Does error control accuracy differ
when tests are conducted as
protected or unprotected tests?

3. Do methods differ relative to
accuracy when conducted as
experimentwise vs. per-experiment
control ?

Methodol ogy

Monte Carlo methods were used to generate the
data for this research. All data comprising the
groups whose means were compared were
generated from arandom normal deviate routine,
which was incorporated into a larger compiled
QBASIC program that conducted all needed
computations. The program was written by the
senior author. All sampling and computation,
conducted with double-precision, routines were
verified using SAS® programs. Final analysis of
the summary statistics and correlations was
conducted using SAS®.

Several sample size and number of
groups arrangements were selected to give a
range of low, moderate, and large case
situations. The numbers of groups were: 3, 4, 5,
6, 8, and 10 and the sample sizes for each group
were: 5, 10, 15, 20, 30, 60, and 100, which when
crossed gave 42 experimental conditions. This
was replicated for three nominal aphas of .10,
.05, and .01. The approach used was to
determine what number of replications would be
needed to provide an expected .95 confidence
interval of +/- .001 around the nominal alpha.

This is an approach to examination of
how well observed Type | error proportions are
reasonable estimates of a standard nominal
alpha. In other words, if alpha is the standard,
what proportion of the estimates of actual Type
error proportions can be considered accurate, as
evidenced by them being within the expected .95
confidence interval around nominal alpha?

This was based on the assumption that
errors would be normally distributed around the
binomial proportion represented by nominal
apha. Thus, when alpha was .10, 345742
replications were needed to have a .95
confidence interval of +/- .001 or between .099
and .101. When apha was .05 182475
replications were needed to have a .95
confidence interval of +/- .001 or between .049
and .051 and when alpha was .01, 38032
replications were needed to have a .95
confidence interval of +/- .001 or between .009
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and .011. Observed Type | error proportions
faling into the respective .95 confidence
intervals are considered to be accurate estimates
of the expected Typel error rate.

Within each nominal alpha/sample
size/lnumber of groups configuration, the number
of ANOVA replications were generated. Each
replication involved drawing of elements of the
sample from a distribution of normal deviates,
computation of sample means, and the omnibus
F test. Error rates were determined for protected
and unprotected tests for each of the four
multiple comparison procedures. While Dunn-
Bonferroni, Dunn-Sidak, and HSD use only one
critical value for al differences, the pairwise
differences were recorded in a hierarchical
fashion to determine pairwise differences
significant at each of the numbers of steps
between means from k down to 2. This approach
permitted determination of experimentwise Type
| error (at least one Type | error per experiment)
or aTypel error for the largest mean difference,
and per-experiment Type | errors or the total
number of Type | errors observed regardless of
where they arein the stepwise structure.

Summary statistics were computed for
each alpha level for experimentwise and per-
experiment conditions including: the mean
proportion of Type | errors, standard deviation
of the proportion of Type | erors, and the
percentage of those proportions falling in the
three regions associated with the .95 confidence
interval of nominal alpha +/- 0.001.Additional
analysis included computation of differences
between per-experiment  proportions and
experimentwise proportions (PE-EW).

Preiminary analyses were run using the
Monte Carlo program to test its accuracy. Firg,
500,000 standard normal scores (z scores) were
generated and the statistics for the distribution
were computed. This resulted in a mean = -
.00096, variance = 1.0013, skewness = .00056,
kurtosis = .00067, and the Wilk-Shapiro D =
.000734 (nonsignificant). Thus, we concluded
that the program generates reasonable normal
distributions. Second, 900,000 cases were
computed with k ranging from 2 to 10 and n
ranging from 5 to 100 with no differences
between the group means. In each case, the
proportions of significant F statistics were
computed corresponding to preset alphas of .25,

10, .05, .01, .001, and .0001. The resulting
proportions of reected null hypotheses were
.24989, .10106, .05071, .01022, .001004, and
.000103 respectively. These results support the
accuracy of the Monte Carlo program.

Results

The first research question is: Which of these
four multiple comparison procedures has the
most accurate control of Type | error across the
three alpha conditions? The results for each of
the three alpha conditions are presented in
Tables 1 through 3 and Figures 1 through 3.
Table 1 and Figure 1 present results when
nominal alphais set at .10, Table 2 and Figure 2
present results when nominal alphais set at .05,
and Table 3 and Figure 3 present results when
nominal alphais set at .01.

When alpha is set at .10, if the Type |
error rate philosophy is experimentwise, the
most accurate of these four procedures is clearly
Tukey's HSD, conducted as an unprotected test,
with a mean observed Type | error rate of
.09940 and with 78.6% of the observed Type |
errors being in the range of .099 to .101. The
HSD conducted as a protected test with an
experimentwise control philosophy had a mean
of .08134, somewhat conservative. All of the
other procedures conducted, based on the
experimentwise philosophy are conservative
procedures with mean Type | error rates in the
range of .07239 to .07535 when conducted as
unprotected tests and .06695 to .06885 when
conducted as protected tests.

If the Type | error control philosophy is
per-experiment, the most accurate procedure is
clearly the Dunn-Bonferroni, conducted as an
unprotected test with a mean observed Type |
error rate of .10011 and 85.7% of the observed
Type | erorsin the range of .099 to .101. When
the philosophy is per-experiment and conducted
as unprotected tests, the other three methods
tend to be liberal with the mean error rate for the
Dunn-Sidak at .10481 and the Holm procedure
at .10582. Tukey’s HSD was very liberal in this
situation with a mean error rate of .14579. When
conducted as protected tests, HSD was dlightly
liberal with a mean error of .12741 and the other
three methods were reasonably accurate with
mean errors of .09466 for the Dunn-Bonferroni,
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.09834 for the Dunn-Sidak, and .10036 for
Holm's procedure.

When nominal alpha was set at .05, the
results were very similar. If the Type| error rate
philosophy is experimentwise, the most accurate
of these four proceduresis clearly Tukey’s HSD,
conducted as an unprotected test, with a mean
observed Type | eror rate of .04993 and with
97.6% of the observed Type | errors being in the
range of .049 to .051. The HSD conducted as a
protected test with an experimentwise control
philosophy had a mean of .03865, somewhat
conservative. All of the other procedures
conducted, based on the experimentwise
philosophy are conservative procedures with
mean Type | error ratesin the range of .03864 to
.03943 when conducted as unprotected tests and
.03352 to .03395 when conducted as protected
tests.

If the Type | error control philosophy is
per-experiment, the most accurate procedure is
clearly the Dunn-Bonferroni, conducted as an
unprotected test with a mean observed Type |
error rate of .04998 and 92.9% of the observed
Type | erorsin the range of .049 to .051. When
the philosophy is per-experiment and conducted
as unprotected tests, the other three methods
tend to be liberal with the mean error rate for the
Dunn-Sidak at .05110 and the Holm procedure
at .05208. Tukey’s HSD was very liberal in this
situation with a mean error rate of .06674. When
conducted as protected tests, HSD was dlightly
liberal with a mean error of .05531 and the other
three methods were slightly conservative with
mean errors of .04483 for the Dunn-Bonferroni,
.04560 for the Dunn-Sidak, and .04696 for
Holm's procedure.

When nominal alpha was set at .01, the
patterns of results were very similar to the .10
and .05 nominal alpha conditions. If the Type |
error rate philosophy is experimentwise, the
most accurate of these four procedures is clearly
Tukey's HSD, conducted as an unprotected test,
with a mean observed Type | error rate of
.01002 and with 100.0% of the observed Type |
errors being in the range of .009 to .011. The
HSD conducted as a protected test with an
experimentwise control philosophy had a mean
of .00702, somewhat conservative. All of the
other procedures conducted, based on the
experimentwise philosophy are conservative

procedures with mean Type | error rates in the
range of .00860 to .00865 when conducted as
unprotected tests and .00647 to .00649 when
conducted as protected tests. If the Type | error
control philosophy is per-experiment, the most
accurate procedure is clearly the Dunn-
Bonferroni, conducted as an unprotected test
with a mean observed Type | error rate of
.01003 and 97.6% of the observed Type | errors
in the range of .009 to .011.

When the philosophy is per-experiment
and conducted as unprotected tests, the Dunn-
Sidak outcome is very close to the Dunn-
Bonferroni outcome with a mean error rate of
.01007 and 92.9% of the observed errors in the
.009 to .011 range. The other two methods tend
to be liberal with the mean eror rate for the
Holm procedure at .01026 and Tukey's HSD
with a mean eror rate of .01181. When
conducted as protected tests, all four methods
were conservative with Tukey’'s HSD dlightly
less conservative with a mean eror rate of
.00878. The other three methods were dlightly
more conservative with mean errors of .00790
for the Dunn-Bonferroni, .00793 for the Dunn-
Sidak, and .00814 for Holm’ s procedure.

In summary, relative to research
question 1 (Which of these four multiple
comparison procedures has the most accurate
control of Type | error across the three alpha
conditions?), if the most accurate control of per-
experiment Type | error is desired, the Dunn-
Bonferroni, conducted as an unprotected test, is
the most accurate across all three levels of alpha
It consistently provides a mean Type | eror rate
closest to nominal alpha, has the lowest
variance, and captures the highest proportion of
observed Type | errors in the expected +/- .001
interval. Although the Dunn-Sidak and Holm
provide values that are reasonably close, they
tend to be slightly more liberal and less accurate,
particularly with higher nominal alpha. As alpha
decreases, both the Dunn-Sidak and Holm
approach the level of accuracy of the Dunn-
Bonferroni. Tukey's HSD is liberal as an
unprotected test in control of per-experiment
Type | eror, although this decreases as apha
decreases. If the error control philosophy is
experimentwise, Tukey's HSD is the most
accurate, conducted as an unprotected test. It has
amean error closest to nominal alpha, the lowest
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variance, and the highest proportion of observed
Type | erors in the expected +/- .001 interval.
When alphais .10, HSD is dlightly less accurate
than when alpha is .05 or .01. The other three
methods are conservative, with the Dunn-Sidak
being dlightly less conservative compared with
Dunn-Bonferroni and Holm.

The second research question is: Does
error control accuracy differ when tests are
conducted as protected or unprotected tests? If
theinterest is in using any of these methods as a
protected test, a practice not generally supported
by these data, the HSD provides the most
accurate control of experimentwise Type | error
athough it is very conservative at all apha
levels. The other three methods are very
conservative in control of experimentwise Type
| error. If per-experiment control of Typel error
is the philosophy, HSD is liberal when alpha is
.10 or .05 but becomes more accurate, even
somewhat conservative, when alpha is .01. Of
the remaining three, Holm's procedure tends to
be more accurate across the three alpha levels. It
is clear and expected that unprotected tests are
more powerful than protected tests.

The third research question is. Do
methods differ relative to accuracy when
conducted as experimentwise vs. per-experiment
control? It seems pretty clear that the results
vary a great deal depending on the Type | error
control philosophy. By the very nature of these
philosophies, there will be a higher proportion of
Type | erors in the per-experiment condition
compared with the experimentwise condition. In
every case, across alpha levels and for both
protected and unprotected tests, the lowest
difference between these rates was for the Dunn-
Bonferroni, followed relatively closely by the
Dunn-Sidak, Holm's procedure has next highest,
and the highest difference was for the HSD.
Thus, the issue is more a concern if oneis using
the HSD as compared with the other three
methods.

Conclusion

These results provide insights on two major
controversies. One is the need for a significant
omnibus F test as the gateway for conducting
pairwise follow-ups (i. e, the protected test). Is
it not possible, as Hancock & Klockars (1996)

pointed out, that this requirement overprotects
against finding pairwise differences? These
results certainly support that claim, particularly
when experimentwise Type | error is the control
philosophy. Protected tests were more
conservative in every case. It can clearly be
concluded that none of these four tests should be
used as protected tests when experimentwise
error control is used. If per-experiment error
control is desired, only the Holm procedure with
alpha of .10 was more accurate as a protected
test than as an unprotected test. However, that
accuracy difference was lower when alpha was
.05 or .01

The other controversy is the use of
experimentwise vs. per-experiment Type | error
control. Clearly there is a difference in the error
rates of these philosophies. The authors of this
article contend that per-experiment mode is
closest to the realities of pairwise hypothesis
testing, because more than just the largest
pairwise difference is of interest and all pairwise
comparisons are tested. The conventional
wisdom, based on experimentwise Type | error
control, is that the Dunn-Bonferroni is very
conservative and that the HSD is conservative,
but less so.

The HSD is often recommended because
it is conservative, yet provides reasonable power
for finding significant differences; but this
rdates to experimentwise control and a
protected test. Yet, arguments could be made
that the HSD gets its power from a higher-than-
nominal alpha level. In this research, when HSD
is used as a protected test with alpha of .10 or
.05, the actual per-experiment Type | error rates
are .12741 and .05531 respectively and actual
experimentwise Type | error rates were much
lower at .08134 and .03865. Thus, the
operational alpha level is not the nominal level,
but a higher level.

If oneis truly interested in maintaining
an accurate level of control of Typel error, then
methods which are shown to provide accurate
actual controls should be used, and the power
available can be deermined by other
comparison conditions: sample size, effect size,
number of groups, and eror variance. This
research indicates that Tukey’s HSD, conducted
as an unprotected test, is the most accurate
control of experimentwise Type | eror. If it is
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desired that accurate, as advertised, control of
per-experiment Type | eror be the primary
criterion, there is one method that seems to
provide that regardiess of alpha level and that is
the Dunn-Bonferroni conducted as an
unprotected test.

These findings are not consistent with
common wisdom or with recommendations
found or implied in most statistics texts.
However, it is hoped that this research
influences others to replicate this work, possibly
using other methods. Only when one is willing
to question our current practice can one be able
toimproveonit.

Additional study of the discrepancy
between experimentwise and per-experiment
Type | erors is needed. Determining the

importance of this discrepancy is required. The
current study did not consider the case of
unequal sample sizes or heterogenous variances.
Is it the same under conditions of unequal
sample sizes and/or variances? While it might be
useful to include other procedures such as the
Student-Newman-K euls, Scheffé, and
modifications of Holm's procedure, it is
believed that it is unlikely that any of these
methods will fare better as methods of Type |
eror control than Tukey’'s HSD when
experimentwise is the control philosophy, or the
Dunn-Bonferroni when per-experiment is the
control philosophy and unprotected tests are
used.
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Table 1. Observed Per-Experiment and Experimentwise Type | Error Rates for Selected Multiple
Comparison Procedures when Conducted as Protected and Unprotected Tests with Alpha= .10
Protected Test Unprotected Test
Per- | Bxperiment- | e gy Per- Experiment- | - pe gy
Experiment wise Error Difference Experiment wise Error Difference
Error (PE) (EW) Error (PE) (EW)
M .09466 .06695 02771 .10011 .07239 .02772
Dunn- M- —.00534 —-.03305 +.00011 -.02767
Bonferroni SD .00427 .00962 .00075 .00626
%in
o +/-.001 19.0 0 85.7 0
M .09834 .06885 .02949 .10481 .07535 .02946
Dunn-Sidak M-a —.00166 —-.03115 +.00481 —.02465
SD .00401 .00972 .00093 .00625
%in
o +/-.001 19.0 0 0 0
M .10036 .06695 .03341 .10582 .07239 .03343
M-o +.00036 —.03305 +.00582 —-.02761
Holm
SD .00739 .00962 .00346 .00626
%in
o +/-.001 24 0 7.1 0
M 12741 .08134 .04607 .14579 .09940 .04639
HSD M-a +.02741 —.01866 +.04579 —.00060
SD .00906 .00755 .01472 .00102
%in
o +/-.001 0 0 0 78.6
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Figure 1
Accuracy of Type I Error Control with Experimentwise and Per-Experiment Control Conducted
as Protected and Unprotected Tests when Nominal Alpha=.10 and %in .10 +/- 0.001
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Table 2. Observed Per-Experiment and Experimentwise Type | Error Rates for Selected Multiple
Comparison Procedures when Conducted as Protected and Unprotected Tests with Alpha= .05

Protected Test Unprotected Test
Per- | Bxperiment | o gy Per- | Bxperiment | o by
Experiment | -wise Error Difference Experiment | -wise Error Difference
Error (PE) (EW) Error (PE) (EW)
M .04483 .03352 .01113 .04998 .03864 .01134
Dunn- M-a —-.00517 —.01648 —.00002 —-.01136
Bonferroni SD .00315 .00534 .00054 .00294
%in
o +/-.001 7.1 0 92.9 0
M .04560 .03395 .01165 .05110 .039%43 .01167
Dunn-Si dak M-a —.00440 —.00405 +.00110 —-.01057
SD .00308 .00536 .00052 .00291
%in
o +/-.001 16.7 0 50.0 0
M .04696 .03352 .01344 .05208 .03864 .01344
M-a —.00304 —-.01648 +.00208 —-.01136
Holm
SD .00433 .00535 .00146 .00294
%in
o +/-.001 19.0 0 333 0
M .05531 .03865 .01666 .06674 .04993 .01681
HSD M-a +.00531 -.01135 +.01674 —.00007
SD .00324 .00458 .00541 .00048
%in
o +/-.001 24 0 0 97.6
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Figure 2
Accuracy of Type | Error Control with Experimentwise and Per-Experiment Control Conducted
as Protected and Unprotected Tests when Nominal Alpha=.05and %in .05 +/- 0.001
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Table 3. Observed Per-Experiment and Experimentwise Type | Error Rates for Selected Multiple
Comparison Procedures when Conducted as Protected and Unprotected Tests with Alpha= .01

457

Protected Test Unprotected Test
Per- | Experiment- | o gy Per- Experiment- | o gy
Experiment wise Error Difference Experiment wise Error Difference
Error (PE) (EW) Error (PE) (EW)
M .00790 .00647 .00143 .01003 .00860 .00143
Dunn- M-a —-.00210 —.00353 +.00003 —.00140
Bonferroni SD .00103 .00123 .00048 .00059
%in
o +/-.001 11.9 0 97.6 26.2
M .00793 .00649 .00144 .01007 .00865 .00142
Dunn-Si dak M-a —-.00207 —-.00351 +.00007 —-.00135
SD .00103 .00122 .00049 .00058
%in
o +/-.001 14.3 0 92.9 26.2
M .00814 .00647 .00167 .01026 .00860 .00166
Holm M-a —.00186 —-.00353 +.00026 —.00140
SD .00119 .00123 .00054 .00059
%in
o +/-.001 31.0 0 92.9 26.2
M 00878 .00702 .00176 .01181 .01002 .00179
HSD M-a —-.00122 —.00298 +.00181 +.00002
SD .00097 .00116 .00080 .00043
%in
o +/-.001 42.9 24 14.3 100.0
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Figure 3
Accuracy of Type | Error Control with Experimentwise and Per-Experiment Control Conducted
as Protected and Unprotected Tests when Nominal Alpha= .01 and %in .01 +/- 0.001
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Testing For Aptitude-Treatment Interactions In Analysis Of Covariance And
Randomized Block Designs Under Assumption Violations

Tim Moses Alan Klockars
Educational Testing Service University of Washington
Princeton, NJ

This study compared the robustness of two analysis strategies designed to detect Aptitude-Treatment
Interactions to two of their similarly-held assumptions, normality and residual variance homogeneity. The
analysis strategies were the test of dope differencesin analysis of covariance and the test of the Block-by-
Treatment interaction in randomized block analysis of variance. With equal sample sizes in the treatment
groups the results showed that residual variance heterogeneity has little effect on either strategy but
nonnormality makes thetest of slope differences liberal and the test of the Block-by-Treatment interaction
conservative. With unequal sample sizes in the treatment groups the often-reported sample size-variance
heterogeneity pairing is problematic for both strategies. The findings suggest that the randomized block
strategy can be characterized as an overly-conservative alternative to the test of slope differences with
respect to robustness.

Key words: Aptitude-treatment interactions, analysis of covariance, randomized block, nonnormality,
variance heterogeneity, robustness

Introduction Thefirst is a randomized block analysis
of variance approach in which X is stratified into
One of the important issues in education is mutually exclusive subsets (Blocks). The second
identifying when the effect of an instructional is a regression-based analysis of covariance
strategy depends on some individual difference approach in which the observed continuum of X
variable (X) of the student. In their seminal is used. The question of interest is assessed with
work, Cronbach and Snow (1977) called these a test of the Block-by-Treatment interaction in
effects Aptitude-Treatment Interactions (ATIs). the randomized block approach and a test of the
Two analysis approaches for identifying the homogeneity of regression coefficients in the
presence of ATIs differ in terms of how they analysis of covariance approach.
deal with an originally continuous X. The randomized block and the analysis

of covariance approaches have been compared

in tems of relative power and apparent

Tim Moses is an Associate Measurement popularity. When their assumptions are me,
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Program. Tim completed his PhD in Educational covariance strategy has superior  power
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Professor of Educational Psychology at the The power advantage is greatest when the
University of Washington. His research randomized block strategy is based on a large
concerns multiple comparisons and, more number of blocks. In terms of popularity and
recently, methods of conducting ATI research. familiarity for researchers, the randomized block
Email him at klockars@u.washington.edu. strategy seems to have the advantage (Klockars

& Beretvas, 2001; Kesdman, Huberty, Lix,
Olgnik, Cribbie, Donahue, Kowalchuk,
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Lowman, Petoskey, Kesdlman, & Levin, 1998;
Maxwell, O’ Callaghan, & Delaney, 1993). The
purpose of the current study is to compare the
two strategies in terms of a different criterion,
their relative robustness to violations of
assumptions about the normality and between-
group variance homogeneity of the errors.

The two strategies make similar
assumptions about the normality and variance
homogeneity of the errors, but define error
differently. In the randomized block design error
is defined as the deviation of the scores from the
mean of the Block-Treatment group. This mean
reflects the outcome measure (Y) for al
individuals in a treatment group who are
categorized into the same block based on their X
values. The error variance for the randomized
block design is called the Subject/Block-by-
Treatment Mean Square or S/BT. In analysis of
covariance, error is defined as the difference
between the Y scores and the predicted value
based on the X value of the subject. The
predicted value is from the best fitting least
squares line for the treatment group. The error
variance for analysis of covariance is called the
adjusted subject Mean Square or the residual
variance.

Research has considered the effects of
nonnormality and variance heterogeneity on the
robustness of the two strategies, but most of this
work has been on the analysis of covariance
strategy. None of this work has specifically
compared the robustness of the two analysis
strategies under the same assumption violations.
This research suggests that the two assumption
violations have different effects on the
robustness of the analysis of covariance and
randomized block strategies.

Nonnormality seems to have a stronger
impact on the robustness of the analysis of
covariance strategy than on the robustness of the
randomized block strategy. The analysis of
covariance strategy becomes liberal when the
eror  distribution is  heavy-tailed and
conservative when it is light-tailed (Conover &
Iman, 1982; Headrick & Sawilowsky, 2000;
Klockars & Mases, 2002). The randomized
block strategy is mildly affected by al but the
most extreme conditions of nonnormality
(Milligan, Wong & Thompson, 1987; K eselman,
Carriere, & Lix, 1995).

The effect of variance heterogeneity on
robustness depends on whether group sample
sizes are equal. With equal sample sizes,
variance heterogeneity has a negligible effect on
the robustness of the analysis of covariance
strategy (Dretzke, Levin & Selin, 1982;
Overton, 2001) and sometimes a negligible
(Milligan, Wong & Thompson, 1987) or other
times a liberal (Harwell, Rubinstein, Hayes &
Olds, 1992) effect on the randomized block
strategy. With unequal sample sizes, variance
heterogeneity influences the robustness of the
two strategies in the same way: when the group
with the largest sample size has the smallest
error variance (inverse pairing) both strategies
are liberal, and when the group with the largest
sample size has the largest error variance (direct
pairing) both strategies are conservative. The
curent  study considers the  variance
heterogeneity effect for equal and unequal
sample sizes.

Finally, the effect of combined
nonnormality and variance heterogeneity is
interactive for the analysis of covariance
strategy and additive for the randomized block
strategy. For the analysis of covariance strategy,
the two assumption violations slightly correct
for each other (Deshon & Alexander, 1996). For
the randomized block strategy, the two
assumption violations are not interactive so that
robustness depends mostly on the extent of
variance heterogeneity (Keselman, et al., 1995;
Harwell, et al., 1992).

It is difficult to recommend either
analysis of covariance or randomized block as
the more robust strategy when the errors are
nonnormal and heterogeneous. Comparisons of
the two strategies have focused on power when
their assumptions are met and their popularity
among researchers. The research that has
evaluated the impact of the assumption
violations on robustness has not directly
compared the robustness of the two strategies.
The current study was motivated by these
concerns. The major questions are 1) for
combinations of nonnormality and variance
heterogeneity, which strategy is more robust?
and 2) how will the relative robustness of these
two strategies compare to what is known about
their relative power?
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Methodol ogy

A Monte Carlo simulation study was conducted
to investigate the relative robustness of the ATI
analysis strategies. The null hypothesis of no
ATl was truein all conditions. Empirical Type |
eror rates based on 10,000 iterations were
generated for each condition. These empirical
Type | error rates were then compared to the
nominal Type | error rate of .05. Two treatment
groups were used throughout the study. The
following conditions were considered.

Analysis strategies

The standard analysis of covariance test
of regression slope heterogeneity (Slopes) and
the randomized block Block-by-Treatment
Interaction analyses were compared. The
randomized block strategy was evaluated using
two (RB2) and four (RB4) blocks of X using
median and quartile splits of the X variable
based on the total sample. While the creation of
the X blocks using of the total sample can create
dightly unequal sample sizes even though the
treatment group sizes are intended to be equal,
the use of the total sample was preferred over
the excessively liberal strategy of creating the X
blocks within each separate treatment group
(Myers & Wedl, 1995).

Assignment strategies

Two major strategies for assigning
subjects to treatment conditions in randomized
block and analysis of covariance are random
assignment and assignment that utilizes subjects’
X scores (Lomax, 2001; Myers & Well, 1995).
When subjects are randomly assigned to
treatments without regard for X, the randomized
block strategy creates X blocks after treatments
are administered (post hoc blocking). When
subjects are assigned to treatments based on
their X score, the randomized block strategy first
creates the desired number of blocks in the total
sample and then randomly assigns equal
numbers of subjects to each of the treatments
from each of the blocks. The approach of
assigning subjects to treatments based on X and
using the anaysis of covariance is called
systematic assignment (Dalton & Overall, 1977),
meaning that subjects are first ranked on X and

then assigned to treatments in a systematic
pattern (i.e 12211221...).

The consideration of anaysis and
assignment strategy resulted in six strategies to
be investigated: analysis of covariance with
random assignment, analysis of covariance with
systematic assignment, RB2 and RB4 with
random assignment (post hoc blocking) and RB2
and RB4 with assignment from the blocks.

Normality

Three shapes were used for X and the
errors of Y, including a normal shape (skew=0,
kurtosis=0), a skewed and heavy-tailed shape
(skew=1, kurtosis=10) and an extremely skewed
and heavy-tailed shape (skew=3, kurtosis=50).
The shapes were generated with Fleishman's
(1978) method (described below).

Variance Heterogeneity

Between-group variance heterogeneity
was created to obtain a specified residual
variance ratio of the treatment groups residual
variances based on the groups deviations from
their own regression lines. The variance
heterogeneity considered in  this  study
corresponds to how variance heterogeneity
occurs in observed datasets (Oswald, Saad, &
Sackett, 2000), meaning that groups differed
more on their X-Y correlations and Y variances
than on their X variances. The three considered
residual variance ratios for the groups were 1/1,
3/1 and 15/1. For the conditions of unequal
sample size, the residual variances were directly
and inversely paired with the treatment group
sample sizes.

To assess the correspondence of the
considered levels of residual variance
heterogeneity from treatment group regression
lines to levels of variance heterogeneity from
Block-by-Treatment Y means, Tables 1 and 2
give the ratios of the largest-to-smallest
variances for the Block-by-Treatment cells of
the RB2 and RB4 designs for al levels of
assumption violations considered in this study.
As analytical methods for deriving Y variances
after forming categories on a correlated X
variable are vaid only for symmetric
distributions (Maxwell & Delaney, 1993), the
approach taken to produce the ratios in Tables 1
and 2 was simply to generate each distribution
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and residual variance heterogeneity combination
in a total sample of 100,000 observations and
then compute Y variances for the randomized
block designs based on random assignment to
treatment conditions (note that the variance
ratios based on assignment from the X blocks
areamost exactly equal).

Data were simulated so that the
correlation was either .3 or .7 for one group. For
the second group, the correlation was somewhat
different from .3 or .7 so that, combined with a
different Y variance, this second group’s slope
was equal the first group’s slope while a desired
level of variance heterogeneity was obtained.

Sample Size

Forty or eighty subjects per treatment
group were used. The conditions of unequal
sample size used forty subjects in one group and
eighty in the other.

Data Generation Method

The following data generation method
was used to create X and Y variables of desired
distributions, variances and correations while
alowing for different assignment strategies to
the treatment conditions.

1) N values of one standard normal variate, Z,
were generated, where N was the total sample
size based on two treatment groups that were
intended to be of equal samplesize.

2) X was created as a transformation of Z using
Fleshman's (1978) method for generating
nonnormal variables:

X =a+bZ+cz? +dz® (1)

The constants (a, b, ¢, and d) determined
the first (mean), second (variance), third (skew)
and fourth (kurtosis) moments of X. The values
of the constants were derived to obtain the three
distributions of interest in this study, where each

distribution had a mean and variance of 0 and 1,
respectively. The constants and resulting
distributions are listed in Table 3.

3) An eror variable for Y (E) was generated
exactly as X was in steps 1 and 2. E had the
same distribution as X.

4) Equal numbers of Xs and Es were randomly
assigned to treatment groups 1 and 2. Depending
on the particular strategy being studied, this
involved either random assignment from the
total available dataset (analysis of covariance
and randomized block with post hoc blocking),
random assignment from blocks of X
(randomized block with assignment from the X
blocks) or systematic assignment of the ranked
X vaues to treatment groups (analysis of
covariance with systematic assignment). The
assignment strategies were the same in the
unequal sample size conditions as in the equal
sample size conditions, but after assignment one
treatment group’s sample size was reduced by
Y, approximating an experimental study with
massive loss of subjects from one of the two
treatment groups.

5) Y was created as afunction of X and E:
Y= ovipX + (1- pi?) °E] 2,

where py was the desired X-Y correlation and
Ovyk IS the desired standard deviation of Y for
treatment group k. The values px and ovx were
determined for both treatment groups such that
the two groups had the desired residual variance
ratio and the null hypothesis of no slope
differences was true. The values used are
summarized in Table 4.
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Table 1 Simulated ratios of largest-to-smallest Y variances in the Block-by-Treatment cells of the
randomized block designs (XY correlation = .3, N=100,000).

Distribution of X Residual Variance Ratio

and E

Skew Kurtosis

0 0
1 10
3 50

V1

RB2
1.01
1.0/1
1.1/1

3/1
RB4 RB2 RB4
111 291 3.11
111 3.011 3.21
1.3/1 3.0/1 3.4/1

15/1
RB2 RB4
14.5/1 15.4/1
14.9/1 16.3/1
14.3/1 15.3/1

Table 2 Simulated ratios of largest-to-smallest Y variances in the Block-by-Treatment cells of the
randomized block designs (XY correlation = .7, N=100,000).

Distribution of X Residual Variance Ratio

and E 11 3/1 15/1

Skew Kurtosis RB2 RB4 RB2 RB4 RB2 RB4

0 0 1.0/1 1.2/1 2.5/1 3.2/1 11.6/1 15.1/1

1 10 1.3/1 1.9/1 2.7/1 3.8/1 11.7/1 16.9/1

3 50 1.8/1 3.4/1 2.8/1 4.8/1 10.7/1 17.5/1
Table 3 Fleishman constants used to generate the variables

Skew  Kurtosis b c(=-a) d

0 0 1 0 0

1 10 -.08772 .56426 .08772 12621

3 50 -.17038 -.04789 .17038 .26005

Table 4 Corrdations and standard deviations used to create levels of residual variance heterogeneity.

Residua
Variance Ratio

pkfor Group 1

oy for Group 1

V1
13
115

V1
13
1/15

0.3
0.3
0.3

0.7
0.7
0.7

Low X-Y Relationship
1
1
1

High X-Y Relationship
1
1
1

pkfor Group 2 oy for Group 2
0.3 1
0.171871 1.679143
0.080933 3.706751
0.7 1
0.492773 1.421127
0.24535 2.853069
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Programming

The programming for this study was
done in SAS, using the CALL RANNOR (SAS
Institute Inc., 1999a) routine for creating
standard normal deviates and the PROC GLM
(SAS Ingtitute Inc., 1999b) function with Type
Il Sums of Squares for implementing the
analysis strategies.

Assessing the Typel Error Rates

To identify the conditions with the
strongest influence on Type | error, ANOVAS of
the six manipulated variables and their two,
three, four, five and six-way interactions were
used. These ANOVAs wee conducted
separately for the equal and unequal sample size
conditions. For equal sample sizes, the six
independent variables (and their number of
levels) were analysis strategy (3), assignment
strategy (2), nonnormality (3), residual variance
ratio (3), sample size (2) and overall X-Y
correlation (2). For unequal sample sizes, the six
independent variables (and their number of
levels) were analysis strategy (3), assignment
strategy (2), nonnormality (3), residual variance
ratio (3), sample size-residual variance pairing
(direct or inverse, 2) and overall X-Y corrdation
(2). Due to the stability of the empirical error
rates, the two ANOVAs captured 100% of the
variation in Type | error. Representative tables
that illustrated the most important effects from
the ANOVAs are aso provided. The Type |
eror rates in thesetables were considered as

meaningfully different from the nominal .05 rate
based on the criterion of +/- 2 standard errors
range (.046-.054). Note that the +/- 2 standard
eror range is almost identical to Bradley's
(1978) conservative range (.045-.055).

Results

Equal Sample Sizes

Table 5 presents the ten effects with the
largest mean squares from the ANOVA of the
eror rates for equal sample sizes in the
treatment groups. These ten effects accounted
for 84.6% of the variation in Type | error rates.
The two strongest effects were the analysis
strategy and the analysis*normality interaction,
accounting for 72.3% of the variation in Type |
error. The assignment strategy’s main effect and
interactions with analysis, analysis*normality
were also visible, but to a much smaller extent.
Residual variance heterogeneity, XY correation
and sample size had small main effects.

Tables 6 and 7 illustrate the results of
Type | error effects for equal treatment group
sample sizes. These tables present the empirical
Type | error rates for three analysis strategies
across normality and residual variance
heterogeneity ratios for the treatment group
sample sizes of 40 and the overal XY
correlation of .3. Table 6 shows the results for
random assignment to treatment conditions.
Table 7 shows the results when X was used to
assign subjects to treatment conditions.

Table 5 The Ten Effects with the Largest Mean Squares, Equal Sample Sizes

Source Sum of Squares df  Mean Square
(multiplied by 1,000) (multiplied by 1,000)

Analysis 5.644 2 2.822
Analysis*Normality 5.350 4 1.338
Analysis* Assignment 456 2 .228
Analysis*N .342 2 A71
Corrdation .148 1 .148
Assignment A17 1 A17

N 115 1 115
ResVarHet .204 2 102
Analysis*Normality* Assignment 335 4 .084
Corrdation*Normality 143 2 .072
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Table 6 Typel Error Rates for Treatment Groups of 40, an XY correlation of .3, and Random Assignment

to Treatment Conditions.

Distribution of X Residual Variance Ratio

and E
U1 3/1 15/1
Skew Kurtosis Slopes RB2 RB4 Slopes RB2 RB4 Slopes RB2 RB4
0 0 .047 .048 .052 .046 .051 .051 .051 .054
1 10 .054 .046 .051 .045¢  .051 .055*  .052 .056*
3 50 .068*  .044* .044* .042* 042 .066* .036* .038*

* Qutside the +/- 2 standard error range (.046 to .054).

Table7 Typel Error Rates for Treatment Groups of 40, an XY correlation of .3, and Assignment to

Treatment Conditions Utilizing X.

Distribution of X Residual Variance Ratio

and E
V1 3/1 15/1
Skew Kurtosis Slopes RB2 RB4 Slopes RB2 RB4 Slopes RB2 RB4
0 0 .050 .050 .051 .050 .051 .053 .052 .056*
1 10 .056*  .046 .043* .050 045 .071*  .053 .051
3 50 069*  .041*  .034* .040*  .034* .088* .039* .033*

* Qutside the +/- 2 standard error range (.046 to .054).

The most visible effect shown in Tables
6 and 7 is the effect of nonnormality on the
analysis strategies. For the anaysis of
covariance strategy, increased nonnormality
made Type | error liberal. For the randomized
block strategies, increased nonnormality made
Type | eror conservative. The effect of
nonnormality on the strategies was dlightly
larger when assignment to treatments used X
(Table 7) than when assignment to treatments
was random (Table 6). The effect of residual
variance heterogeneity was very small when
subjects are randomly assigned to treatments
(Table 6), though RB4 was significantly liberal
in two of the four sample size-corrdation
conditions where residual variance heterogeneity
was most extreme. When subjects were assigned
to treatments based on X, residual variance
heterogeneity seemed to increase the liberalness
of theanalysis of covariance test when there was
nonnormality. The results shown in Tables 6 and
7 were similar for the higher sample size and
XY correlation.

Unequal Sample Sizes

Table 8 presents the ten effects with the
largest mean squares from the ANOVA of the
error rates for unequal sample sizes in the
treatment groups. The mean squares were much
larger when sample sizes were unequal,
indicating that variations in Type | eror are
much greater for unequal sample sizes than for
equal sample sizes. The ten effects in Table 8
accounted for 98.9% of the variation in Type |
error rates. The two strongest effects were the
residual variance-sample size pairing (direct or
inverse) and this pairing in interaction with the
levels of residual variance heterogeneity, 80.5%
of the variation in Type | eror. Many of the
remaining ten effects in Table 8 also involved
interactions with the residual variance-sample
size pairing and the levels of residual  variance
heterogeneity. The main effects and interactions
with analysis strategy accounted for less than
8% of total wvariability in Type | error,
suggesting small but visible differences in the
robustness of the three analysis strategies. The
effects of assignment strategy, overall XY
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correlation, sample size and normality effects
were very small when group sample sizes were
unequal.

Tables 9 and 10 illustrate the effects of
directly-paired sample sizes and residual
variance ratios where the overall XY corrdation
was .3 and the assignment strategy was either
random (Table 9) or based on X (Table 10).
With equal residual variances (a residual
variance ratio of 1/1), the dlope test became
liberal, RB2 became conservative and RB4 was
not seriously affected. With residual variance
heterogeneity, all Type | eror rates became
extremely conservative. The most conservative
strategy was RB4. The RB2 and the analysis of
covariance strategies had similar Type | error
rates when distributions were normal. The
combination of nonnormality and residual
variance heterogeneity was visibly interactive
for the analysis of covariance strategy, which
became dlightly less conservative as
distributions became more nonnormal. In
contrast, the effect of nonnormality was very

small for RB2 and RB4. The error rates in
Tables 9 and 10 are similar, suggesting that the
assignment strategy used makes little difference
when sample sizes are unequal .

Tables 11 and 12 illustrate the effects of
inversely-paired sample sizes and residual
variances. With no residual variance
heterogeneity, nonnormality made the analysis
of covariance test liberal, RB2 conservative, and
had little effect on RB4. As residua variances
became different al three analysis strategies
became liberal, where the randomized block
strategy based on four blocks (RB4) was the
most liberal and the analysis of covariance and
RB2 strategies had similarly-liberal Typel error
rates. The combination of nonnormality and
residual variance heterogeneity made all three
strategies dlightly less liberal than residual
variance heterogeneity with normality. The error
rates in Tables 11 and 12 are very similar,
suggesting that assignment strategy makes little
difference when sample sizes are unequal (like
theresults of direct pairing).

Table 8 The Ten Effects with the Largest Mean Squares, Unequal Sample Sizes

Source Sum of Squares df  Mean Square
(multiplied by 1,000) (multiplied by 1,000)
Pairing 340.380 1 340.380
Pairing* ResVarHet 230.011 2 115.006
ResVarHet 55.485 2 27.743
Analysis*Pairing 23.9%4 2 11.977
Analysis 13.601 2 6.800
Analysis*Pairing*ResVarHet 18.513 4 4.628
Analysis*ResVarHet 11.645 4 2911
Pairing* Normality 447 2 2.236
Pairing* Correation .622 1 .622
Pairing* ResVarHet* Normality 2.362 4 591
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Table9 Typel Error Rates for the Direct Pairing of Sample Size (80, 40) and Residual Variance, an XY
correlation of .3, and Random Assignment to Treatment Conditions.

Distribution of X Residual Variance Ratio

and E
V1 3/1 15/1
Skew Kurtosis Slopes RB2 RB4 Slopes RB2 RB4 Slopes RB2 RB4
0 0 .050 .050 .050 .021*  .021* .012r .008* .008* .003*
1 10 .050 .049 .051 .025* 022 .015* .015* .006* .003*
3 50 .060*  .045* .050 .040*  .020* .016* .026* .006* .002*

* Qutside the +/- 2 standard error range (.046 to .054).

Table 10 Type| Error Rates for the Direct Pairing of Sample Size (80, 40) and Residual Variance, an XY
correlation of .3, and Assignment to Treatment Conditions Utilizing X.
Distribution of X Residual Variance Ratio

and E
V1 3/1 15/1
Skew Kurtosis Slopes RB2 RB4 Slopes RB2 RB4 Slopes RB2 RB4
0 0 .046 .049 .051 .023*  .019* .012r .009* .008*  .004*
1 10 .050 .047 .051 .030* .020* .013* .014* .008* .003*
3 50 .062*  .045* .052 042 022 017+ .032* .006* .002*

* Qutside the +/- 2 standard error range (.046 to .054).

Table 11 Typel Error Rates for the Inverse Pairing of Sample Size (40, 80) and Residual Variance, an XY
correlation of .3, and Random Assignment to Treatment Conditions.
Distribution of X Residual Variance Ratio

and E
V1 3/1 15/1
Skew Kurtosis Slopes RB2 RB4 Slopes RB2 RB4 Slopes RB2 RB4
0 0 .049 .053 .050 .099*  .097*  .138* .149*  .149* .245*
1 10 .049 .045*  .052 097 .094*  .128* .143* 147 238
3 50 .060*  .043* .050 092 085 .114* .114* 138 .210*

* Qutside the +/- 2 standard error range (.046 to .054).

Table 12 Type| Error Rates for the Inverse Pairing of Sample Size (40, 80) and Residual Variance, an XY
correlation of .3, and Assignment to Treatment Conditions Utilizing X.

Distribution of X Residual Variance Ratio

and E
V1 3/1 15/1
Skew Kurtosis Slopes RB2 RB4 Slopes RB2 RB4 Slopes RB2 RB4
0 0 .049 .048 .052 J102x 099 142 160  .152* @ .248*
1 10 .054 .047 .050 097 100  .127* 147 .153*  .240*
3 50 .061* .048 .052 .092* 081 111 131 Q45 215*

* Qutside the +/- 2 standard error range (.046 to .054).
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Conclusion

The purpose of the current study was to compare
the robustness of two standard analysis
strategies for detecting Aptitude-Treatment
Interactions when two of their commonly-held
assumptions  were  violated  (nonnormal
distributions and heterogeneous variances). The
two dtrategies were the test for dope
heterogeneity in analysis of covariance and the
test of the Block-by-Treatment Interaction in
randomized block analysis of variance. In
addition, the strategies were evaluated based on
two different assignment strategies, random
assignment and assignment that utilized X.

The findings supported and extended the
findings of previous studies that considered
either the randomized block strategy (Milligan,
Wong & Thompson, 1987; Keselman, Carrier &
Lix, 1995; Harwell, Rubinstein, Hayes & Olds,
1992) or the analysis of covariance strategy
(Conovar & Iman, 1982; Headrick &
Sawilowsky, 2000; Klockars & Moses, 2002;
Dretzke, Levin & Serlin, 1982; Overton, 2001;
Deshon & Alexander, 1996; Conely &
Mansfield, 1988) separatdy. With equal sample
sizes, the effect of nonnormality was much
stronger than the effect of residual variance
heterogeneity, causing the analysis of covariance
strategy to get significantly liberal and the
randomized block strategy to get significantly
conservative. The effect of nonnormality was
stronger when assignment to treatment groups
was based on X than when assignment was
random. With unequal sample sizes, the effect of
residual variance heterogeneity was much
stronger than the effect of nonnormality, causing
the analysis strategies to get significantly
conservative when residual variances were
directly paired with sample sizes and liberal
when residual variances were inversdy paired
with sample sizes. For unequal sample sizes the
assignment strategy did not matter. Finally, for
unequal sample sizes the combination of
nonnormality and heterogeneous residual
variances was interactive for the analysis of
covariance strategy and slightly additive for the
randomized block strategy. These findings
suggest how the issue of robustness can
contribute to several years of discussion on the
relative merits of the randomized block and

analysis of covariance strategies (Cox, 1957,
Feldt, 1958; Cronbach & Snow, 1977; Aiken &
West, 1991; Pedhazur, 1997; Lomax, 2001;
Myers & Waell, 1995; Klockars & Beretvas,
2001).

The magnitude of the effects of
assumption violations on the robustness of the
analysis strategies for equal sample sizes was
somewhat smaller than expected. While heavy-
tailed distributions did inflate the Type | error
for the slope test, the inflation was rather small
(up to about .09) given the extremely nonnormal
distributions used. Two factors that kept Type |
error from fluctuating too widely for extreme
nonnormality were the assignment strategies,
which made the treatment groups similar in the
X distributions and therefore spread the extreme
observations fairly evenly across the groups, and
the use of a data generation method that created
Y’s nonnormality rather indirectly through
adding nonnormality to X and E. Consistent
with previous studies that used a similar data
generation method (Conover & Iman, 1982; Luh
& Gou, 2000), nonnormality has to be extreme
and fairly unrealistic (Micceri, 1989) in order to
see its effects on robustness with this data
generation method.

The small effect of variance
heterogeneity for the randomized block strategy
with two blocks and equal sample sizes was
surprising given the many studies that discuss
the strong influence variance heterogeneity has
on standard tests of means (Lix, Keselman, &
Kesdman, 1996) and interactions (Harwell,
Rubinstein, Hayes, & Olds, 1992). However,
many studies of the variance heterogeneity
assumption focus much more on unequal sample
sizes than on equal sample sizes (e.g. Milligan,
Wong & Thompson, 1987; Keselman, Carriere
& Lix, 1995), giving the impression that unequal
sample sizes amost always accompany variance
heterogeneity. For example, Milligan e a’s
study focuses aimost completely on the effect of
variance heterogeneity and unequal sample
sizes, giving only a very quick mention of
finding a negligible effect of heterogeneous
variances when sample sizes were equal (p.
469). It is possible that the variance
heterogeneity created from given levels of
residual variance heterogeneity (Tables 1 and 2)
was not large enough to impact the randomized

www.manaraa.com



470 TESTING FOR APTITUDE-TREATMENT INTERACTIONS

block strategy with two blocks and equal sample
sizes. In contrast to the randomized block
strategy with two blocks, the randomized block
strategy with four blocks resulted in greater
levels of variance heterogeneity and did get
liberal even when sample sizes were equal.

The explanations of the effects of the
assumption violations on the analysis strategies
are fairly wel-known. Nonnormality makes
treatment group slope estimates differ because
of high-leverage observations that are extreme
on both X and Y, resulting in inflated
numerators of the F ratio. In addition, the
standard errors of the slopes are smaller than
they should be because the denominators of
these standard errors use the sum of squares of
X, which gets large as observations get more
extreme. As the XY corrdation increases, so
does nonnormality’s liberal effect on the test of
slopes. For randomized block’s tests of means,
nonnormal Y’s inflate standard deviations and
standard errors, resulting in conservative tests.
Nonnormal distributions can also affect mean
estimates as well. In general, nonnormality has a
stronger influence on sums of squares (standard
deviations and standard errors) and sums of
products (covariances) than it does on sums of
raw data (means).

The effects of heterogeneous variances
for equal and unequal sample sizes are aso
straightforward. The randomized block and
analysis of covariance F tests use denominators
that pool within-group variability across the
groups. When sample sizes are equal, this
pooling reasonably weights each group’s
variance equally. When sample sizes are
unequal, the variance of the larger group gets
weighted more heavily than that of the smaller
group, which can over or underestimate random
eror and lead to conservative or liberal tests,
respectively.

Given the effects of the assumption
violations on the standard analysis strategies,
many alternative strategies have been proposed.
In fact, this study was motivated by a view of
the randomized block strategy as an aternative
strategy to the analyses of covariance strategy
that might be more robust to nonnormal
distributions. Other alternatives to the slope test
include parametric aternative tests for
heterogeneous residual variances (Deshon &

Alexander, 1996; Overton, 2001; Dretzke, Levin
& Selin, 1982), ranking strategies for
nonnormality (Conover & Iman, 1982; Headrick
& Sawilowsky, 2000; Klockars & Moses, 2002),
and combinations of strategies designed for
addressing combinations of  assumption
violations (Luh & Guo, 2000, 2002). Given
researchers noted tendency to favor more
familiar analysis strategies, the randomized
block strategy was a practically-important
method to evaluate. The findings of this study
show that the randomized block strategy suffers
from its own problems with respect to
robustness. Given its relatively low power
(Klockars & Beretvas, 2001) the randomized
block strategy is probably best viewed as an
overly conservative alternative to the slope
strategy, along the same lines as ranked analysis
of covariance. The low power of the randomized
block test makes its recommendation difficult,
especially given the complaints of low power in
interaction studies (Aguinis & Pierce, 1998).

One interesting extension of this study
would be to evaluate applications of alternative
strategies that can address assumption violations
within both the randomized block framework
and the analysis of covariance framework. A
combination of approaches like
trimming/winsorizing observations or trimming
test statistics for nonnormality and using a
parametric aternative test that does not pool
treatment group variances for variance
heterogeneity has been shown to be effective for
improving the robustness and power of tests of
means (Keselman, Wilcox, Othman, Fradette,
2002; Luh & Guo, 1999; Keselman, Othman,
Wilcox & Fradette, 2004). Some of these
combinations of alternative strategies are
applicable to tests of interactions. Along these
same lines, some ways to trim observations and
test statistics for nonnormality and also to use
similar parametric  alternative tests for
heterogeneous residual variances have been
considered for the analysis of covariance slope
test (Luh & Guo, 2000, 2002). The relative
effectiveness of these combinations of
aternative strategies for analysis of covariance
and randomized block strategies under the same
degrees of assumption violations would be
interesting to evaluate.
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Quasi-Maximum Likelihood Estimation For Latent Variable Models
With Mixed Continuous And Polytomous Data

Jens C. Eickhoff
Department of Biostatistics & Medical Informatics
University of Wisconsin — Madison

Latent variable modeling is a multivariate technique commonly used in the social and behavioral
sciences. The models used in such analysis relate all observed variables to latent common factors. In
many situations, however, some outcome variables are in polytomous form while other outcomes are
measured on a continuous scale. Maximum likelihood estimation for latent variable models with mixed
polytomous and continuous outcomes is computationally intensive and may become difficult to
implement in many applications. In this article, a computationally practical, yet efficient, Quasi-
Maximum Likelihood approach for latent variable models with mixed continuous and polytomous
variables is proposed. Asymptotic properties of the estimator are discussed. Simulation studies are
conducted to examine the empirical behavior and to compare it with existing methods.

Key words: multivariate analysis, polytomous outcome variables, Quasi-ML estimation.

Introduction

The problem of analyzing concepts or variables
which are not directly observable and can only
be measured through related indicators arises
frequently in practice. In these situations, latent
variable modeling provides a useful statistical
technique. Statistical methods for analyzing
covariances and other relationships between
latent and observed variables were historically
originated in psychometrics in the form of factor
analysis which has later been extended to the
more general structural equation analysis
(Bentler, 1995; Bollen, 1989; Joreskog and
Sorbom, 1996). Today, latent variable models
are extensively used in the behavioral and social
sciences.

Most latent variable models are based
on the assumption that the observed variables
are continuous with a multivariate normal
distribution. However, in many studies where
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data are obtained based on questionnaires, some
or all observed outcome variables are typically
in polytomous form. For example, data are
frequently collected based on questionnaires
with Likert scales (eg., " disagree’, ~"neutral”,
“agree") responses. Because of its importance in
many applications, there has been much
attention in latent variable modeling involving
polytomous outcomes and it remains an active
area of research.

Bock and Lieberman (1970) considered
a maximum likelihood method for factor
analysis models with dichotomous outcome
variables and only one factor. However, direct
maximum likelihood analysis for models
involving higher dimensional latent variables
becomes computationally impractical because it
requires maximization over multiple intractable
integrals. This led to the development of multi-
stage weighted least square estimation based on
limited first and second-order sampling using
polychoric and polyserial corrdations (Muthén,
1984; Lee & Poon, 1987). Multi-stage weighted
least squares (WLS) estimation procedures for
structural equation models with polytomous
outcome variables have been implemented in
popular psychometrical software packages
including LISCOMP (Muthén, 1987), EQS
(Bentler, 1995), LISREL/PRELIS (Joreskog &
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Sorbom, 1996), and Mplus (Muthén & Muthén,
1998). These procedures, however, can
experience problems of numerical instability,
bias, non-convergence, and non-positive
definiteness of weight matrices in situations of
small sample sizes but large number of outcome
variables (Reboussin & Liang, 1998). Sammd &
Ryan (1997) and Shi & Lee (2000) used a Monte
Carlo EM algorithm to perform maximum
likelihood estimation in latent variables models
with mixed discrete and continuous outcome
variables. These procedures are computationally
intensive as each E-step is approximated by
Monte Carlo integration and no closed-form
expressions are available in the M-steps.
Moreover, many iterations are typically required
to achieve convergence.

In this articlee a computationally
practical, yet efficient, Quasi-ML estimation
procedure is proposed for factor analysis and
structural  equation models  with  mixed
continuous and polytomous outcome variables.
Asymptotic properties and standard error
estimation are discussed. The Quasi-ML
estimation can be easily implemented and does
not require intensive computations. Simulation
studies indicate that the proposed Quasi-ML
estimator is substantially more efficient than
traditional  multi-stage  WLS  estimators,
especially for models where the number of
continuous outcome variables exceeds the
number of polytomous outcomes.

This article is organized as follows. In
the M ethodology section, the general model and
motivation for the proposed approach, as well as
the Quasi-ML estimation procedure and the
computation of asymptotic standard errors are
described. The results of a simulation study,
where the performance of the proposed Quasi-
ML estimation is compared with traditional
multi-stage weighted least sguare estimation
techniques, is presented in the Results section.
Finally, a brief conclusion is given in the last
section.

Methodol ogy

Consider a multivariate mixed-type variable
Stuation with  p, continuous and p,
polytomous outcome variables and n

observations. Let v, =(y]j,---,yp1i)’ denote the
set of continuous outcome variables and
z =(z,,2,;) denote the set of polytomous
outcome variables, each with c(k) categories
(k=1,---,p,), measured on the i™ individual.

To motivate the model, assume that the set of
continuous and polytomous outcome variables
can be explained by a smaler number of

ga<p+p,) unobserved latent
variables f; = (f;.---, f;)". For ease of notation,
a measurement or confirmatory factor analysis
model is considered as follows. The notation can
be easily extended to utilize the more general

structural  equation modd framework. The

standard linear measurement mode for the
continuous outcome variables for the i

observation can be expressed as
yi=M+Afi+8i1 i:]-i"'ini (1)

where ¢; is a vector of measurement errors and
the parameters 1 and A contain some restricted
elements. It is assumed that

fi ~ N(n¢,25),
8i~ N(O,\P),

where the eements of p,X;,and ¥ are
unrestricted, free parameters. Furthermore, it is
assumed that, conditional on f;, the elements of
y, are independent, i.e, ¥ is s to be a
diagonal matrix. Likewise, for the polytomous
outcome variables, it is assumed that conditional
on f;, the elements of z are independent and
that each z,, (k=1---,p,) relates to the latent

variables through a probit response probability
function, i.e,

P(Zki5Cj|fi)=q)(0‘kj+3,kfi)f ()
for category <¢;, j=1--,c(k)-1 and
o <---<oy . The intercept and slope

parameters, o, and B,, describe the
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measurement properties of the K" polytomous
outcome variable.

The model described by (1) and (2)
contains the factor indeterminacy inherent in this
type of latent variable models. That is, the same
model can be expressed using transformed
parameters and factors. To remove this
indeterminacy, the following  standard
identification form (Wall & Amemiya, 2000) for
sub-model (1) is used,

0 I ¢ i1
i: + |+8|, | = “',n,
"l )y

where u, isa (p, —q)x1 vector and A, isa

(p,—a)xq matrix with unrestricted parameters.
If g> p,, additional measurement parametersin
sub-model (2) are restricted. Note that this is an
interpretable  and meaningful identification
parameterization which allows for assessing
latent  variable  characteristics  because
parameters corresponding to the latent variables,
i.e, WUy and X, remain unrestricted. This is

particularly useful in multi-group analysis
situations where the main interest lies in the
comparison of latent variable characteristics
between different sampling groups, eg., sex,
gender, ec.

Quasi-Maximum Likelihood Estimation

Let Y=(yp-Y,) ad Z=(z,,Z)
denote the observed data matrices from a
random sample of the underlying population.
Furthermore, denote the mode parameters as,

’

(X:(O(ll’”"alcm_l’”"a

B=(By-B,),

P, ? P Pac(ppyal !

and

(i, (vec A, ) (vec )

’

= (o, (vecB)) ,
0= (li’f ,(vecZ; )’) .

ey
ez

The log-likelihood function based on the
observed datais given by

1(6,,6,,6; 1Y,2)

(3)
=log p(Y;6,,6;)+logp(Z|Y;6,,6;).

Because logp(Z]Y;6,,0;)involves multiple

integration which cannot be evaluated in closed
form, direct maximization of this log-likelihood
function is impractical. Various approaches have
been proposed to overcome this computational
burden. Sammel & Ryan (1997) and Shi & Lee
(2000) proposed utilizing a Monte Carlo EM
estimation approach. However, the EM
algorithm is known to be slow and may require
many iterations to achieve convergence.
Moreover, the M-step in these approaches
requires iterative procedures which might be
time consuming, especially in models involving
many polytomous outcomes.

The Quasi-ML approach (Besag, 1975)
has become a popular tool in situations where
the true likelihood function is computationally
intractable but can be approximated by a
function that is easier is evaluate. Quasi-ML
methods may not aways yidd efficient
estimators but they are usually consistent as long
as the first derivatives of the quasi likelihood
function has mean O at the true parameter values
(Le Cessie & Houwedingen, 1994). In the
following, a Quasi-ML approach is proposed
where the second term of the right hand side of
the loglikelihood function in (3) is
approximated by a function which is
computationally easy to evaluate. Specifically,
the Quasi- log-likelihood for the i™ observation
is expressed as

P2
I =log p(y;;0,,0:)+ > p(Z | ¥;6,.6¢),
k=1

where p(y;;0,,6¢) is a multivariate normal
density function with mean

wd,,0¢) =%, (u, +A,u))

and covariance matrix
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|
z(ey,ef){A‘* jzf(lq A, )+

y

Standard evaluation of the conditional
distribution, z, |y, leadsto

o, +pB.
P(zkigcj |yi;ey,ef)=q)( Kk, Bkuf,ly. }

\/1+ B t1v Bk
where 1<k <c¢(k) -1 and

NN j )
RRIIN:

Thetotal Quasi log-likelihood is then the sum of
the I.”’s, i.e,

~—

Mgy =M¢ +2¢ (Iq A,

~—

Zf, Iy, =X X (Iq Ay

) ) logp(y;;6,,6; )+
P=S1P=%"0 »
Zl gzzp(adlx;@ﬂf)
i=l k=1

[logl=(6,.6,) +nT_1tr(% £(8,.6,))+

oc ——

2 ' _
(y_:u(ey’ef )) ) (eyief)(y_lu(eyief ))

+33 Dz 6,6,

i=1 k=1
(4)

where y is the sample mean, and S, is the

empirical covariance matrix of
Yi =(Yi,+ Yp;) - Note that for a model with

several continuous outcomes but only one
polytomous outcome variable, the Quasi-log-
likelihood function (4) is identical with the log-
likelihood function (3).

The Quasi-ML estimator (8,,6,,6,) is obtained
by solving

34,6.6,)

n 0 9I°(4,6.,6,)
= 4.,6,60)= R AR Lo
;S(y z f) Za(ey’ez’ef)

i=l

()

Explicit solutions for solving (5) are not
available and therefore an iterative procedure is
required. Because the number of parameters in
(4) is usually relatively large, a derivative free
optimization procedure as the Nelder-Mead
simplex algorithm may not be computationally
efficient. On the other hand, using an efficient
optimization procedure such as the Newton-
Raphson algorithm requires evaluation the first
partial derivatives and the Hessian matrix which
might be, due to the complexity of the objective
function in (4), a tedious task. A good
compromise is using a quasi Newton-Raphson
algorithm with numerical derivatives which is
easy to implement and numerically stable.

Standard Errors

For the computation of confidence
intervals for the Quasi-ML parameter estimates,
standard eror estimates are required. A
sandwich estimator can be used to estimate
standard erors of Quasi-ML  parameter
estimates. It follows from the delta theorem that,
under mild regularity conditions (see, e.g., Stuart
and Ord, 1991), the distribution of
\/ﬁ(éy—ey,éz—ez,ef—ef)’ converges to a
N(0,A) distribution with

A=nl"'DI™,

where

D = cov (S(ey,ez,ef)),

| = E(S(6,,0,,0;))

Estimates of D and | can be abtained by
computing

[3 = zi: Si(éy1ézféf)(si(ey’éZ’éf))
(6)
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and
yfezief)
6¢)

0

d s (
, d (8

1

y z

(")

Expressions (6) and (7) can be obtained using
the numerical first and second order derivatives
in the last iteration step of the quasi Newton-
Raphson algorithm used to solve (5).

Starting Values

Asthe quasi Newton-Raphson algorithm
used to solve (5) is an iterative procedure,
starting values for the model parameters are
required. One way to obtain starting values is to
treat the sub-models (1) and (2) separately.
Specifically, starting values for the parameters
corresponding to sub-mode (1) can be
computed using standard estimation procedures
for fitting latent variable models with continuous
outcomes (Ballen, 1989). These estimates can be
used to estimate factor scores, i.e.

e ) (e 2)

where Xy,‘f‘, and [1, are parameter estimates

obtained using standard estimation procedures
for latent variables modes with continuous
outcomes. The latent variable f, of sub-model

(2) can then be replaced by the factor scores f~I
and standard probit regression can be performed
to obtain starting values for 6, .

Results

The purpose of this simulation study is to
compare the performance of the proposed Quasi-
ML estimation approach with the traditional
multi-stage WLS estimation approach which is
currently considered the gold standard of fitting
mixed latent variable models with continuous
and polytomous outcomes. In the following, a
confirmatory factor analysis model models with
three continuous outcome variables and various

numbers of polytomous outcome variables are
considered. It is assumed that each polytomous
outcome variable has three categories. Sub-
model (1) is given by

Vi 0 1 0 ¢ €

Yo |= uyl +| 0 1 [ fli j'i‘ Es |y

Yai My, Mo, 2 €5
where

[flij~N((uflj( Gi Gfl,gB

foi Ky, ’ G .1, Gi
i=1---n,ande,, k=123, ae iid with
N(O,y?)  distribution. The parameters
Wy, My, Ay, Ay, oF, 6, of,and y? are
unrestricted parameters with the true values

wy, =u, =1, A, =1,=08, of =of =1,
vafz = 05, and \lfz = 036
Sub-model  (2), which corresponds to the

polytomous outcome variables, each with three
categories, is given by,

Mz =¢ |f.f,)=
CD(% +ﬁdf1+ﬁ<2 fz)a j=1
Ny, +8, 5+ 8,5) Do+ f+4.5F), (=2

where o, 0 By, and By, areunrestricted
parameters with true values o, =0.8,
o, =16, B,; =06, and B,,=-06.To
facilitate generalization of the simulation results,
the following three conditions on the number of
polytomous outcome variables in the
confirmatory factor models are considered:
(C1):  Number of polytomous outcomes: 1
(C2):  Number of polytomous outcomes: 3

(C3):  Number of polytomous outcomes: 6

www.manaraa.com



478 QUASI-MAXIMUM LIKELIHOOD ESTIMATION

Figure 1: Boxpots for Quasi-ML and Multi-Stage WL S Estimators of 67 under
Experimental Conditions (C1) — (C3) (n=500)

{1Z=1): 2 contimnucLus anc 1 polytormous o tocoTTre
=y | -]
= —_—
= '
- _| — '
— ' '
— U s
= s §
' .
wc | . .
= —— .
— '
= R —
=]
T T
Cuasi — MLE Kulti — Stoage — VLS
(= 2): 2 conmtinuowus and 3 polytomous outcomes
= - L]
— .
= : 0
'
H '
= N e p——— - 1]
— I
= . .
= 4 :
T
Cuasi — MLE Kulti — Stage — WVWLS
(C3E): 2 continucous ancd & polrtomous cutcoMmes
= _| a
=
- _ = H
T '
— '
= — [ __
= ' T
= e .
T

Cuasi — MLE

Note that under experimental condition (C1), the
Quasi-ML estimates are equivalent to the ML
estimates. In order to compare the Quasi-ML
estimation approach with the multi-stage WLS
estimation  approach, the mode  part
corresponding to the polytomous outcome
variables is first reparameterized to the
threshold model. This can be achieved by
standardizing the intercept parameters o, , o

to o =c, /[ 1-PEB=1, o =0,/ 1-PEP=2,

and the slope parameters B, ,.B .,

to By =Bui/1-P'ZBp =0.75 and

Bi, =PByn/[1-B'’Z; P =—0.75, respectively.
The computation of the multi-stage
WLS procedure was peformed by using
LISREL 8 and PRELIS 2. The Quasi-ML
estimates were computed using R version 1.8.1.

Fulti — Stage — VLS

The sample sizes considered were
n=100, n=500, and n=21,000. For each n and
experimental condition (C1), (C2), and (C3),
1,000 simulations on samples were generated.
The starting values for the Quasi-ML approach
were computed as described in theprevious
section. Non-convergence was experienced in
some cases for the multi-stage WLS approach
when n=100, especialy for the modd with 3
continuous and 6 polytomous outcomes (C3).
For n=500, the multi-stage WLS estimation
procedure became numerically more stable.
There were no convergence difficulties
experienced for the Quasi-ML estimation for all
sample sizes.

Figure 1 presents boxplots for the two

estimators of the variance parameter 67 when
n=500, depicting the empirical distribution
around the true parameter value 67 =1.0 under
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Table 1: Empirical Bias and Root Mean Squared Error for Quasi-ML and Multi-Stage
WLS Estimators for 67 under Experimental Conditions (C1) — (C3)

Experimental Condition n

Quas-MLE Multi-Stage WLS

100 Bias 0.044 0.054
RMSE  0.142 0.220

(C1) 500 Bias 0.016 0.015
RMSE  0.090 0.156

1,000 Bias 0.010 0.008

RMSE 0052 0.120

100 Bias -0.010 -0.012

RMSE  0.166 0.238

(C2) 500 Bias 0.026 0.023
RMSE  0.110 0.165

1,000 Bias -0.009 0.011

RMSE  0.079 0.118

100 Bias -0.081 0.022

RMSE  0.199 0.244

(C3) 500 Bias 0.009 -0.007
RMSE  0.131 0.155

1,000 Bias 0.003 -0.001

RMSE  0.102 0.129

experimental conditions (Cl) — (C3). The
general pattern given in Figure 1 can also been
seen in boxplots for the other parameters and
sample sizes. Table 1 gives the empirical bias
and root mean squared error (RMSE) of the two
estimators for the latent variable covariance

parameters 6%, o, (, and of . The cases

where the multi-stage WLS estimator didn’'t
converge were excluded when computing the
empirical bias and RMSE.

The results indicate that the Quasi-ML
estimator and the multi-stage WL S estimator are
both unbiased for all coefficients and sample
sizes. Under experimental conditions (C1) and
(C2), the Quasi-ML estimate exhibit
considerable less variability than the multi-stage
WLS estimates. As the number of polytomous
outcome variables increases this difference in
RMSE between the two estimators becomes
smaller. However, even under experimental
condition (C3) (3 continuous and 6 polytomous
outcomes), the Quasi-ML estimates still exhibit

dightly less variability than the multi-stage
WLS estimates.

Table 2 presents the empirical coverage
probabilities of the nominal 95% confidence
intervals for the Quasi-ML estimates of the

latent variable covariance parameters c?l,

6 1 and o7 . Theintervals were obtained by

taking an estimate +£1.96 times the
corresponding estimated standard error. For all
sample sizes, the constructed intervals give an
empirical coverage close to the nominal level.
Similar results were obtained for the other model
parameters. Overall, the results indicate that the
Quasi-ML standard errors can be used for valid
statistical inference on the model parameters.

Conclusion
Multivariate polytomous data are common in

psychosocia research. Consequently, there has
been recently an increased interest in latent
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Table 2: Empirical Coverage Probabilities for Quasi-ML
estimates of Nominal 95% Confidence Intervals for
Latent Variable Covariance Parameters

N o Ot,.1, o,
100 91.2% 90.1% 90.9%

500 92.8% 91.3% 92.6%

1,000 94.0% 92.9% 93.9%

variable modeling involving  polytomous
outcome variables.

The parameter estimation of these types
of models is computationally challenging.
Traditional estimation techniques include multi-
stage WLS procedures. However, it has been
demonstrated that multi-stage WLS procedures
can experience serious numerical problems,
especially in situations of low prevalence, small
sample sizes, or when fitting models with alarge
number of outcome variables.

Maximum likelihood estimation
procedures have been proposed utilizing various
types of EM algorithms (Sammel & Ryan, 1997,
Shi & Lee 2000). These procedures are
numerically stable, yet computationaly very
intensive. In this article, a Quasi-ML method is
proposed for parameter estimation of latent
variable models with mixed continuous and
polytomous variables. The procedure is
computationally practical and can be easily
implemented into standard statistical software
(eg., R, Splus, etc).

Simulation studies indicate that the
proposed Quasi-ML estimator tends to be more
efficient than traditional multi-stage WLS
estimator, especialy for models where the
number of polytomous outcome variables is
smaller than the number of continuous outcome
variables. The Quasi-ML estimation of standard
erors showed no substantial bias which
warrants the performance of valid statistical
inference. In summary, the proposed Quasi-ML
estimation procedure appears to be efficient,
computationally feasible, and a practical
approach for latent variable models involving
both continuous and polytomous outcomes.
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A Bayesian Subset Analysis Of Sensory Evaluation Data

Balgobin Nandram
Department of Mathematical Sciences
Worcester Polytechnic Institute

In social sciencesit is easy to carry out sensory experiments using say a J-point hedonic scale. One major
problem with the J-point hedonic scale is that a conversion from the category scales to numeric scores
might not be sensible because the panelists generally view increments on the hedonic scale as
psychologically unequal. In the current problem several products are rated by a set of panelists on the J-
point hedonic scale. One objective is to select the best subset of products and to assess the quality of the
products by estimating the mean and standard deviation response for the selected products. A priori
information about which subset is the best is incorporated, and a stochastic ordering is modified to select
the best subset of the products. The method introduced in this article is sampling based, and it uses Monte
Carlo integration with rgection sampling. The methodology is applied to select the best set of entreesin a
military ration, and then to estimate the probability of at least a neutral response for the judged best
entrees. A comparison is made with the method, which converts the category scales to numeric scores.

Key words: Bayes factor; composition method; stochastic ordering; rejection sampling.

Introduction
because it is natural to incorporate a priori

Consider the problem of selecting the best subset information about which subset is the best.
of a number of multinomial populations with In  sensory evaluation of food
ordinal categories. This can be accomplished by acceptability, judges are asked to rate several
first converting the nominal data to numeric products on the 9-point scale with qualitative
scores, and then a standard multiple comparison responses ranging from “dislike extremely” to
procedure can be performed on these scores. “neither like nor dislike’ to “like extremely” on
However, this procedure can go badly wrong an ordinal scale. Usually in the analysis these
when the conversion is made. It is, therefore, the nominal values are converted to scores ranging
purpose of this article to describe a from 1 to 9 where an attempt is made to
straightforward method based on a stochastic associate “dislike extremely” with 1, “neither
ordering of the multinomial populations for like nor dislike” with 5, “like extremely” with 9,
selecting the best subset of populations and then and intermediate nominal values have graduated
to estimate parameters used to assess the quality meanings. The use of scores has severd
of the best subset without conversion of the disadvantages, which weaken the interpretation
nominal data. A Bayesian approach is preferred that can be placed on the analysis of sensory
evaluation data.

First, the intervals between categories
Balgobin Nandram is a Professor of Statistics, are psychologically unequal. Second, judges
and a fdlow of the American Statistical tend to avoid the use of extreme categories by
Association. His research interests are in survey grouping judgments into the center of the scale,
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simulation, hedlth, industrial and environmental numerical relationship. Thus, it is difficult to
statistics, and statistical education. Email him at make conclusions concerning ratios  of
balnan@WPI.EDU. acceptability of the food products when
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qualitative  responses are converted to
quantitative responses.

Newel (1982) applied the method of
McCullagh (1980) to analyze sensory data and
was able to overcome some of the advantages in
using scores. This method for ordinal data treats
the response categories as contiguous intervals
on a continuous scale with unknown cutpoints
0,,...,0,_, where for the J-point scale J = 9.

Inherent in these models is the stochastic
ordering with the use of scores unnecessary. Let

7; denote the probability of the | response in

J
the i" population, and y; =Y p,be the
s=1

cumulative probability of the i™ population.
Then Newd (1982) entertained a model of the
form

log{7; Q-7 )} =6, -B) 7, 1=1...1,
j=%1...,J3-1

where B and 7, are relative measures of

location and spread respectively of the i
population. This model incorporates the location
of the ratings and the consistency of the
pandists' responses directly.

Such a modd is usualy fitted using
nonlinear iteratively reweighted least squares;
see, for example, Green (1985). While this is an
attractive model, besides the cell probabilities, it
introduces 2I +J new parameters. Moreover,
while one can choose the best population as the

one with the largest A, and perhaps the

smallest 7;, this modeling does not address the

problem of selecting the best population directly,
and in fact, it is difficult to assess the uncertainty
in selecting the best population. Also as the
analysis relies heavily on asymptotic theory,
with sparse data this approach will provide poor
estimates for the cutpoints €;, and hence the

other parameters. A more appropriate method is
associated with ranking and selection.

Recent Bayesian work on selection and
ranking includes the approach of Morris and
Christiansen (1996). They used a simple two-
level Bayes empirical Bayes modd to select the
best mean. They generated samples from the

product normal posterior distribution of the
means, and obtained posterior probabilities that
each of the means is the largest. Goldstein and
Spiegelhalter (1996) described statistical issues
in ranking institutions in the areas of health and
education based on outcome data by using
certain performance indicators. They obtained
interval estimates of the ranks of these indicators
for the different institutions, using both Bayesian
and non-Bayesian methods. Similar to Morris
and Christiansen (1996), Goldstein and
Spiegelhalter (1996) did not incorporate
uncertainty directly about the ranks of the
performance indicators. Moreover, these authors
did not consider the ranking of several
multinomial populations nor did they consider
sensory evaluation data. However, the sampling-
based approach of these authors is closest in
spirit to thework in this article.

In fact, Nandram (1997) obtained the
best multinomial population (not best subset)
among a set of populations, converting the
nominal data on the hedonic scale to numeric
scores. A number of independent nonidentical
multinomial populations with the same ordinal
categories are considered. This approach is
different from that in the ranking and selection
literature because it incorporates the prior belief
about which population is the best by assigning
a nonzero probability to the event that any
population could be the best population
(Nandram, 1997). The simple tree order (see
Rabertson, Wright and Dykstra, 1988) is used to
obtain the most probable population under a
variation of the stochastic ordering. Consider
two discrete random variables, P and Q, which

take the same values &, (increasing in j) with
probabilities p; and q; respectively,j=1,...,J
- 1, where

J

J
Z P =2_0G =1.
=1

=

then

P>Q

if, and only if,
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Zpi qui, s=1...,J-1. (1)

This is the situation for two multinomial
populations which are stochastically ordered (P
stochastically greater than Q) with the same
ordered categories; see, for example, Sampson
and Whitaker (1989). This stochastic ordering is
modified to obtain a criterion which will be used
to select the best population or best subset of

populations without using the values a; on the

ordinal scale.

The Bayesian analysis is pertinent as
there is useful information about which is the
best product. In the non-Bayesian approach, it is
difficult to express uncertainty about which
population is the best. Moreover, as the non-
Bayesian methods do not express uncertainty
about the best population, estimation after
selection becomes a delicate and tricky issue. In
the Bayesian method the parameters can be
estimated in a straightforward manner by mixing
with appropriate weights (posterior
probabilities); see Nandram (1997).

The objective is to select the best
population (or subset) among a number of
multinomial populations, whaose cell counts arise
from sensory evaluation, and to show how to
estimate the parametes of the selected
population. The method is sampling based, and
it uses Monte Carlo integration which is
accommodated by rgection sampling. A
methodology is described, and it is shown how
to compute efficiently the relevant quantities.
Next, the sensory data obtained from the Natick
food experiment is described and the
methodology is applied to select the best entree.
Finally, there are conclusions.

Methodol ogy

The objective is to develop a method to judge
the best multinomial population or the best
subset of multinomial populations without
converting the ordinal categories to numeric
scores by modifying the stochastic ordering.
Estimation is performed to make inference about
the quality of product. In general, it is assumed
that there are | multinomial populations, and the
best subset of size{ < | subsets is to be selected.

There are T =11/4(l —£)'distinct subsets of
size{ whicharedenoted by |,, t=1...,T . For
example, with | = 3, £ = 2, the set of all products
is{1, 2, 3}, T =3, and the subsets are |, = {1,
2}, I, ={1, 3} and I3 = {2, 3}. The primary
objective is to select the best subset among the
It

Mode
I multinomial populations with J
categories are considered. For thei™ population,

the counts, denoted by n =(ng...,n;),

i=1...,1, aretaken. In many applications it is
reasonable to assume that the n, have

independent multinomial  distributions with
J
probabilities p, = (Pyy,.. Py) D, Py =1.
- =

Letting
P:(PI11"" pl| ).,

thejoint likelihood is

| J

e TT TT P} @

i=1  j=1

A priori, without any order restriction on the p;;,
we take independent Dirichlet distributions for
the p;,

J ajj-1
H j=1 Py ’ 3

”(P)z L - D(a.)

where the o, = (ry,...,&;;)" and o; are fixed

guantities to be specified. Note that in

©D@=([r@Hr(a) aa 0

is the gamma function. In (3), a;j - ¥2 is taken for
three reasons. First, it is difficult to elicit
information about o;; even though they can be
interpreted as cell counts in a prior sensory
evaluation. Second, one does not want to model
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similarity among the different products as it is
believed that a priori some of them are better
than others. Third, it simplifies the computation
alot if the o;; are taken known, rather than if an
assumption is made about their distributions a
priori. Thus, to ensure the maximum
heterogeneity (no preference) Jeffreys reference
prior isused (i.e., ojj-%2), a proper density in this
application. In classical dtatistics, this is
equivalent to adding a %2 to the cell counts; a
recommendation usually made for sparse
categorical tables. Rather, prior information will
be inputted through the belief about which is the
best product.

Criteriafor Sdlection

One criterion that can be used is based
on the random variable X; representing values on
the hedonic scale. That is, letting g denote the
values on the ordinal scale,

Pr (X, = a, p)= (o j=1...,d,i=1...,1

J
and the mean of X; isdenoted by 1, => &, p; -
=1

First, to introduce the general criterion, suppose
a single population is sdected; let b denote the
selected population. The best (selected)
population is defined as the one for which

uy > max{u,i=1...,1}% (4)

That is, the population with the largest mean is
selected. Thus, the best population is defined by
using the simple tree order; see Robertson,
Wright and Dykstra (1988). Such an order
restriction arises naturally in many situations.
For example, if an investigator wishes to
compare severa treatments with a new one, the
prior information that the new treatment mean is
at least as large as the others might be
entertained. Because of its simplicity, (4) is
popular.

Nandram (1997) used criteria based on
the mean, standard deviation and coefficient of
variation of the X; to obtain the best multinomial
population (not best subset) among a set of
populations. However, he used the scores on the
hedonic scale to construct these criteria.

For subset selection, let |, denote the set
containing the £ best populations. (Notethat Iy, is
a proper nonempty subset of the set of |
products.) Then, based on the means, the (best)
selected set of populations Iy, is defined as the
onefor which

min{u;iel }>max{u;iel,}. (5)

Note that (4) is aspecial case of (5), and (5) can
be viewed as an extension of the simpletree
order.

Unfortunately, the method of subset
selection based on the mean, uses the category
scales. The & are amost always unknown and
areusualy takenas g =j, j = 1,..., J. Thethesis
is that this is inaccurate, and an alternative
solution based on a modification of the
stochastic ordering is sought. However, the
method of subset selection based on the mean
will be used for comparison with the method
which does not use the category scales.

A single criterion based on a version of
the stochastic ordering is obtained, but first, an
explanation for why the stochastic ordering
cannot be used directly is provided. For
simplicity, consider sdecting the best

population. Let A :{p:Z?:l p; <  max
(Z?:lptj,t=],...,l,t¢i)}, s=1,...,J-1,
and S =ﬂ:Aj . Then for each j the A; are

mutually  exclusive, ZilzlP(Aj)=L and

P(S)< min {P(A)), j=L1...,0-1. As the
P(Ajj) are different for each i, for some choice of
s and some i, P(A,) > min

{P(A), ] =1...,9-1.
Then, > P(S)<> P(A)=1.

That is, whilethe § are mutually exclusive, they
are not exhaustive. In fact, P (S) is not the
probability that the i™ population is the best; the
P (S) could be extremdy smal and

> P(S)<<l. Thus, for each j {A; | =

1,...,1} will be used as a partition to identify the
best population or subset.
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Aik=ZJ:pij,k=2,...,J, i=1..,1, 6)

these Ay are measures of the quality of the i™
product. Note that A is the probability of
getting at least response k on the ordinal scale

(eg., A is the probability of getting at least

aneutral response). To express uncertainty about
the best subset of populations, let B denote the
random variable indicating the best population
and « denote exclusively the measure of quality

whichisused. Let A, ={p:min{A,,iel}=
max {A,,iel}, t=1..T,k=2..J, ad

S AZ Sk As UJ ZAJ’ 523""")'
Then, x = kif pe A,, k=2,...,Jis defined

(However, note that « is a nuisance parameter.).
The criterion based on Sy is defined as the
modified stochastic ordering (MSO) criterion.
Then,

Pr(B=b,x=k) =@y, b=1...T,

| J
3.0 >y =1, 7)

b=1 k=1
where the o, are to be specified. Letting

J-1
Ay = @y, apriori the best population is the
k=1

p™" population for which
A, =max{4,,t=1....,T}. The 4, are to be
updated using the data.

Incorporating prior information about
which is the best entree through the w,, rather

than the a;; is preferred. 1t should be noted that it
is conceptually simple and convenient to use the
random variables B and x to model uncertainty
about which is the best entree. On the other
hand, it is much more difficult to add
information about which is the best entree
through the «;;. However, unless the o;; are all
equal, their specification will give latent
information about which is the best entree, but
this._information.is.difficult, to discern.

In addition, if there is a reluctance to
specify the a;j, then in the Bayesian paradigm
they are random variables, and the problem of
selection and estimation becomes extremey
difficult, especially if one wants to incorporate
uncertainty about which is the best population.

For the criterion given by (5) based on
the mean, k = 1 will be taken and define

Syy={p:mn{ g,,iel,}= max
(&;,1¢ 1.}, b=1....,T . Thecriterion based on
S,; will be called the mean response ordering

(MRO) criterion.
Then the prior distribution on pin (3)

becomes
lpf" pe Sk,

/{QB bj C”k@ D)

Q ~ otherwise,

8)

where

a=(y,.. )
and

IR |
eu () = | T =5 —— )

i=1

dp,b=1...,1,k=2,...,3J.
Note that

cbk(q)‘lzpr(pe S).b=1... T, k=2..,J.

These quantities are to be updated by the data,
and are to be used to update the @, which, in

turn, are to be used to judge the best product or
set of products.
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Bayesian Selection and Estimation

Now, it is shown how to use the data to
judge the best subset, and then to make inference

about the best set of populations.

Let
NG =n; +o;, N = (ny, N'y,..,n’y)
and
r~1':{n'ij =1...,1;j=1...,3)}.

Using Bayes' theorem, the joint posterior

distribution of P, Band«is
f(pB=b K=k}
=f(gn, B=h x=KRB=h k=K1
where

f(E)‘[l, B=b, x=k)

and

P(B=b, k= k‘[l)
areto be described. First,
f(E)‘[l,B=b, K=kj

J -1
| '_1p|,'
_ cok(qo[[H,’D(—n,;, pes,

0, otherwise,

where

-1 : H}]:l p'T” *
Co (M) =I HW

K Ti=l

dpa

b=1,...T, k=2,...,J.
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For convenience, letting §Dk be the complement
of Sy,

Thefollowing is defined as,

G (M)

J ; _
=1-¢, (M) LU
s W o)
\Second, letting

Mok (I’l') = Cpx (Of)cbk (rl,)_l,

b=1,..., T,k=2,..,7J,
(B=b, k= k"j) = Q) Zwbkrbk(r],)

Pr T J o (11)
{ X2anm b
t=1 j=2
Letting
. J
ﬂbzzﬁ)bj’ 12)
j=2

in (11), a posteriori the best subset is the b"
subset for which

A

/fb =max( A,t=1,...,T).

Consider testing Ho: b™ subset is the best versus
h,: b™ subset is not the best where Pr(Ho) =/
=1-Pr(H,). Then the Bayes factor, By, for testing
Ho versus Hi is

B, ={ A /- A H A (- 2.}

Letting
J
@' =2 (@)
j=2
and

C;; (rj,)_l = icbj (rj,)_l,
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it follows easily from (11) and (12) that the
Bayes factor is also given by

={c, (@), (M) " — 6, (M) "H1-g ()}

= (e (M) * =
J (13)
(J —1)_12% (@), (rj,)_l = Tb(rj’) -

In (13) the first approximation follows because
in many examples c, (n')>>1. This is true

when there is a large number of subsets asin our
application. Also in (13) the second

approximation follows if the oy(a) are

approximately constant which is the case with a
uniform prior on B and k. Notethat T, (n') isthe

average of the T, (n')in (11). Thus, it is

interesting to observe that one might interpret
r,(n") as the Bayes factor, which, in turn, can

be interpreted as the odds for Ho provided by the
data. For areview of the literature on the Bayes
factor and its interpretation see Kass and Raftery
(1995).

Inference proceeds by first picking with
uncertainty the best subset (i.e., the subset with

the largest /ib). Whether the frequentist method

or the Bayesian method is used, the statistician
will be uncertain about which is the best subset
of populations. However, in the Bayesian
method, as presented here the statistician can
incorporate  uncertainty about the best
population, and this is attractive because by (11)
the uncertainty about the best population a
posteriori can be quantified. In addition, a
posteriori inference about the parameters of the
judged best population is obtained by using the
posterior distribution

A -2 Aste

The elegance in the current approach is
contained in (14), as the weakness in the
classical approach, is that after the best
populationmismobtainedwthemmethods usually

n, B= t). (14)

proceed as though it is known with certainty
which is the best population.

The expressionin (14) can be
simplified. For

”(pb [‘j:ﬂ:b”(pb n,pe §)+
~ S : (15)
(1= A)7 (p,|n, pe §)
where
0 pes
= M) Pe
plnpes)= SOTL ey o)
Q otherwise,

S = Ui:z S, S, is the component of S, and
() 1y (m)

When the criterion based on the mean is
used, the following is taken

J
;Bi = Z jpij
=1

and

7 :{Zi: pij(j_ﬂi)z} =11

When the criterion based on the modified
stochastic ordering is used, the following is
taken

Infy 1@-x)}=6~A)/7,i=1..,1, j=1..,3-1,

where

i
}/” =Z pis and 0,< 0,<..< 93.1

s=1
are the unknown cutpoints. A posteriori
inference about f; and 7 can be obtained by
using (15). Inference is made about the
population means f; and standard deviations t;,
i=1,...l.
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Computations
In this section, a description of how to

Qj in (15) is

compute ﬂAb in (12) and 7[[ P,

provided.
First, consider 4,. Although it is more
accurate to compute T, (n') directly rather than

first computing Gy, (@) and ¢, (') separately,

a simple method is proposed which first abtains
Gy () and c,, (N') . How to obtain ¢, (n'), or

Cy (N') is described, for which the simple

method suggested by Nandram, Sedransk and
Smith (1997) is used. The problem of estimating

T, (n'") directly is a specia case of the more

general problem associated with estimating the
ratio of two normalization constants; see, for
example, Meng and Wong (1996) and Chen and
Shao (1997) who used Markov chain Monte
Carlo methods. (These refinements are
unnecessary in this application.) Denoting the
joint unrestricted posterior distribution of p by

{eh]

therefore,
o " b =1
) 1—[ j—1 M) ngjg ;pij—
(A= D)
Q otherwise.

(16)

N independent multivariate samples are selected
from the wunrestricted product Dirichlet

digtributions with parameters n’,i=1...,1 in

Ny

n;

(16), and find the number N~ falling inside Sx.

(Note that T, (n')™is estimated by the

proportion 1-T., falling outside Sy.) The

Monte Carlo sample size, N, is obtained by
taking, for example,

y

For the examples discussed, N=10,000 is taken.
The computations for ¢, ()™ or T, (n")™ are

Coy (Q,)T'I' —4 < .Ol} =0.95. (17)

performed for whichever requires smaller Monte
Carlo sample size in (17). Estimates of the

C, (o) are obtained in a similar manner. But

note that with a uniform prior on B and «, it is
unnecessary to compute C,, (&) since they are

al equal. Otherwise, 1, (n") are obtained by
monitoring the estimates of the ratios of ¢, ()

and ¢, (n") for convergence. Again 10,000

iterates suffice.
Samples from the posterior distribution

of '?b’ 7[[[2,3

using the composition method (Tanner 1993).
First, draw a uniform random variate, U ~ U

(0,1). Then if U <a&,, daw p,from

[lj in (15), can be obtained by

zz[pb n,pe S, |, othewise draw p, from

71'[ Po|N, PE §ij Samples of p, from
7[[ Po[N, PE Snkj can be obtained simply by

drawing p, from f"(p‘[lj and thenif pe S,,

accept  it.  Similarly,  samples  from

{n

drawing p from f"(p‘[lj and then if pe S, ,

n, pe §ijare obtained by simply

accept it. However, it is still possible to obtain

www.manaraa.com



490 A BAYESIAN SUBSET ANALY SIS OF SENSORY EVALUATION DATA

samples from 7[”[ Py [lj more efficiently.

It is not difficult to show that
2,6, () #1, then A, () <1 if and only if

(1-4,)C (M) >1. Also, it is not difficult to

show that if 4,C,(n’) <1, then

(o)A (o )e gy
a- A, (pufn).pe 5)
and if
-4,)5 (M <1
then
(o) ot ()

(1-(1- ﬁ:\b)c_bk(rl,))” ( F{b |rjjv PG Sy).

Note that f"(p, |n) is obtained by

marginalization of the posterior distribution
f"(p |n), in (16). Related arguments are

given by Bhattacharya and Nandram (1996).
Note that the application 4, could be very small
and c, (n')™ very close to 1, so that it is very

likely that (18) is the choice.
Thus, samples from the posterior

distribution 7[[ P,

[lj can be obtained by using

the composition method in ether (15), (18) or
(19). Notice that it is really simple to draw from

f”[ Rb

less than 1, draws can be made easily from (18),
or if (1-4,)C, () is large but less than 1,

nj. In practice, if jbc;(r]’) is large but

draws can be made easily from (19). In the event
that A4,c,(n)and T, (n)™" ae smal, or

a-4)c (n") and ¢, (n)™ are small, one can

draw efficiently from (15).
Posterior inference of any function of

P, (0., Ay) can be obtained by using samples

nj in a straightforward manner.

)

and the components p, are stripped off, one can

from 7[”[ Py

Noting that pis first drawn from 7[”[ Py

take p,", h=1,...M to be M vectors drawn

[lj and

)

is estimated by Ay, =M7>" AD and

nj is
Ay =M= (AD A, )% Note that in
these estimation procedures independent
samples are used, not dependent samples as in

Markov chain Monte Carlo methods.
To make inference about 5 and 7 a

from 7["[ Py

(h
A =37 AP, h=1..M. Then E[Abk

var[Abk estimated by

random sample p(l),...,p(M) is first obtained

from 7[”[ Py nj . Then using the criterion based

on the mean, the following is computed

J
g = z jpi(jh)andfi(h)

For the criterion based on the modified
stochastic ordering, nonlinear least squares
minimizing is used

2

S iy 12— 70 - @ - g0 170

i=1 j=1
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to obtain 8", 8" and 7", h=1,...M; see

appendix A for the appropriate equations. (The
iterative procedure converges quickly in less
than 5 steps.) Then a posteriori we take

2 _m-1NM ph)

IBi - M Zh:]_lBi
and

~ 1 M (h)

7=M Zh:lri

with corresponding standard deviation given by

{(M —1)‘12_] (8" - A )2}

and
{(m DI )2} |

1

Analysis of the Military Data

In this section, the methodology is
applied to the Natick Food Experiment. The
Meal, Ready-To-Eat (MRE) has twelve meals
(menus), each consisting of four to six food
items. The system contains 39 distinct foods.
Some of these items occur in more than one
meal and are regarded as different items in
different meals, so the total number of items
studied is 52. These items can be classified into
five principal types: entrees, pastries, vegetables,
fruits and miscellaneous. Chen, Nandram and
Ross (1996) analyzed these data to predict shelf
lives of the entrees, and they classified the
entrees according to whether their shelf lives are
short, medium or long.

Medls were purchased through the
military supply procedures of the armed-forces
procurement system, and the taste testing was
carried out at the Natick Laboratories (NLABS).
On arrival at NLABS they were inspected for
completeness, immediately tested at room
temperature (21°C) and stored at four different
temperatures. Those stored at room temperature

were withdrawn and tested at 12, 24 36, 48, 60
months' storage.

The meals were opened by test
monitors, and each item served to a panel of 36
untrained subjects who judged its acceptability
on a 9-point hedonic rating scale. At a session,
each consumer evaluated all the items in one
meal which consists of four to six items
(including an entree) served one at a time in
random order with a mouth-rinsing between
items.

Each item in the entire meal, which
consists of the entree and the other items, was
rated on the 9-point hedonic scale by each
pandist (Only one storage temperature was
tested for that particular meal, and other
temperatures for the same meal were judged
mostly by other panelists.). The pandlists were
chosen from a pool of volunteers comprising
both military and civilian staff at NLABS. At
most, two meals were tested each day, onein the
morning session and one in the afternoon. Care
was taken so that no panelist was used twice in
the same day. Thus, it is not unreasonable to
entertain the assumption that the responses
across meals and storage temperatures are
uncorrelated.

The samples were coded alphabetically
when presented to the test-subjects. The items
were al served at room temperature as they
came from the package except for the
dehydrated items, which were re-hydrated with
water at 60°C before serving. The tests took
place in semi-isolated booths at NLABS under
standard fluorescent lighting conditions. At any
withdrawal period as many as 48 sessions
(twelve menus at four temperatures) were
required, which means that the tests went up to 5
weeks, and individual pandists were used about
ten times during that period. Thus, it is natural to
assume that the responses on each item in a meal
follow a multinomial distribution, with different
distributions for different entrees.

For each of the 23 combinations of time
and temperature, there were sensory ratings for
each of the 36 pandlists, and so the data for each
item consisted of 828 scores. The results were
studied for 12 entrees: pork sausage (1), ham-
chicken loaf (2), beef patty (3), barbecued beef
(4), beef stew (5), frankfurters (6), turkey (7),
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beef in gravy (8), chicken (9), meat balls (10),
ham slices (11) and beef in sauce (12).

Our contact at NLABS suggested, of
course with uncertainty, that among the best
entrees are 5, 9 and 11. In fact, Chen, Nandram
and Ross (1995) found that at room temperature
the shdlf lives of 5, 9 and 11 are very long (12, 8
and 14 vyears respectively) making these
estimates less useful.

In Table 1 the responses of the 36
pandists for each entree are presented for the
entrees withdrawn after 12 months' storage; the
last two columns contain the average (avg) and
standard deviation (std) of the 36 scores. Here,
chicken (entree 9) has the largest average and
the smallest standard deviation, and beef stew
(entree 5) seems to be a good competitor.

Further, a Bonferroni  multiple
comparison procedure was performed using the
ANOVA procedure of SAS on the raw data. Of
course, this procedure assumes that the 36 scores
are normally distributed. At 12 months' storage,
the procedure indicated no significant
differences between the means of the entrees,
suggesting that there is no best entree at 12
months storage. Thus, a procedure which is
more sensitive than classical multiple
comparison is needed.

Numerical Results

The data on the sensory evaluation of
the twelve entrees withdrawn after twelve
months storage was used. Selection and
estimation were studied in turn. The best subset
of entrees with t entrees, t = 1,..., 4 were
considered. First, a uniform prior on all subsets
of size t was considered. That is, Ay
=T b=1... T was taken. To make
comparisons a much larger prior probability i, =
.25 for a preassigned best subset and the
remaining probability split equally among the (T
- 1) subsets was also studied. To further assess
difference between the criteria based on the
mean response ordering (MRO) and the
modified stochastic ordering (MSO) the
observed data was perturbed by replacing each
of the last two cell counts by the average of the
observed cell counts for the last two cells for
each entree.

In Table 2, the posterior probability /ib

and the Bayes factor Bf associated with the
presumed best subsets which are {9} {5, 9} { 5,
9,11} ,{5,7,9, 11} by criterion, data and prior
weight /y, is presented. For the observed data
when uniform prior weight is used, except for
the best entree which is {9} when the MRO is
used and {11} when the MSO is used, the
determined subsets of size 2, 3 and 4 are the
same, being exactly the presumed best subsets.

The best subsets with prior 4, = .25 are
the same as the presumed best subsets. The
posterior probabilities increase as the number of
subsets increase for both MRO and MSO, but
much more rapidly for the MRO. For the
perturbed data, there are substantial differences
between the MRO and the MSO with the
uniform prior. The posterior probability
decreases with the number of subsets for the
MRO and less rapidly for the MSO. But in both
cases the Bayes factor increases rapidly with the
number of subsets, morerapidly for the MRO.

Note that the best subsets of sizes 1, 2,
3, 4withthe MRO are{5}, {5, 9} {5, 9, 11}, {1,
5, 9, 11} respectively as compared with {11},
{9, 11} {5, 9, 10}, {5, 7, 9, 10}. The best
subsets with the perturbed data and A= .25 are
the same as those for the observed data for both
the MRO and the MSO. Thus, the two criteria
can lead to different judged best subsets.
However, if the prior probability on the best
subset is substantial, the two criteria provide the
same best subsets, the evidence with the MRO is
dlightly larger than with the MSO.

In Table 3, a sensitivity analysis to
investigate misspecifications with the presumed
best subsets is presented. A prior probability of
Ap= .25 is assigned to the possibly worst subsets
{2}, {2, 4}, {2, 4, 6} and {2, 4, 6, 12} with a
probability of .75 assigned equaly to the
remaining T — 1 subsets. Again, the observed
and the perturbed data are considered. With the
M SO the evidence for the presumed best subsets
is very weak, and in fact, the best judged subsets
are the ones expected. However, with the MSO
the best subsets are the same as assigned for
sizes 1, 2, 3 with very weak evidence, and for
size 4 the best subset is{5, 7, 9, 10} rather than
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{5, 7,9, 11} as specified by the MRO (Note that
the evidence is substantial.). Although the
judged best subsets for the perturbed data and
the observed data are the same, there are
substantial differences between the MRO and
the MSO for the perturbed data. The determined
subsets are different at every size and
interestingly the best subset of size 4 has
associated with it fairly large Bayes factors (82.5
versus 29.2). Thus, it is important to specify the
correct subset a priori especially if alarge prior
probability is placed on such a subset. Note that
the determined subsets are different for the four
scenarios.

Thus, the best subsets of any size are
likely to be different for the two criteria,
suggesting that it is risky to use the category
scales when selecting the best subsets.

Next, consider estimation of the mean
response /5 and the measure of variability 7 for
which the posterior mean and standard deviation
are obtained. Letting 6 dencte either 5 or 7, we

take AVGC = é(5 lj) and ST Dc =

{vaf'(6)n)}*"* under criterion based on C (MRO

or MSO). Then, consider the ratio Rayg = AVGneo
IAVGiyo and Rgg = STD o /STD o

In Table 4, results are presented for the
observed data by prior weight for the modified

493

stochastic ordering (MSO) for subsets of size 4.
Columns 3 and 4, and 7 and 8, show there are
minor differences between posterior means for f;
and 7, respectively for A = T * and 1=.25. In
addition, columns 5 and 9 show minor
differences between the point estimates when
the MRO and M SO are used. However, columns
6 and 10 show substantial differences between
the MRO and MSO. Ryq under the MSO is at
least twice as large under the MRO for the f; and
at least one and a half times as large for the 7.
Note also that there are differences for Ry
between 4 = T * and /=.25 (e.g., compare the
values for entrees 7 and 10 in column 6). Thus,
for estimation when little difference is expected
between the posterior means with the MRO and
MSO, there are substantial differences between
the standard deviations.

In Table 5, ranges are considered for the
ratios Rayg and Ryq for subsets of sizes1-4 . =T"
! and 1=.25 and for the observed data sets and
the perturbed data sets for the g; and the 7. The
ranges for Ra,g are very similar for both f; and
for all scenarios (i.e., the posterior means are
very similar undr MRO and MSO). The
standard deviations are much larger under the
MSO for £, but not so large for the 7;, and there
isa dlight increase in the ranges of Ryg from T ™*
to A=.25. In addition, as expected, note that there
are virtually no differences in estimation for
various sizes of the subsets.

Table 1: Pandlists’ responses for the military sensory evaluation Response Categories

Entree 1 2 3 4 5 6 7 8 9 avg std
1 2 0 1 5 4 6 8 8 2 6.08 2.01
2 0O 4 1 7 4 8 6 5 1 5.50 1.93
3 2 1 3 7 3 8 8 4 0 5.33 1.94
4 0o 2 1 3 5 10 8 7 0 6.00 1.64
5 0O O 1 3 7 6 8 100 1 6.42 1.50
6 O 3 4 7 4 8 8 2 0 5.17 1.75
7 0 1 0O 5 4 10 10 5 1 6.14 1.50
8 1 3 2 3 4 12 7 4 0 5.50 1.86
9 0O O 1 5 0 9 14 6 1 6.44 1.40
10 O o0 2 5 4 7 11 7 0 6.14 1.51
11 2 1 2 1 1 5 17 6 1 6.25 1.98
12 2 2 5 3 0 13 6 3 2 5.42 2.16

Note: Meals were withdrawn after twelve months’ storage.
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Table 2: Posterior probability, Bayes factor and the judged best subset (b) of entrees with a prior probability on the
presumed best subset by data, criterion and prior weight

Observed Data Perturbed Data

MRO MSO MRO MSO

A, B t, i, B t, A, B t, i, B t,

@4 =T"
.36 51 9 21 2.9 11 .32 5.2 5 21 2.9 11
72 22.7 59 34 4.7 59 .20 16.6 59 .10 7.5 9 11
.85 50.2 509 11 .59 12.8 509 11 13 31.3 509 11 .06 14.7 59, 10
.88 64.4 57,911 .69 20.1 57,911 A1 62.0 1,509 11 .04 22.0 57,9 10
() 4, =.25
.63 51 9 .38 1.9 9 .59 4.3 9 41 2.1 9
.88 22.7 59 .61 4.7 59 .85 16.6 59 .62 49 59
94 50.2 509 11 81 12.8 509 11 91 31.3 509, 11 .80 11.7 509 11

.96 64.4 570911 87 201 570911 94 449 570911 88 217 570911

NOTE: The presumed best subsets are {9}, {5, 9}, {5, 9,11}, {5, 7, 9, 11}; a probahility ﬂb is assigned to each of these subsets

and (1-A,)(T -1 is assigned to each of the remaining (T —1) subsets; mean response ordering (MRO), modified
stochastic ordering (MSO)
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Table 3: Posterior probability, Bayes factor for the judged best subset (b) of entrees under

misspecification of the presumed best subset by data, criterion and prior weight

Observed Data Perturbed Data

Preassigned Determined Preassigned Determined
A, B 4, B bt 4 B 4, B ty
(a) Mean Response Ordering (MRO)
24 03 .25 6.9 9 10 03 30 58 5
.02 00 .25 43.8 59 .01 00 .20 218 59
.00 00 .19 100.2 5911 .00 00 .13 416 5911
.00 00 .12 1287 57911 .00 00 .11 825 1,50911
(b) Modified Stochastic Ordering (MSO)
39 06 .39 0.6 4 20 07 20 07 4
25 03 .25 0.3 2,4 16 06 .16 06 2,4
37 06 .37 0.6 2,4,6 A9 07 .19 0.7 2,4,6
.05 01 .07 69.2 57,910 .01 00 .04 292 57,910

NOTE: The presumed worst subsets are {2}, {2, 4}, {2, 4, 6}, {2, 4, 6, 12}; a probability ﬂb =.25 isassigned to
each of these subsetsand (1— A, )(T —1) ™ isassigned to each of the remaining (T —1) subsets.
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Table 4: Posterior mean and standard deviation of u and T under M SO, and ratios of
posterior means and standard deviations for all entrees based on the judged best four
entrees using the observed data by prior weight

u T
), Entree AVG SID Ryg Rsw AVG SID  Rag  Ra
T! 1 652 077 109 238 247 041 120 190
2 576 064 106 205 183 035 093 207
3 471 069 089 221 183 038 093 216
4 582 068 099 246 149 031 08 160
5 695 060 111 228 168 033 101 186
6 491 065 095 227 148 030 08 204
7 649 060 108 228 169 031 103 164
8 494 068 091 225 174 035 091 186
9 691 060 110 239 165 032 104 165
10 611 067 102 256 142 029 08 176
11 625 078 102 242 233 040 115 159
12 537 076 100 222 251 041 116 221
25 1 628 071 108 280 247 041 118 199
2 560 064 105 218 183 035 093 207
3 467 067 088 218 182 038 093 213
4 565 065 098 285 151 032 085 173
5 711 058 112 269 166 032 101 191
6 489 065 095 229 148 031 08 208
7 673 056 109 3.00 168 031 106 180
8 485 066 089 228 174 036 091 193
9 702 057 111 273 165 031 105 174
10 500 064 101 3.09 143 031 084 18
11 644 075 103 3.37 228 038 118 178
12 528 074 099 225 251 041 116 222
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Table 5: Ranges of ratios of posterior means and standard deviations of p and T based on the judged

best subset of sizes 1—- 4 by data and prior weight

u T
(a) Observed data
T! 0.89-1.12 2.02-2.56 0.82-1.21 1.54-2.21
.25 0.88-1.13 2.05-3.37 0.82-1.21 1.61-2.22
(b) Perturbed data
T! 0.92-1.13 1.78-2.23 0.83-1.21 1.68-2.26
.25 0.91-1.13 1.75-3.17 0.83-1.26 1.70-2.26

Conclusion

The method for how to obtain the best subset of
a sat of multinomial populations and how to
estimate the parameters of any of the selected
population has been shown. In addition, it has
been shown that the judged best subset can be
different under the modified stochastic ordering
and the mean response ordering. The
methodology applies generaly to many sensory
data problems when a nonparametric approach
might be desirable and when there are small cell
counts. For an aternative nonparametric
Bayesian approach to estimate several similar
multinomial populations see Quintana (1998).
He used a Dirichlet process prior to obtain a
more robust specification of exchangeability.
The method to obtain the best subset of entrees
that was outlined in this article is much simpler.
Specifically, five tasks were
accomplished. First, a more formal framework
for sdection than Morris and Christiansen
(1996) and Goldstein and Spiegelhalter (1996)
has been obtained. The main feature of the
estimation method is that it weighs the different
subsets according to which one is believed to be
best. As thereis a joint posterior distribution of
the best population and its parameters,
estimation proceeds in a simple manner. Second,
most non-Bayesian procedures in ranking and
selection; musethe normality-massumption. A

normal approximation was not used in this
analysis, instead work was done directly with
the multinomial assumption. Third, work was
done with all the categories in the multinomial
table (i.e., collapsing to remove sparseness has
not been done). Fourth, this method is sampling
based, facilitating a complete probabilistic
analysis of the best subset of multinomial
populations. Fifth, the method for how to
estimate the average response score and standard
deviation for each food without actually using
the numeric scores has been shown.

With respect to the application
discussed, future work will address more
complicated issues associated with different
storage temperatures, and the other items
including the entrees in each meal. It will be
useful to obtain the best subset at al
temperatures for all rated items in each food.
More generally, a humber of items is usualy
rated in accordance with a number of different
characteristics. Then, one might wish to find the
best subset of items when all the characteristics
are taken simultaneously.
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Appendix A

For the iterative nonlinear least squares, one
would take

Ay =In{y; 1A=y} =0, - B) 7,
where
0,<6,<...<0, .,

J
=Zpip, i=12...,1,j=,2.,J-1
p=1
Let
_ J-1 _ J-1
0=0-1)">0,A=(I-D">A,,
j=1 j=L

@ :{i(ej _;Bi)/AiJ} {(ej _;Bi)/Aij},
i=12...,1,j=12..J-1

Then, the normal equations, obtained by
minimizing
I J1

ZZ{AU’ _(ej _IBi)/Ti}z

i=1 j=1

over 8, B, and 7, , are
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I 1
6, =[Zfi_2j ZTi_z(TiAij +£)j=12..,3-]
i1 =
(A.1)
B =0-1A, i=12...,1,
(A.2)
)1
4 =Za)ij (gj _:Bi)A_ijl-
=1
(A.3)

Letting

(p, +1/2n.) }

D. =n. / . A* = |n —
P =i S {(1— P, +1/2n.)
with

and starting values are obtained by taking

J
n.=>n fori=1,2,.,1,j=1,2,.., -1,
j=1

J

A= iby ={iﬁ.j(i—ﬂi>2} ,

j=L

, =[|Zfrzj_ irrz(riA}} +4).

i=1

Starting  with a random sample
p®, p® L, p™M), taking

(h _ (h) (h) i
AP =In{y;" IL-y;")} and solving the
normal equations (A.1), (A.2), (A.3), samples
6", g, and 7", h=1,2,.., M are obtained

from their empirical posterior distributions.
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An Estimator Of Intervention Effect On Disease Severity

David Siev
USDA Center for Veterinary Biologics

When a medical intervention prevents a dichotomous outcome, the size of its effect is often estimated
with the prevented fraction. Some interventions may reduce the severity of an outcome without entirely
preventing it. To quantify the effect of a severity-moderating intervention, a measure termed the mitigated
fraction (MF) is proposed. MF has broad applicability, because it measures the overlap of two empirical
distributions based on their stochastic ordering. It is aso useful in the specific context of medical
interventions, because it shares certain structural and functional features with the prevented fraction. The
two measures may be applied together in a single semiparametric model with components for outcome
prevention and for severity conditional on the presence of the outcome.

Key words: mitigated fraction, prevented fraction, vaccine efficacy

Introduction For vaccination, PF is the relative
decrease in the probability a vaccinate will

When a medical intervention is intended to become a case, while MF is therelative increase
prevent a dichotomous outcome, such as the in the probability that a vaccinate' s disease will
presence or absence of disease, an estimator be less severe than a nonvaccinate's disease.
known as the prevented fraction (PF) is This article shows its origin, describes some of
commonly used to measure its effect. Vaccine its features, and illustrates how PF and MF may
efficacy, for example, is often estimated using be components of a nested model.
some form of prevented fraction. Some
interventions are, however, intended to reduce Example
disease severity without entirdy preventing A swine respiratory disease vaccine
disease. It would be valuable to have an study included groups of pigs treated with either
estimator that is broadly applicable for vaccine or placebo. All subjects were exposed to
evaluating vaccine efficacy in reducing disease the pathogen and subsequently sacrificed. At
severity (Mehrotra, 2004). An estimator that has postmortem examination, the extent of gross
proved useful in animal vaccine studies is the lesions in the lungs of each subject was
mitigated fraction (MF). The mitigated fraction estimated by visual approximation. Two
is a new incarnation of an old statistic with a observers independently sketched on a grid the
number of salient attributes. It is both analogous dorsal and ventral surfaces of each of the seven
in function and homologous in structure to the lung lobes. The fraction of each lobe was taken
prevented fraction. as the average of the two surfaces and two

observers. The lobe fractions were weighted (by

their standard relative mass) and summed to
David Siev acknowledges helpful comments of arrive at the fraction of the lungs consisting of
many colleagues, particularly B. Fergen, P. gross lesions. They are shown in Figure 1.
Dixon, T. Katz, D. Sweeney, J. Zimmerman.
Email him at David.Siev@aphis.usda.gov.
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Figure 1. Fraction of lungs consisting of gross
lesions. Number of subjects — placebo: 21,
vaccine: 22. Points are jitter vertically to aid
visualization.

How then should one analyze and
summarize the findings of this study? The
subjects could be divided into unaffected (0%
lesions) and affected (more than 0% lesions).
The prevented fraction could then be estimated,
using methods for binary data. Important
information is lost, however, if one only
considers whether the response was present or
absent and ignores its severity, particularly
because most subjects were affected, and there
was a wide range of response.

An approach often seen with this type of
data is to calculate the average percent in each
group and compare the group averages by their
difference or reative difference. Taking
averages is not the soundest way to summarize
data that are highly skewed and border a
boundary of the parameter space. The resulting
summary measure also does not illuminate the
vaccine s impact on individual subjects, as does
PF, which is the relative decrease in the
probability a vaccinate will become a case. A
measure analogous to PF is MF, the relative
increase in the probability that a vaccinate's
disease will be less severe than a nonvaccinate' s
disease. An interesting question is whether to
estimate MF for the entire set of data, or only for
those affected by challenge. That point will be
considered further when the example is
revisited.

SIEV
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Mitigated Fraction

Prevented fraction has the genera
formPF =1-p,/p,, where, say, p. is the
expected fraction of nonvaccinates affected by
disease, and p; is the corresponding expectation
among vaccinates. As the usual estimator of
vaccine effect, PF is often simply termed
vaccine efficacy (VE) in vaccine studies. Besides
binomial expectations, VE may be constructed
from other parameters that are related in some
way to the probability of disease transmission
(see Table 1 of Halloran et a., 1997, for an
overview).

Suppose that all subjects in a vaccine
trial become sick, whether vaccinated or not.
Rather than looking at the effect of vaccination
on the rdative probability of contracting the
disease, one might now wish to consider the
effect of vaccination on the relative probability
that the disease is milder. An estimator may be
constructed that is both analogous to PF in
function (summarizing subject probabilities) and
homologous to PF in structure (difference
relative to nonintervention).

To highlight these features, it is called
the mitigated fraction (MF). That s,
MF =1-t,/t, where t, is the estimated
probability that a vaccinate's disease is more
severe than that of a nonvaccinate, and t; is the
probability of greater severity in the absence of
vaccination. MF may range from -1 to 1, unlike
PF, which can take any real value no greater
than 1. The difference in their ranges is related
to the fact that the constituent probabilities in
MF are reative (more or less severe than the
other treatment group), while those in PF are not
(presence or absence of disease). In practice, if a
vaccine does not actually cause disease, both
MF and PF will take values from O to 1.

If disease severity can be graded by
some continuous measure or discrete assessment
in a way that results in unambiguous ranks, the
mitigated fraction is estimated by

MF = {2W, - n(1+ n, + n,)}/nn,
where W is the familiar Wilcoxon rank sum
statistic, n is the number of subjects in a group,
and the subscripts are 1 for nonvaccinates and 2
for vaccinates.
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Background

A general problem is how to distinguish
between samples of two populations in some
guantifiable way that avoids all parametric
assumptions. A useful approach is to consider
the stochastic ordering of the two empirical
distributions. Figure 2 illustrates two estimators
that do so,

T, = Prob(Y; > Y;) + 3 Prob(Y, =Y,) .

For continuous random variables
Prob(Y; =Y;) = 0, of course, and the second term
is omitted from the figure labd for simplicity,
but without loss of generdity. If two
distributions are stochastically identical, the
probability that a realization from one of them is
greater or lower than a realization from the other
isone half. Consequently, & rescales T; to range
from —1 to 1, with O corresponding to the null
probability, ¥-.

—t o

_ —t—

T =Prob(y, >y,

Figure 2. Because T; and T; are complementary
probabilities, summing to one and equidistant
fromY2, 8 may bereformulated as

7]

Ti_Tj
P(Y; <Y)—P(Y; >Y)

In other words, 6, is a measure of the

overlap between the two distributions based on
their stochastic ordering. A general measure of
the overlap of two distributionsis simply &, the

absolute value of either 6. 6=|6|=2(T-1),
where

T= sup{Prob(yl > yz)f Prob(yl < yz)} :

0 is used when comparing distributions that
have no particular relative ordering. 6, on the

other hand, is useful when the distributions arise
in a particular setting that establishes an ordered
relationship. For example, population 2 may be
manifesting the effect of a medical intervention
that is beng compared to population 1,
representing placebo treatment.

These estimators are generalizations of
known dtatistics. For example, mean ridits
(Bross, 1958) are T;, and Somers d statistics
(Somers, 1962) are 6. (Vigderhous (1979)

noted the connection between ridits and Somers
d). Somers d was conceived as a measure of
association between two ordinal variables, in
contrast to ridit analysis, which was designed to
compare the distributions of an ordinal variable
in each of two distinct populations. Here, they
are generalized to encompass data of all types
that are not necessarily categorical and may arise
from independent or correlated distributions.
This general approach has been advocated by
other authors (Wolf & Hogg, 1971).

It is well known that an estimate of T
may be recovered from the Wilcoxon-Mann-
Whitney statistic (Wolf & Hogg, 1971, equation
1). That may be done as follows.

T = Ui _VVi_ni(ni +l)/2
" nn, nn,

where

W, = sum of the ranks in group i (the
Wilcoxon rank sum dtatistic), and U; =
number of times a yy precedes a yi, (the
Mann-Whitney U statistic), i.e,

U ZZZIH(yjkf Yin) s
k=1 h=1

where

H(a,b) =1if a<b; 0if a>b; and$if a=b,
and yin is the response of subjecth (h=1 ...
n) ingroupi (i =1, 2).
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Substituting 6, = 2(T, — %) gives
0, = {ZWi -n(1+n, + nj)}/ninj

Stratified Design
To estimate 6 from stratified data use
T =ZU"/Z”"”J+ , wherer indexes the strata.

For matched pairs, this reduces to a simple
binomial fraction T, =) I(y, < yir)/R, where

Ris the number of pairsand I(-) is the indicator

function. In that case, interval estimation can
proceed by familiar methods for binomial
fractions.

Subject Components

MF may be decomposed into the
contribution of individual subjects. The
component for a vaccinated subject | is

s, = 2> H(y,, yu) -1, which is its

1 k=1

L 1 .
contribution to MF =—>"s, . MF is thus the
n, =

mean of the individual subject components.

Confidence Intervals

Confidence intervals using normal
approximations can be derived from the
asymptotic variance for W or the asymptotic
variance for Somers d provided by popular
software packages. Such intervals depend on
assumptions are preferably avoided and may
even contain inadmissable values. An alternative
is to calculate confidence intervals for MF by
one of the bootstrap methods (Efron &
Tibshirani, 1993); this is an area of ongoing
investigation.
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Graphical Representation (Example)

Figure 3 shows the empirical cumulative
distribution  function of the difference
distribution, F(Y, -Y,), obtained from taking all
pairwise differences between the groups in our
example: d; =y, —Yy,;, where i=1,..,n, and

j=1..,n,. The arrow leading from the 50%

quantile indicates the median difference (the
Hodges-L ehmann estimator), which gives some
idea of the amount of shift between the two
distributions. The quantile corresponding to a
difference of zero is the probability that a
vaccinate€' s disease is less severe than that of a
nonvaccinate (T;). Rescaling the difference
between T, and the median gives MF, shown in
the right hand y axis. MF is thus a rescaled
quantile of the difference distribution.

In contrast to the median difference,
which isin the original units of measurement on
the abscissa (x axis), MF reflects probabilities on
the ordinate (y axis). In this example, T, = 0.69
means that 69% of the nonvaccinates are
expected to be more severdy affected than the

vaccinates, MF =2(T, - %)=0.39, (95% boot-

strap CI: 0.06 to 0.68). The vaccine benefited an
estimated 39% of the 50% of vaccinates who, in
the absence of vaccination, would have been
more severdy affected than nonvaccinates.

Interpretation and application of MF

MF is the increase due to vaccination of
the probability that a vaccinate' s disease will be
less severe than a nonvaccinate's disease,
relative to the probability that it would have
been less severe had the individual not been
vaccinated. It is important to avoid direct
comparison between PF and MF, which have
somewhat different implications. Many of the
usual estimators of vaccine efficacy are
concerned with the prevention of outcomes that
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Figure 3. Empirica difference distribution showing MF as arescaled quantile.
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are links in the chain of disease transmission,
such as infection or infectivity, and in this
respect MF is not like them. PF also relies on
explicit case definitions, while MF is intended
for situations where disease severity need only
be clearly graded.

MF is analogous to PF in that it is based
on estimated subject probabilities. Some relative
difference measures that attempt to mimic PF in
formulation may not necessarily have an
analogous implication and should be interpreted
cautiously. For example, a formulation that is
often used to emulate PF is the reative
difference of means ((y,-V,)/,)- Thisis, at
best, a comparison of population averages rather
than subject distribution. It is rarely appropriate
as the sole assessment of vaccine efficacy when
the outcome is continuous rather than
dichotomous (and it is particularly misleading
when the data may not have arisen from a

location-scale distribution).  Although  such
estimators may be devised to emulate the
configuration of PF, they fail to capture a
similar meaning, since what is important about
the constituent parameters in PF is not that they
are means but that they are category
probabilities. In this respect, MF is an estimator
that is analogous to PF.

The use of mean based estimators may
aso arise from an understandable desire to
quantify the amount of severity reduction.
Unfortunately, such estimators are sensitive to
the form and scale of the response measurement,
which may vary substantially between similar
studies. MF, on the other hand, is invariant to
order-preserving transformations of the data
The price for such invariance is that MF gives
no information about the magnitude of disease
severity reduction, and a large value of MF may
result from a small but highly probable reduction
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in severity. That is why it is a good idea to
accompany MF with an estimator in the original
units of measurement, such as the empirical
quartilesillustrated in Figure 1.

MF may also be estimated under arange
of parametric assumptions, thereby offering a
common approach to studies of various types.
The example illustrates its most general
application, where there are no assumptions
other than that the data are legitimatdy ranked.
MF could just as readily be estimated from
ordinal categories or continuous data. With
categorical data, the estimator based on W
corresponds to the ridit estimator. In parametric
analyses, the probabilities are obtained from the
estimated cumulative distribution functions. For
example, the frequency table shows the number
of subjects of a drug trial in categories of
increasing disease severity. (The data are a
subset of those analyzed by Poon (2004).) By
the formula, estimated MF=0.08 (95%
bootstrap Cl: -0.07, 0.23). By Poon's latent
normal model, estimated MF=0.10 (95%
profile likelihood Cl: -0.11, 0.30). Regardiess
how the probabilities are estimated, the meaning
of MF remains the same.

increasing disease severity —

placebo 2 12|54 29]| 3

drug 4 12314522 | 2

Conditional MF in Nested Moddls

Nested Modd 1

Consider a model with a component for
the presence or absence of disease and a
component for disease severity among only
those who become sick. Suppose resistance to
the pathogen is dichotomous, while the immune
response to vaccination among those susceptible
to challenge follows some discrete or continuous
distribution. Such a model may be formulated

f(y)=z'[@-m)f(yly>0]",

where d=1I(y=0)(i.e d is an indicator taking
the vaue 1 if y=0 and O otherwise) and
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7 =E(d), its expectation. The likelihood is then

factored into a Bernoulli likelihood and a
conditionally independent part which contributes
to the total only for responders. This is a nested
model  with  conditionally  independent
components. Since participation in the second
part is conditional on crossing the hurdle of the
first part, this type of nested model is sometimes
termed a hurdle model (Mullahy, 1986).

If f(yly>0 wee completey
specified, say as a beta density, maximum
likelihood estimation could be used to assess
how the treatment groups differed with respect
to prevention, conditional severity, or both. If
complete specification is not warranted, PF may
be estimated from the first part and MFc , the
conditional mitigated fraction among those
affected, from the second part. To do so, let

P =1_7Ti
and

TC

Ty, >0,y,>0.
Then,
PF =1-p,/p, and MF, = 2T -1.

The conditionally independent nature of
the nested components distinguishes the nested
model from more complex mixture models. For
example, continuous data with many zeros
would, in some cases, be analyzed with a zero-
inflated model. In contrast to a nested model, the
nonresponse portion of a zero-inflated model
describes a latent mixture of two populations,
one which may be incapable of response and
another capable of response but with response
zero according to distribution f, (y), leading to

the formulation

f(y)={A+A- 1,0} [A-Df,(yly>0] ",

where A isthe population mixture parameter.
An example of a nested model for

categorized data is the well-known continuation-

ratio factorization of the multinomial likelihood
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into conditionally  independent  binomial
components. It may be parameterized

J
L(z) o []6,"(1-6,)"" , where, for thejth of
j=1
J categories, Y, is the category count, 7z; isthe
category ~ probability, r =3%l,y, is the
cumulative category count, and n=33_y, isthe

total.
The continuation ratios are

5, =r,/%_,7 . the probability of being in

category j given not in any previous category.
Continuation-ratio models are useful for
tabulated health events that occur in a natural
sequence. For example, the impact of a pathogen
on reproductive health may be seen by the
presence of norma conception, gestation,
parturition, and neonatal vigor, and a subject’s
inclusion at any stage depends on successfully
passing the previous stage. Continuation-ratio
models may also be applied to ordina
categories, such as disease severity, if they are
similarly considered to be nested. In some
situations they may offer an alternative to the
more common cumulative probability models.

Suppose disease is categorized as
absent, mild, moderate, and severe, and the
counts for the two groups are arrayed in a4 x 2
contingency table. MF could be estimated from
the entire table, or separate estimates could be
obtained for PF and MFc. PF would be
estimated from the 2 x 2 table collapsing over
categories 2 through 4, while MFc would be
estimated from the 3 x 2 table that excludes the
first category. A similar rationale could be
applied to ranked data if each rank were thought
to represent a discrete category.

Implications of Nested M odel

What are the implications of the nested
model for prevention and conditional severity?
Suppose all nonvaccinates are sick while some
vaccinates are unaffected (p, =1 p,<1), and
disease severity is reduced among the
vaccinates. MF is then a simple function of its
components:. MF =1-(1- MF.)(1- PF).
Otherwise, in most practical situations wherethe
vaccine both prevents disease (PF >0) and

reduces its severity among those affected
(MF. >0), the relationship would be

MF < 1-(1-MF.)(1-PF). If the vaccine

reduces disease severity among the affected but
has no effect on disease prevention, although
resistant individuals are found among both
nonvaccinates and vaccinates ( p, = p, <1), the

inequality reduces to MF < MF.. In both latter

situations, MFc and PF provide illuminating
information and may be examined separately
from MF. On the other hand, in the unlikely but
not impossible case that the vaccine were to
prevent disease but increase severity among
affected vaccinates (MF. <0), MF could be a
useful summary which balances the benefit of
prevention against the detriment of increased
Severity.

Nested Modd 2

Nested models may also be constructed
when the first component is at the end, rather
than the beginning, of the disease process. For
example, suppose participation in the evaluation
of disease severity depends on whether or not a
subject survives. The moded would then be

f(y)=[f(ylx=0)z] @-7)"",

where each observation consists of the pair
{y, x}, y is the measurement of disease severity,

and x takes the values O if the subject has died
and 1 otherwise.

Implications of Nested Model 2

What are the implications of the nested
model for severity given that aterminal outcome
has not occurred? Suppose a subject dies. Is its
prior disease severity rdevant? There are several
possibilities. For example, in an established
clinical model where the severity of gross
lesions predicts a possibly fatal disease, it may
be valid to include the observations of all
subjects, surviving or not, to assess disease
severity. On the other hand, there may be no
clear association between the observation and
disease. Acute death may occur in response to
pathogen challenge without any clinical signs at
all. Retaining the observations of the dead
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subjects when the severity measure is unrelated
to a primary clinical outcome perpetuates an
incoherent clinical model. In such cases, rank
based methods are sometimes applied after
assigning the dead subjects a common vaue
greater than the maximum value of the surviving
subjects. This approach treats death as simply
the severest manifestation of disease, ignoring
the qualitative difference between death and
survival. A third position is that death is a
critical event, but the prior disease severity of
dead subjects is of no practical interest, leading
us to exclude them from the evaluation of
disease severity, but including all subjects when
considering mortality. Since participation in
disease severity evaluation is conditional on
survival, a nested model may be constructed in
which each observation consists of the pair

{y,x}, where xindicates whether or not the

subject has died, and y is the measurement of
disease severity (nested model 2).

Examplerevisited

In the swine vaccine example, an
estimate of the mitigated fraction s
MF =0.39(95% bootstrap Cl: 0.06 to 0.68).
(The asymptotic approximation is 0.07, 0.71.) A
number of subjectsin the study did not succumb
at al to pathogen challenge. Suppose resistance
to the pathogen is dichotomous, while the
immune response to vaccination among those
susceptible  to  challenge follows some
continuous distribution. The dichotomous
response may be described by PF, and the
continuous response by MF¢ , the conditional
mitigated fraction among those affected. PF and
MFc would be derived from the conditionally
independent components of a hurdle model
(nested mode 1).

The value of nested models is that they
alow simultaneous inference on two
components that are conditionally independent.
In the example, one would estimate PF by
categorizing all observations as disease positive
if the pathological lung fraction is greater than
zero and disease negative otherwise. MFc isthen
estimated using only the nonzero observations.
Taking that approach, point and interval
estimates are PF=0.21 (-0.15, 0.49), and
MF. =0.42 (0.01, 0.49). Apparently, the study
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is insufficient for conclusive inference on ether
one aone

Conclusion

Although it is easily calculated from the
Wilcoxon statistic, MF is aimed at estimation
rather than hypothesis testing. Consequently, it
helps focus attention on the clinical relevance of
the outcome. Nonparametric tests are sometimes
abused by those who seem to think that avoiding
certain parametric assumptions also eliminates
the need for forethought in study design. Careis
particularly needed when aobservations are
recorded in the form of derived ratings such as
complex scoring schemes which, unlike simple
grading scales, often do not preserve a clear
correspondence of score with disease severity.
Unless one is confident in the scores validity
when ranked, the methods shown here should
not be used. Nonparametric analysis will not
salvage a poorly designed scoring scheme.

Estimation requires an outcome that is
quantitatively meaningful as well as clinically
rdevant. The study protocol should explicitly
specify the outcome variable and describe how it
will be recorded. Outcome specification should
also aim to highlight the random structure of the
data rather than conceal or ignore it by appeal to
rank based methods.

For this reason, the use of nonparametric
techniques in pivotal confirmatory studies has
been discouraged (eg. Longford and Nelder,
1999). Critics point out that reiance on
nonparametric methods may simply postpone
the search for a suitable scale of measurement
and clarification of its stochastic nature, which
are prerequisites for planning a study able to
yield informative estimates of the size and
uncertainty of relevant  effects.  Full
distributional  specification of a germane
response  variable is cetainly  idedal.
Nevertheless, the basis of MF on ranks gives it
the very qualities that are valuable in certain
types of studies, particularly where a measure
based on subject probabilities is preferable to an
alternative measure formed from averages.

Because the mitigated fraction is
comparable in structure and function to the
prevented fraction, it is a useful method of
estimating the benefit of an intervention that
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reduces disease severity. Like PF, MF evaluates
the intervention’s effect by the probability a
subject will benefit from the intervention. For
this reason, MFc and PF may illuminate
different aspects of the same intervention when
they are components of a nested model, and MF
may be useful in comparisons between studies.
For example, animal vaccine studies typically
entail challenging all subjects with the virulent
pathogen. The response to challenge often varies
in magnitude between studies, and, when the
response is an uncategorized measure of disease
severity, the relative difference between mean
group responses often varies, aswell. Whileit is
difficult to completely standardize the evaluation
of such studies, MF estimates the probability of
a beneficial response to vaccination, offering a
way to assess the degree of vaccine effect at
different times or locations.
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Estimating The Slope Of Simple Linear Regression In The Presence Of Outliers
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In this article, an estimation procedure to simple linear regression in the presence of outliers is proposed.
The performance of the proposed estimator, the AM estimator, is compared with other traditional
estimators: least squares, Theil type repeated median, and geometric mean. A numerical example is given
to illustrate the proposed estimator. Simulation results indicate that the proposed estimator is accurate and

has a high precision in the presence of outliers.
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Introduction

Regression analysis was first developed by Sir
Francis Galton in the later part of the 19"
century. Galton had studied the relation between
heights of parents and children and noted that
the heights of children of both tall and short
parents appeared to revert or regress to the mean
of the group. Galton developed a mathematical
description of this tendency, the precursor of
today’ s regression models (Neter, €. al., 1996).
Consider the simple linear regression
model:
y,=a+ fx +&,i=12,...,n (1)
where y; is the response variable in the ith trial,
a (intercept) and f(slope) are parameters. X; isa
known constant, namely; the value of the
predictor variable in the ith trial. &;is a random

error term with mean zero and variance 2.
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Most of the methods used in the
literature to estimate the model parameters are
based on the normality assumption. However, in
some situations it is unreliable to use the
normality assumption to identify the mode;
instead one may use non-parametric estimation
approach. Moreover, if the data contains outlier
observations, then robust methods are needed to
polish the effect of the outliers. More details can
be found in Montgomery and Peck (1992),
Rousseeuw and Leroy (1987), Davies (1993),
Fernandez (1997), and Olive (2005). A new non-
parametric procedure is proposed in order to
estimate the slope of model (1).

Estimation Methods for Linear
Regression Model

The various estimators that have been

suggested for the slope are as follows:

Simple

(1) Method of Least Squares (LS)

The least sguare criterion requires that
one consider the sum of n sguared deviations;
this criterion is denoted by Q

2

Q=i2l:(yi _a_ﬁxi)

According to the method of least squares, the
estimates of o (intercept) and B(slope) are those

values &, p respectively, that minimize the
criterion Q for the given sample observations
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(% Y1)s (X2, Y2 )oeos (%0 Vp) - USing the
analytical approach it can be shown that the
estimate values of a, (intercept) and p(slope) are

ﬂls :% and &Is = 37_1&5X
where
Sxx =Z(Xi _X)2 '
i=1
n ZXi
=Z(Xi _)_()(Yi -y, X="=—
i=1 n
and
Z Yi
o _ =l
y= n

Note that ,3,sis unbiased estimator of P.

However, regression outliers (either inx or iny)
pose a serious threat to least squares analysis.

(2) The Geometric Mean Functional
Relationship (GM)

This estimator was proposed by Dent
(1935). This estimator has been widely used,
especially in fisher’s researches:

et =

It can be noted that this estimator is symmetric
in x and y. Where Cov(x,y) is the covariance of

xandy. /3, = median(B;)

(3) Repeated Median Theil-Type Method (T)
Theil (1950) proposed this method. The

data are ordered either to the x variable or the y

variable. Find all possible pairs of observations,

assuming that all X, 'saredistinct,

y[ jl y[|
X

B. =

1

i=12..,j=1,j=23...n
M~ X0

n
which yidds {zjslope values, then where m

can be chosen to be the maximum divisor of n
such that m<r . For example, when n = 20 then
m=4andr =5 are sdected.

(4) Proposed Method (AM)
This method consists of ordering the

observed pairs (X,VY.)’'s, i = 1,2,...,n; by the
magnitude of X’s, assuming that all X ’'s are
distinct, then divide the observation into some
groups and find all possible paired slopes. The

procedure can be described as follows:
a) Arrange the observations in ascending order

on the basis of the values of X; i.e,
Xgy £ Xz £ X, and the associated
Yipr Yizp e Y OF the original data are taken;

then the new pairs will be (X, , Ypi;)

b) Divide the data into m-subgroup each of sizer
such that m*r = n; then the sample can be
rewritten in the form in Figure 1 on the
following page.

¢) Find all possible paired slopes

{b(k)”—y“] hio12.,j-1 j=23.., }

X~ X

k=12..m

d) Then the estimated value of the slope can be
defined as follows:
Bt = Median{b(K),, i =12... ] L | =2.3...1};

k=12,..m
Note that the suggested estimator is in

r
the form of Theil’s estimator with n{zj paired

slopes to be evaluated. If the sample sizenisa
prime number, then the estimates leads exactly
to the repeated median Thell type estimator.
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(Xy+¥ia)
(X(r+]) 1 y[r+]] )

(X((m—l)*r+]) » Yi(meayrr4] )

(X(z) , y[z])
(X(r+2) ’.y[r+2])

Figurel

(X(r) ! y[r])
) ) (X(Zr) 1.y[2r] )

ot (X(mr) 1 y[mr])

However the advantage of the proposed oneisin
abstracting the number of paired slopes to be
evaluated, for example when n = 100, 4950
paired slopes are needed to be evaluated by
using T method. By using the suggested method
(AM), wherer = m = 10, only 450 paired slopes
are needed, which is a good advantage for this
method.

Numerical Example

In order to compare various estimation
methods, the so-called Pilot-Plant data from
Danid and Wood (1971) is considered. The
observed (y) corresponds to acid content
determined by titration and the observed (x) is
the organic acid content determined by
extraction and weighing. Moreover, Rousseeuw
and Leroy (1987) analyzed this data further by
assuming that one of the observations is wrongly
recorded, i.e. the x-value of the sixth observation
might have been wrongly recorded as 370
instead of 37. Based on the data which consist of
20 observations, and for the fact the x’s data
point should be distinct, X is substituted to be
168 instead of 167. The various estimated slopes
yielded the results as shownin Table.1.

In this example, for the proposed
method, the original sample is divided into 4
sub-samples, each of size 5. The results showed
that traditional LS and GM methods have been
strongly affected by the single outliers. On the
other hand, AM and T are hardly affected by the
wild observation.

Simulation Study

To illustrate the performance of the
proposed method in the presence of outliers, a
simulation study was carried out as follows: it
begins by generating 100 observations according

to the modd; Yy, =1+ X, +&,, where
x =10 and & ~ N(0). Then, the data is
n

contaminated; at each step a certain percentage
of the observations are ddeted and replaced with
outliers observations. The contaminated data
point was generated according to the given
relationship  wheree; ~ N(20,25). Table2

presents the values of the estimated slopes:

The properties of these methods were
investigated further by looking at the mean
square of error (MSE) in 10000 trials. For each
10000 trials, samples of size 20 and 50 were
generated, the simulation results are represented
in Table.3.

Table.1 The slope estimates using different
methods for Pilot-Plant data

Slope X, =370 | X, =37
Least Squares 0.0808 03211
(LS
Geometric Mean 0.2148 0.3220
(GM)
Theil (T) 0.3170 0.3194
Proposed method 0.3273 0.3480
(AM)
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Table2. Slope Estimates with n= 100 and =1

Contamination (%) LS GM T AM
0 0.9977 | 1.0590 | 0.9906 | 0.8491
10 -0.1176 | -1.9339 | 0.8585 | 0.7911
20 -0.9760 | -2.4261 | 0.6003 | 0.7675
30 -1.6041 | -2.7429 | -.05473 | 0.7574
40 -1.9215 | -2.7781 | -1.4783 | 0.5783
50 -2.0421 | -2.8190 | -1.7236 | 0.5214

Table.3. MSE of the Slope in the presence of outliers

Contamination Sample Size 20 50
(%)
Slopé
0 LS 6.0016E-03 | 2.3847E-03
GM 8.4800E-03 | 5.4053E-03
T 6.5697E-03 | 2.5118E-03
AM 1.2690E-01 | 7.1048E-02
10 LS 1.2115E+00 | 1.1850E+00
GM 6.1172E+00 | 6.5467E+00
T 2.7433E-02 | 2.1701E-02
AM 2.7372E-01 | 1.9499E-01
20 LS 3.7599E+00 | 3.7167E+00
GM 1.1129E+01 | 1.1212E+01
T 1.8782E-01 | 1.7369E-01
AM 2.3882E-01 | 1.0105E-01
30 LS 6.4511E+00 | 6.3880E+00
GM 1.3218E+01 | 1.3285E+01
T 2.4676E+00 | 2.2527E+00
AM 3.2630E-01 | 3.0625E-01
40 LS 8.4146E+00 | 8.3348E+00
GM 1.4609E+01 | 1.4647E+01
T 5.8036E+00 | 5.6501E+00
AM 2.1543E-01 | 1.5468E-01
50 LS 9.12418E+00 | 9.04105E+00
GM 1.52952E+01 | 1.53539E+01
T 7.13609E+00 | 7.00981E+00
AM 5.62811E-01 | 3.85401E-01

ESTIMATING THE SLOPE OF SIMPLE LINEAR REGRESSION
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Conclusion

Our simulation results from Table.3 indicate
that, in terms of MSE the performance of the
four estimators in the absences of outliers are
comparable. However, as the degree of
contamination increases LS and GM methods
became very sensitive to the presence of
outliers. Theil-Type estimator (T), clearly
affected with the outlies when the
contamination became 30% or more. It is very
clear that the proposed estimator (AM) is very
robust in the presence of outlier's. As a
conclusion, the AM estimator can be consider as
a good alternative to the traditional methods
because it is able to produce satisfactory results
even in the presence of a large amount of
outliers.
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Comparison Of Statistical Tests In Logistic Regression:
The Case Of Hypernatreamia

Stylianos Katsaragakis
University of Athens

Christos Koukouvinos Stella Stylianou Eleni-Maria Theodoraki
National Technical University of Athens

Thelogistic regression has become an integral component of any medical data analysis concerning binary
responses. The main issue rising after the adaptation of the final mode is its goodness-of-fit. The fit of
the model is assessed via the overall measures and summary statistics and comparing them in the case of

hypernateamia.

Key words: Logistic regression, goodness-of-fit, covariates

Introduction

The use of overall summary measures of
goodness-of-fit has become an important and
easily peformed step in building logistic
regression models. Pearson chi-square sum-of-
squares dstatistics and the Score test are
recommended due to their superior power in the
simulations, but one must keep in mind that in
small sample cases there is lack of detecting
subtle deviations from the model (Hosmer,
1997). When it comes to sparse data, a non-
significant result of a goodness-of-fit test does
not tell that the model is correct, it just tells that
the lack-of-fit is not large enough for the model
to be rgjected (Kuss, 2002).

In general, there are two different
approaches to assessing goodness-of-fit in
logistic regression models (e.g., Cook, 1979;
Pregibon, 1981). The first one, residual analysis,
investigates the model on the leve of
individuals and looks for those observations
which are not adequately described by the

Stylianos Katsaragakis is an Associate Professor
in the First Propedeutic Clinic of Surgery,
Ippokratio Hospital, Athens, Greece. Christos
Koukouvinos is a Professor in the Department of
Mathematics, Zografou 15773, Athens, Greece.
Email: ckoukouv@math.ntua.gr. Dr. Stela
Stylianou is at the Department of Mathematics,
Zografou 15773, Athens, Greece. Eleni-Maria
Theodoraki is a postgraduate student in
Biostatistics.

514

model or which are highly influential on the
model fit. The second approach seeks to
combine the information on the amount of lack-
of-fit in a single number. Statistical tests, so-
called goodness-of-fit tests, are then calculated
to judge if this lack-of-fit is significant or dueto
random chance and can be distinguished to
specific and global. Global tests do not evaluate
specific  alternatives, rather test unspecific
hypotheses of the form ‘the model fits' versus
the alternative ‘the model does not fit'.

The goal is to investigate the choice of
statistic test for assessing the coefficients of
parameters as wel as the goodness of fit by
examining the medica disorder called
hypernatreamia. For this purpose, three well
known statistic tests will be used: the Likelihood
Ratio statistic (LR), the Wald test (W) and the
Score test (Scr) (Hosmer, 1989), although some
authors warn that for large coefficients, standard
error isinflated, lowering the Wald statistic (chi-
square) value (Hosmer, 1989) and the
likelihood-ratio test is more reliable for small
sample sizes than the Wald test (Argesti, 1996).
Methods for checking goodness-of-fit, are less
developed, which may be due to the relative
youth and enhanced mathematical complexity of
the logistic regression model compared to, for
example, the linear regression modd (eg.,
Bendel, 1977; Cook, 1977).

The study includes 314 patients treated
at the Surgery Intensive Care Unit of a central
hospital in Athens during 1996 - 2003. All data
have been extracted from the Central Data Base
of the Unit in which are recorded all
demographic information (ID, age, sex, disease,
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APACHE Il score), daily biochemical indication
and medical treatment and mortality. These
patients have been chosen, excluding some from
the 364 recorded, due to their staying in the ICU
less than 3 days, which is thought to be a
cutpoint for the ones who enter only for after
surgery treatment. In addition, the patients under
examination have not been transported to other
hospital in order to be aware of the final
condition of their health.

To compare the groups of patients
having expressed the disorder hypernatreamia,
with a control group, there were 35 patients from
the first one with at least one indication of the
electrolyte Na >147mmol/l during their staying
inthe ICU and 279 from the second group. With
the aim of studying their behaviour, possible risk
factors, sepsis criteria, Apache Il score, medical
treatment and mortality were examined.

In this articlee the <case of
hypernatreamia with a multiple logistic
regression mode is considered.

The Logistic Regression Model

Logistic regression is part of generalized
linear models (McCullagh, 1983), which allows
one to predict a discrete outcome, from a set of
variables that may be continuous, discrete,
dichotomous, or a mix of any of these
Dichotomous (binary) outcome is the most
common situation in biology and epidemiology,
standing for the presence or absence of a
disease, success or failure eic. Although
discriminant analysis may also predict group
membership (e.g., Costanza, 1979; Efron, 1975),
it can be used only with two groups, so in the
cases of categorical, or a mix of continuous and
categorical covariates, logistic regression is
preferred (eg., Cook, 1979; Hess, 1979;
Furnival, 1974; Mickey, 1989).

What seems to distinguish logistic
regression  to  linear is  conditional
mean E(Y / x), the mean value of the outcome

variable, given the value of the independent
variable. In linear regression, it is assumed that
this mean may be expressed as an equation
linear in x, which implies that E(Y/X) may

take any value as x ranges between -- and +-,
but with dichotomous data conditional mean
must be greater than or equal to zero and less
thangorpgreaterptoponessihegsecond important

difference concerns the conditional distribution
of the outcome variable. In the linear regression
model, it is assumed that an observation of the
outcome variable may be expressed as
y= E(Y/ X)+ £, Where the error ¢ follows a

normal distribution [ £~N(,0?)], whereas in

logistic € follows the binomial one.

Logistic  regression  makes  no
assumption about the distribution of the
independent or predictor variables, that is they
do not have to be normally distributed (Lawless,
1978), linearly related or of equa variance
within each group so the relationship between
the predictor and response variables is not a
linear function.

Let f(x):p(Yzl/y(), where the
vector

X=(X,X,,...X )

denotes a collection of p covariates. Then the

logistic regression function, in form of the logit
transformation

g(i)=ln[1_fo())1 = B+ AX+ B+ X,

X

eI
= ew

During model creation, variables can be
entered into the model in the order specified by
the researcher or logistic regression can test the
fit of the model after each coefficient is added or
deleted, called stepwise regression. Stepwise
regression is used in the exploratory phase of
research but it is not recommended for theory
testing. Forward variable sdection enters the
variables in the block one at a time based on
entry criteria and backward stepwise regression
appears to be a preferred method of exploratory
analysis, where the analysis begins with a full or
saturated model and variables are diminated
from the model in an iterative process.

Backward selection is sometimes less
successful than forward or stepwise selection
because the full modd fit in the first step is the
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model most likely to result in a complete or
quasi-complete separation of response values.
The fit of the mode is tested after the
elimination of each variable to ensure that the
model still adequately fits the data. When no
more variables can be diminated from the
model, the analysis has been completed. The
process by which coefficients are tested for
significance for inclusion or elimination from
the model involves several different techniques
(eg., Bendd, 1977; Costanza, 1979). Some of
these tests are described in the next section.

Assessment of the Coefficients of the Model
A Wald test is used to test the statistical
significance of each coefficient g, in the

model. A Wald test calculates a z statistic, which
is:
; = B )
E (B)

This z value is then squared, yieding a
Wald statistic with a chi-square distribution with
p+1 degrees of freedom, where p is the number
of covariates. The likelihood-ratio test uses
the ratio of the maximized vaue of the
likelihood function for the saturated model (L)
over the maximized value of the likelihood
function for the current model (Lo). The
likelihood-ratio test statistic equals:

_zm{EJ - Zlog(L,) - logL)] =1L, - L,).

This log transformation of the likelihood
functions yields a chi-squared statistic with p
degrees of freedom equal to the number of
covariates of the model. This appears to be the
recommended test statistic to use, when building
amodel through backward stepwise elimination.

The score statistic is a quadratic form
based on the vector of partial derivatives of the
log-likelihood function with respect to the
parameters of interest, evaluated at the values
postulated by the null hypothesis.

Let

LB=] " a-Ry** - E’] -y

ieS ieS _Pi

be the weighted likelihood function and

log L(B]Y) = Z{wloge[rep}wloge(l— Fi’)}

ieS

= > WYX A-Y wlog,(+€" )

ieS

be the log likelihood function. Then, the (p + 1)
x 1 score vector, S(B), is given by

S(ﬂ)=%|09e LI =S WX (Y ~P)

ieS

Testing the Fit of the Model
For a particular covariate pattern, the
Pearson residual is defined as follows:

The summary statistic based on these
residuals is the Pearson chi-sguare statistic

«

X2=Zr(yj,7%j)2

j=1

and the deviance residual:

d(y;, 7, )=%{2
(v yj)m[M}

The distribution of the statistics X* and
D under the assumption that the fitted model is
correct in al aspects is supposed to be chi-
square with degrees of freedom equal to J-p-1.
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The Hosmer-Lemeshow goodness-of-fit
statistic is obtained by calculating the Pearson
chi-square statistic from the 2xg table of
observed and expected frequencies, where g is
the number of groups. The statistic is written as:

where N; is the total frequency of subjects in the
ith group, O, is the total frequency of event
outcomes in the ith group, and T is the average

estimated probability of an event outcome for
theith group. The Hosmer-L emeshow statistic is
then compared to a chi-square distribution with
(g-n) degrees of freedom, where the value of n
can be specified in the lackfit option in the
model statement. The default is n=2. Large

values of XSL (and small p-values) indicate a
lack of fit of the model.

Comparison of the Coefficients-Results

The data sat used to compare the
statistical tests contains 24 covariates for each of
the two groups of patients under examination
(hypernatreamic-control patients). At a brief
description it is observed that both groups have
statistically comparable ages (txo, 0.025=-0.753,

p=0.452), the sepsis score (X ?2(0.05)=6.979,

p=0.137) as well as the Acute Physiology And
Chronic Health Evaluation,

(X12 (0'05)Kruskall Wailes = 11741 p = 0279)1

which both estimate the condition of health of
each patient at his entrance in the ICU, does not
seem to differentiate between two groups.

It is of interest now to explore the
relationship between the covariates and the
presence or absence of hypernatreamia. Using a
univariate model containing the intercept and
every time the variable of interest, it seems to
exist strong rdationships with the binary
outcome indicating that patients with high
values of Na differentiate from the control
group. But can this univariate result be used to
confirm, for example, that hypernateamia is
associated with mortality - taking under
consideration all possible risk factors? That is
one.of .the.questions.generated.and concerns a

set of covariates that can be partly answered
with amultivariable logistic regression analysis.

For this purpose, variables are included
in the model that has been shown to be
associated with hypernatreamia. Covariates of
interest included age, gender, evaluation of the
stage of the patients condition (APACHE, sepsis
score), resuscitation fluids and antibiotics
containing Na. The multivariate logistic
regression model also included the interactions
of plasma (FFP) with the antibiotics containing
furosemide, teicoplanin and humanxlasix to
examine if their combination is mischievous,
that is they lead to hypernatreamia.

The analysis was conducted with the
SAS program and the method used for the
binary model was the full one. 31 observations
were deleted due to missing values for the
explanatory variables so the number of
observations that finally contributed to the
analysis was 283 (30 patients who expressed the
disorder and 253 control patients). The
importance of a variable is defined in terms of a
measure of the statistical significance of the
coefficient of the model (p<0.05), which denotes
the fixed decision rule for the inclusion of
variables at the procedure used. However there
seems to be an indication of the influential role
for some covariates (p<0.10) that needs to be
taken under consideration and are therefore
illustrated.

The results for the logistic regression
model to be assessed are presented in table 1.
Initially the model contained all the possible
interaction factors, which have aready been
discussed, with no datistically significant
results; therefore only the main effects were
used. With the exception of the design variable
sepsis, there is clear evidence that each of the
variables has some association with the
outcome. This observation is based on an
inspection of the 95% Wald confidence interval
estimates which, either do not contain 1 or just
barely do. At this point, a decision concerning
the variable age had to be made, as it is known
to be abiologically important variable, yet is not
statistically significant in this model. For this
reason the covariate€'s estimate and the Wald
test's value at the Analysis of Maximum
Likelihood Estimates table were included. In
search of a confounding effect, it was found that
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Table 1: Analysis of Maximum Likelihood Estimates

Parameter DF Estimate Standard Error Wald Chi-Square Pr>ChiSq
Intercept 1 -52.186 353.700 0.022 0.883
APACHE 1 0.121 0.073 2.748 0.097
daysofst 1 2.356 0.624 14.245 0.000
age 1 0.035 0.037 0.884 0.347
gfurosemide 1 -0.145 0.050 8.462 0.004
gffp 1 -0.590 0.253 5.427 0.020
gimipeneme 1 0.844 0.292 8.386 0.004
gteicoplanin 1 1.024 0.527 3.776 0.052
gsod. hlopideamp 15% 1 -0.389 0.109 12.877 0.000
sex (0) 1 1.177 0.597 3.887 0.049
death (0) 1 -3.782 1.068 12.549 0.000
sepsis (0) 1 15.483 8.240 3.531 0.060
sepsis (1) 1 14.758 8.298 3.163 0.075
sepsis (2) 1 12.958 7.949 2.658 0.103
sepsis (3) 1 15.469 8.276 3.494 0.062
ffp (0) 1 -1.099 0.630 3.043 0.081
imipeneme (0) 1 -3.514 1.646 4.559 0.033
teicoplanin (0) 1 -16.705 6.381 6.854 0.000
Table 2: Odds Ratio Estimates
Effect Point Estimate  95% Wald Confidence Limits
APACHE 0.886 0.767 1.022
daysofst 0.095 0.028 0.322
age 1.035 0.963 1114
gfurosemide 1.156 1.049 1.275
affp 1.804 1.098 2.963
gimipeneme 0.430 0.243 0.761
gsod. Chlopideamp 15% 0.359 0.128 1.009
sex (0vs 1) 0.095 0.009 0.986
death (Ovs 1) >999.999 29.340 >099.999
sepsis (0 vs 4) <0.001 <0.001 290.589
sepsis (1 vs 4) <0.001 <0.001 689.112
sepsis (2 vs 4) <0.001 <0.001 >099.999
sepsis (3 vs 4) <0.001 <0.001 337.138
ffp(0Ovsl) 9.006 0.762 106.412
imipeneme (O vs 1) <0.001 <0.001 0.562
teicoplanin (O vs 1) <0.001 <0.001 <0.001
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the absence of age indeed acts as a confounder
changing remarkably the significance status of
the model. Assessing the reduced model for that
case, the LR and Score Tests

(X5(0.05) (g (1 age =126-486,

X 36(0.05) () ;) =123.824, p<0.0001)

5

agrees with the saturated one

(X7 (0.05),, =141.465, X 3 (0.05) g, =12

0.634, p<0.0001) and thereis a small change

(X2, (0.05) pegyeon) =217.715 (p=0.997),

XZ (0.05)(HL)=3.322, (p=0.913)

in the Pearson and Hosmer-Lemeshow
goodness-of-fit tests

( X 755 (0.05)  peareony =128.107 (p=1.000),

XZ (0.05)(HL) =2.333, p=0.969)

reflecting the reduction of effectiveness in
describing the outcome due to the absence of
age.

Examining the results, it was aso
observed that the estimated coefficients for a set
of variables in the moddl changed significantly
when gender was deleted. Hence, there is clear
evidence of a confounding effect due to gender
describing that it is associated with both the
outcome variable of interest, hypernatreamia,
and the risk factors. Comparing the LR and
Score tests of that model with the full one, it was
found that although the LR and Score tests don't
seem to denote that the absence of the variable
produces an alteration in the model

(X56(0.05) gy i) =136.777,

X 226 (005) (Ser) gender =12005’
p<0.0001, X, (0.05), , , =141.465,

X7 (0.05) g, , =120.634,p<0.0001),

the goodness-of-fit statistics seem to ascertain a
small one

2 —
(X 555 (0.05) (peareon) _gencer) =194-389
(P=0.998), X5(0.05) (), s, =2-127
(p=0.977), X 35(0.05) py oy , =128.107

(p=1.000), X5 (0.05) , , , =2.334=0.969).

The confounding status of sepsis score
has also been examined, confirming that it is
interactively associated with both the disorder
and the covariates. The results of the comparison
are very interesting since the absence of the
polytomous covariate sepsis score produces
remarkable changes to the model fit. In specific,
although the saturated model seems to fit well,
the null hypothesis for the reduced mode is
rejected

(X 20 (0.05) (pegaony iy =591.935

(p<0.001), X7 (H — L) =20.167 (p=0.0097)).

Considering that the overall goal is to
obtain the best fitting model while minimizing
the number of parameters, the next step isto fit a
reduced model containing only those variables
thought to be significant, and compare it to the
full model containing all the variables. The
results fitting a model with intercepts only and
for fiting a mode with intercepts and
explanatory variables, show that the overal
statistic tests reject the global null hypothesis
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BETA=0 in the case of both the reduced and the
full model.

(X7(0.05) ) =65.395, X7 (0.05),q,, =94.37
7,p<0.0001) X 7, (0.05) ¢, , =141.465,

X3 (0.05) g, =120.634, p<0.0001).

However examining the Pearson and Hosmer-
Lemeshow statistics

(X (0.05) y, =17.756 (p=0.023),

X 375 (0.05) peareony =1316.375 (p<0.0001)

a remarkable change demonstrating a better fit
of thefull modd is observed

(X#(0.05) 1y, =128.107 p=1.000,

X 375 (0.05) pearsony =2.333, p=0.969)).

During model assessment, it was observed that
deviance does not seem to alter

(X35 (0.05) (peyiance . =49.891

(p:1-000)1 X 2277 (005) (Deviance) (f _aqg = 78103([3

)
=1.000), X 555 (0.05) (pesiance)  _gencer) = 5458

(p=1.000)),

placing al models containing confounders or
other reduced models in the same goodness-of-
fit status with the full model. That happens even
in the last case of the confounding of sepsis
score when Pearson and Hosmer-Lemeshow
tests agree in regjecting the goodness-of-fit but
deviance fails to identify such alteration

(X 555 (0.05) (peyiance) ey = 88-53L, P=1.000).

The estimated coefficients and odds
ratio show that women are 10.6 times more
likely to express the disorder (p<0.05) than men,
mortality increases to hypernatriemic patients
(p<0.01) and the ones with sepsis score 4 are
much less likey to get hypernatreamic
compared to any of the other 3 sepsis leves (0,
1, 2, 3). In the case of the design variables of
sepsis, although between levels 2 and 4 there
seems to be a marginal relationship at the 10%
level (p=0.103), the variable was included
because the W gatistics for all relative
coefficients exceed 2 (Hosmer & Lemeshow,
1989).

There is great interest to the influential
part that the antibiotics and resuscitation fluids
containing Na, play during patients treatment in
ICU. Especialy, patients that were treated
intravenously with furosemide increased the risk
of getting hypernatriemic 15% every time they
accepted 20mg as long as getting FFP they
increased the risk 9 times from those who didn’t
(anincrease of 1 point led to a 80% increase of
risk).

Conclusion

During or after model creation, there seemsto be
efficiency and applicability of the proposed
Wald Test, Likelihood Ratio Test, and Score
test, because they agree in refining the
significance of the coefficients. Our comparison
of the proposed goodness-of-fit statistics
Pearson chi-square and Hosmer-Lemeshow,
showed small deviations between them at the
omission of important confounders, but both are
much more powerful from deviance in detecting
the fit of the model. That leads to an important
association between the behaviour of the logistic
regression model through the application of
different assessment statistics, in representing
best the biological mechanism, hence correctly
logistic regression is a significant tool in any
medical data analysis of an ordinal response
model with both categorical and continuous
covariates.
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Simulation Procedure In Periodic Cancer Screening Trials
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A general simulation procedure is described to validate model fitting algorithms for complex likelihood
functions that are utilized in periodic cancer screening trials. Although screening programs have existed
for a few decades, there are still many unsolved problems, such as how age or hormone affects the
screening sensitivity, the sojourn time in the preclinical state, and the transition probability from disease-
free state to the preclinical state. Simulations are needed to check reliability or validity of the likelihood
function combined with the associated effect functions. One bottleneck in the simulation procedure is the
very time consuming calculations of the maximum likelihood estimates (MLE) from generated data. A
practical procedure is presented, along with results for when both sensitivity and transition probability
into the preclinical state are age-dependent. The procedure is also suitable for other applications.

Key words. periodic screening, breast cancer, early detection, sensitivity, sojourn time, transition
probability, mammogram, clinical breast examination, incidence

Introduction cancer screening, which has been utilized for a

few decades. The motivation for screening is to

According to a recent report of the National detect the disease early even before clinical

Ingtitute of Health (NIH 2000), breast cancer is symptoms come up. The benefit for early

the most common form of cancer among women detection is obvious. People in whom cancer is

in the United States and the second leading detected earlier usually have a better prognosis.

cause of cancer deaths among women. One of Early treatments hopefully will lead to more
the proceduresto manage the diseaseis periodic cure and prolonged survival of cancer patients.

In a screening program, a large group of

asymptomatic individuals are enrolled in the

Dongfeng Wu is an Assistant Professor, with program to detect the presence of a specific
research interests in cancer screening probability disease. The natural history of the disease for an
modeling and inference. She is on the Editorial individual is assumed to follow a progressive
Board of JMASM. Xiaogin Wu is a PhD stochastic model, which consists of three states,
candidate. His research interest is in PDE denoted by S, — Sp — S,, corresponding,

modoling and statistical modeling. loana
Banicescu is an Associate Professor, with
research interests in parald agorithms,

respectively, to the diseasefree state; the
preclinical disease state, in which an
asymptomatic individual unknowingly has

scientific  computing, scheduling  theory, disease that the screening exam can detect; and
optimization and prediction. Ricolindo L. Carino the clinical state when the disease manifests

received his Ph.D. from La Trobe University, itself in clinical symptoms. The screening

ano_l i_s a me’T‘ber of the r&ea_rch facult_y. H'S sensitivity is the probability that the screening
main interest is paralld computing for scientific exam is positive, given that the individual is in

applications. the preclinical stage. The sojourn time refers to
the time beginning when the disease first
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develops until the manifestation of clinical
symptoms, that is(S, —S,). The transtion

probability into the preclinical stage is the
probability density function of making transition
from the disease-free to the preclinical state.
Knowledge of the sensitivity of the screening
modality is necessary for evaluating the
predictive performance of a screening exam. The
screening sensitivity may depend on a variety of
factors, including age, position, location and size
of the tumor, and the experience of the
radiologist, etc. For example, recent studies
indicate that the sensitivity of mammography
increases with age at diagnosis (Shapiro, et. al.,
1988; Miller, et. al., 1992a, 1992b), attributable
to the fact that breast tissue tends to be more
dense and fibrous in younger women, and more
soft and fatty in older women (Kerlikowske, et.
al., 1996).

Thereis great interest in determining the
properties of the sensitivity, the sojourn time
distribution and the transition probability density
function into the preclinical state. Much work
has been donein this area (Shen & Zelen, 1999;
Shen, e. al., 2001; Wu, et. a., 2005). The
research is dtill ongoing because many
researchers are trying to explore how age or
hormone changes may affect the sensitivity, the
sojourn time, and the transition probability. One
of the common features in the research is to
derive the correct likelihood function and to
propose correct age effect (or hormone effect)
functions based on the stochastic model and the
screening data. However, it is imperative to
validate the reliability of the likelihood function
and the associated effect functions before these
can be applied to real data. This validation may
be accomplished through simulation, which has
become an acceptable procedure to check that
the mode fitting and the complex algorithms
work well with this complicated likelihood.

The remainder of the articleis organized
as follows. A generalized stochastic model and
its likelihood function in a periodic cancer
screening program is introduced, as well as the
age-dependent  sensitivity and  transition
probability density. The simulation procedure,
the corresponding algorithm and results of
applying it to a sample scenario are then

presented. It will conclude with a discussion of
the results of the research.

The Model

Consider a cohort of initidly
asymptomatic individuals who enroll in a
screening program. The sensitivity is denoted by
At), where t is the individual’'s age at the
screening exam. Define w(t)dt as the probability
of atransition from & to S, during (t, t+dt). Let
g(t) be the probability density function of the
sojourn  time in S, Finaly, Ilet

Q(2) = f g(x)dx, that is, Q(2) is the survivor

function of the sojourn time in the preclinical
state S,. Throughout this article, the time
variable t represents the participating
individual’s age. If random variables T and Sare
the duration times in & and S, respectively, then
an individual will enter the clinical state & at
age T+S the probability density function of T+S
is

I(t) = jw(x)q(t — X)dx,

which is the observable incidence of clinical
Cases.

Consider a cohort of women in the study
group who are all aged to at study entry, and a
protocol cals for K ordered screening
examinations occur at ages

t, <t <---<t.,,where t; =t, +i for annual
screening exams. Define the i-th screening
interval as the time interval between the i-th and
the (i+1)-th screening exams(t, ,,t.), i=1,2,...,
K-1. The i-th generation of individuals consists

of those who enter S, during this interval. The O-
th generation includes al who enter S, before

theinitial screening exam; let t | =0.

For each screening exam, let n;, bethe
total number of individuals in this cohort
examined at the i-th screening; s, is the
number of cases detected at the i-th screening
exam; and T;, isthe number of cases diagnosed
in the clinica state S within the interva
(t._,,t.). The latter cases are called interval
cases.
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Let D, be the probability that an

individual will be diagnosed at the k-th
scheduled exam (at which her age is

t,, =t, +k—1) given that sheis aready in the
preclinical state. Let |, be the probability of

being incident in the k-th screening interval. In
Wu, et. al., 2005, these two probabilities were
derived as:

Dy, =Pt g[l—ﬁ(ti [ Bt,)]

g

(IQt; — X+ [ W)Q(t, , — X))

k-1

gy = 2I=B(E)] - [1-B(t )]

i=0

[ WOOTQL, . ~X) -t ~ e
+ WOIL-QLt ~ Tk

Thelikdihood function for this cohort of women
is

L( %)

K
—_TIN*o[ o i _ [ Tkio ) kio"kig kig
=] Dol @Dk —1,2)

k=1

1)
The full likelihood for the study group across all
agesis

L

K
_ o [ ki o | ki y ko i kg
_Hnto | Ikt et 1)

)
The age effect was modeled in the sensitivity
and the transition probability simultaneously in
the following way. The sensitivity £ is
associated with aget by alogistic link,

1
1+exp(-b, —b * (t - 1))’

B =

SIMULATION PROCEDURE IN PERIODIC CANCER SCREENING TRIALS

Where t is the average age at entry in the whole
study group. If b, >0, #(t) will be a monotone
increasing function of aget.

The transition probability density
function w(t) is the instantaneous probability of
a trangtion from & to S, The integral

r w(t)dt represents alifetime risk for a healthy
0

female to transit into the preclinical state.
According to the NCI's SEER database (Ries et
al. 2002), a woman's lifetime risk of being
diagnosed with breast cancer is 15.7%, which is
less than a women’s lifetime risk of entering the
preclinical disease state Hence, 20% was
chosen as a reasonable upper bound. The
following was chosen

0.2 (logt — 1)*?
exp{——2 2}
oo ST

which is the pdf of lognormal(x, ¢°) multiplied
by 20%. That is, w(t) is a sub-density function,
where 1z and o° are parameters to be estimated.
The loglogistic distribution was adopted
to model the sojourn timein the preclinical state,

w(t) =

-1 Kk

0

X)=—"—=,X>
O e oo
where x is the sojourn time, and x and p are
positive parameters, represent the scale and
location in the loglogistic family. An advantage
of this family over the exponential is that it has
two parameters and is more robust in the tails.
Another advantage of this family is that its
reatively simple form achieved for the survivor
function and the hazard function. Its first
moment can be calculated directly from

EX = Lcsc[zj
PE K

For the r-th moment to exist, x > is needed.
For justifications on how these age effect
functions are chosen, see Wu «t. al., 2005.

Simulation Procedure and Results

The purpose of the simulation is to
check the reiability of the likelihood function as
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screening sensitivity and transition probability
are both age-independent. The key steps were
summarized in the non-routine simulation study
here. In fact, based on the steps here, one can
explore other possible associated functions
between age and sensitivity, age and transition
density, age and sojourn time, €tc.

In the proposed model, there are six
unknown parameters, that is,

0 =(b,,b,,0% K,p). Theoreticaly the
parameters have a domain of either (—oo,0) or
(0,). The practica meaning of these

parameters will limit them to a finite range. The
range for each of them was identified as:

O<b, <5, -02<b <02, 35<u<45,

0<0?<1,01<p<20,and 1< x <5.For

justifications of these ranges, see Wu, €t. al.,
2005.

This simulation consisted of two stages.
First, age-dependent screening data based on
input values of @ = (b,,b,u,0% x,p) were
generated, assuming that initially there are about
100,000 individuals in each age group from age
40 to 64 who will take part in the periodic
screening exams. For the input values of 6, the

values for bo,bl,,u,az,lcand p was randomly
chosen from the valid range above. Second, the

MLE & was computed from our likelihood
function using the simulated data. This
procedure was repeated n = 1,000 times, then the
sample mean and the sample standard deviation
of the MLE were collected, and were compared
with the input values of 6. If the MLE is closeto
the true input value of 6, then our likelihood
function and the age- dependent functions work
well in the modeling.

Here are more detailsin Step 1: Suppose
there are M= 100,000 women who were born in
the same year, and who will take part in the
screening exam at age to. Their duration time
spent in the disease-free state (&) and in the
preclinical state (S;) can be generated by the
density functions w(t) and q(t) correspondingly.
Since w(t) is a sub-density function, it is not
obvious how to generate random variables
directly from its density. The number of incident
cases from disease-free into preclinical state age

by age will be generated, using the probability
w(t)dt which is binomially distributed. Then, for
women in the preclinical state at age t, their
incident time can be generated uniformly in (t,
t+1). See Appendix for programming details.

For details in Step 2: The log likelihood
function can be implemented in C language.
Then, taking the negative value of the log
likdlihood and calling the S-PLUS routine
“niminb” will provide a local minimum. This
local minimum corresponds to a local maximum
in the log likelihood. However, computer
software has not been found that can find the
global minimum (maximum) for a genera
function. To overcome this problem, the initial
point of & was chosen randomly and the
procedure was repeated 5 times for each
simulated data and find the global maximum.

The simulation programming code,
written in C++ and S-PLUS, is attached in the
Appendix. It runs well in a PC environment.
Eight simulation results arelisted in Table 1. For
each true value of 6, the sample mean and
sample standard error (S.E.) of the MLE of &€
from 1000 simulations are listed. The
consistency between the sample mean of the
MLE and the input parameters is clearly shown.

Conclusion

The purpose of this article is to provide a
simulation procedure in periodic cancer
screening trials, with the computer programming
code in C++ and SPLUS. A practical issue
encountered in the simulation is that it is very
time consuming when MLE was calculated from
the simulated data. The procedure for each MLE
calculation usually takes about 20 minutes if the
code iswritten in S-PLUS, making it impractical
to repeat the procedure for 1000 times. To
decrease the computation time, the likelihood
part was implemented in C++, which resulted in
the whole 1000 simulation procedure finishing
in two or three days. The simulation and
programming code can be dightly modified to
fit other age effect or hormone effect models as
well. Hopefully this will help other researchers
in this area to carry out their simulation studies.

www.manaraa.com



526
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Table 1. Summary of the simulation results for the six parameters

bo bh u c K P
True value 2.07 -0.05 4.05 0.80 454 0.70
MLE estimate 2.073 -0.051 4.053 0.799 4525 0.698
S.E. of MLE 0.112 0.006 0.042 0.018 0.245 0.016
True value 0.91 -0.07 4.24 0.51 3.01 0.74
MLE estimate 0.879 -0.069 4.242 0510 3.046 0.730
S.E. of MLE 0.093 0.004 0.019 0.015 0.150 0.029
True value 2.72 -0.12 3.65 0.55 3.73 0.65
MLE estimate 2.714 -0.120 3.652 0551 3.750 0.647
S.E. of MLE 0.157 0.011 0.021 0.018 0.133 0.012
True value 3.14 0.12 4.42 0.86 1.16 1.23
MLE egtimate 3.169 0.123 4420 0.861 1.161 1.223
S.E. of MLE 0.308 0.029 0.024 0.034 0.015 0.025
True value 0.47 -0.17 3.59 0.15 1.67 0.76
MLE estimate 0.475 -0.170 3591 0.150 1.667 0.752
S.E. of MLE 0.053 0.004 0.005 0.004 0.023 0.018
True value 1.64 0.02 3.93 0.08 2.37 1.05
MLE estimate 1.612 0.022 3930 0.080 2377 1.037
S.E. of MLE 0.150 0.004 0.003 0.001 0.054 0.037
Truevaue 2.81 0.19 4,03 0.67 3.07 0.82
MLE estimate 2.710 0.181 4.029 0.670 3.094 0.812
S.E. of MLE 0.137 0.013 0.033 0.014 0.083 0.012
True value 3.74 -0.04 4.36 0.72 2.74 0.81
MLE estimate 3.650 -0.039 4.361 0.721 2762 0.801
S.E. of MLE 0.538 0.030 0.024 0.027 0.075 0.021

For more details on how to combine C++ and S
PLUS code, see S-PLUS manual. Current efforts
are in transporting this procedure to runona
cluster of Linux workstations. If this effort is
successful, the simulation time will be shortened
to afew hours.
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Supervised classification into ¢ mutually exclusive classes based on n binary features is considered. The
only information available is an nxc table with probabilities. Knowing that the best d features are not the
d best, simulations were run for 4 feature selection methods and an application to diagnosing BSE in

cattle and Scrapie in sheep is presented.
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Introduction

Consider the differential diagnosis of BSE in
cattle based on the probabilistic description of
BSE and 56 alternative diseases with similar
symptoms. There are many possible disease-
rdated signs that may be observed as
present/absent on an animal. For example, over
240 signs related to BSE and the 56 other
diagnoses can be listed (Brightling et al., 1996;
White, 1984). To build a diagnostic system, a
data set is needed with observations for a
number of cattle with their verified diagnoses. In
the lack of such a data set, one must rely on
estimates of the individual class-conditional
probabilities that sign x; is present, given disease
@, where ie{12,.,n} and je{12..,¢.
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The information available in this problem is
organized as shown in Table 1.

Table 1. Class-conditional probabilities for the

individual features (the only information
available)
2] a (23
X1
X | . P(X =1l®)
Xn
Itisunredlisticto expect that a

system  based on these probabilities will fare
well in practice because no relationship between
the diagnostic signs (features) has been taken
into account. In an ideal scenario, a data set will
be collected using all features and the
relationships between the features will be
estimated from it. In reality, measuring only a
small number of relevant features may be
feasible.

The goal is to select d features (d < n),
which form a subsat with the smallest
classification error. Denote by x the binary
vector with the n features. The features are
assumed to be conditionally independent, that is,

Px|@)=T[P(x ) @
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The assumption of independence is
enforced upon this study because only (some
estimates of) the individual class-conditional
probabilities are available. Pattern recognition
literature in the 1970s abounds with analyses of
the case of independent binary features. Perhaps
the most curious result is due to Toussaint
(1971). If there are three independent binary
features, the best combination of two features
may not include the single best feature. Thus,
the most desirable selection criterion — the
probability of error — will not guarantee the
optimal solution if applied in a stepwise manner
asin stepwise linear regression.

In this article, four procedures for
selecting a subset of features are examined and
the results are compared with those obtained
with the whole feature set. The feature selection
methods are illustrated on two problems taken
from veterinary medicine: differential diagnosis
of BSE in cattle and Scrapie in sheep.

Methodol ogy

Feature selection is one of the oldest topics in
pattern recognition and machine learning
(Stearns, 1976; Van Campenhout, 1982; Jain
and Chandrasekaran, 1982; Patrick, 1972).
Surveys on more recent state-of-the-art and
comparisons  between  feature  selection
procedures can be found in (Dash & Liu, 1997,
Blum & Langley, 1997; Jain & Zongker, 1997;
Aha & Bankert, 1995).

Evaluation of the Feature Subsets

The most intuitive measure of quality of
a feature subset is the error of a classifier built
on these features. In theory, one can calculate
the eror under the assumption that the
probabilities are equal to their expert estimates.
The optimal classifier for independent featuresis
the Naive Bayes classifier. Denote by P; the
prior probability for class ¢). Let x = [Xg,... %]
be a binary vector to be labded into one of the c
mutually exclusive classes. A discriminant
function is calculated for each class,

:uj(x): PJP(Xle)

n _ )
=PT[P(x o), i=1..c

X is labded in the class with the largest
discriminant value. There are 2 possible binary
vectors x for a candidate subset S with d
features. The (probability for the) minimum
classification error for the subset can be
calculated as

P.=>" P(xerror)

©)
= 1—ija>{P,»HP(>ﬁ Iw,»)}
X ieS

Equation (3) shows the difficulty in calculating
the error for large d. Every x must be visited to
decide which class label to assign to it. Thereare
indirect criteria related to the error which may
be faster to calculate, but direct calculation of
the error in some form is preferable (Dash &
Liu, 1997). Monte Carlo simulations were
chosen for estimating the error of the selected
feature subset. The probabilities for each class
were available and it was therefore possible to
generate randomly a sample from each class
with n independent features. Using the selected
feature subset, the Naive Bayes classifier was
applied for the objects in this sample.

The Single-Best Method (SB)

It is known that the individually best d
features do not necessarily form the best subset
of d features (Toussaint, 1971). Nonetheless, the
method is quick and sometimes surprisingly
efficient. The error for each feature is calculated
separately using (3) (note that there are only two
possible x's for each feature: present or absent),
the errors are sorted in ascending order and the
top d features are retained. In this method, one
can pick a desired valuefor d.

The complexity of a feature selection
algorithm is typically measured by the number
of calculations of the classification error needed
to sdect d out of n features. Thus the single-best
method needs just n evaluations regardless of the
number d.
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Sequential Forward Sdlection (SFS)

This is the method traditionally used in
stepwise regression. To start, there is an empty
set, S of chosen features. Each feature must be
evaluated separately as in the single-best method
and the best individual featureis placed in S At
the next step, all pairs of features which contain
the feature selected already and one other feature
are evaluated. The pair with the smallest error is
retained as S. Then, one must check all triples of
features, and so on, until the desired cardinality
d of S is reached. This procedure does not
guarantee finding the optimal set of d features
even in this simple case of independent binary
features. The reason for this can be explained
again with the Toussaint’s counter example: the
best set of two does not necessarily contain the
single best feature.

Below, an example illustrating both the
non-optimality of the sequential feature selection
(SFS) and the calculation of the error though
equation (3) is shown.

Consider three features, Xi, X, and Xg,
and two classes, Q={a, w}. The non-
traditional data considered in this study is given
in the form of probability estimates

P(x, =1|®,) , asshownin Table 2.

Table 2. An example of a set of probabilities for
3 features and 2 classes

(1 a,
X1 0.1 0.5
X2 0.6 0.1
X3 0.8 04

Denote a=P(x, =1|w,) and
b=P(x, =1|®w,) for some x. Assuming
equal prior probabilities for the two classes, the

probability of correct classification for feature x¢
is

P(k) = 1/2{max(a,b)+ max(1- al1-b)} (4)
Using (4), the individual errors for the features
are g = 1-Y%[max (.1,.5) + max (.9,.5)] = 0.30,

& =025, and & = 0.30 . Consider a pair of
features, (XX), and denote the probabilities for

X as p=P(x, =1]|w,) and
q=P(X; =1|w,). Subgtituting again in

equation (3), the probability of correct
classification for the pair of featuresis

P(k, j) =1/2{max(a p,bq)
+max[(1-a) p, (1-b)q]
+max[a(l- p),b(1-q)]

+max[(1-a)(1- p),(1-b)A-)]}

©)

The errors for the three pairs of features
for the examplein Table 2 are

& = 1-2(max(.1%.6,.5%.1)

+ max(.9x.6,.5%.1)

+ max(.1x.4,.5x.9)

+ max(.9x.4,.5x.9))
=0.25,

&3 = 024, and E3 = 0.25.

As &3 is the smallest pair-wise error,
and & is the smallest individual error, the best
pair of independent features, (xi,Xs), does not
include the single best feature x,.

SFS is probably the most widely used
procedure because it has both reasonable error
and reasonable complexity for “traditional” data
sets (Aha & Bankert, 1995; Jain & Zongker,
1997).

At the first step, SFS evaluates all n
features, at the second step, n-1 evaluations are
needed as there are n-1 possible pairs. For
selecting d features, SFS needs the following
number of evaluations of the error

d—

(n—i) (6)

However, the complexity calculation is not that
simple when the features from probabilistic data

as shown in Table 1 are sdlected. For the
calculation of the theoretical error, the algorithm
has to visit every x in the possible feature space,
find out which is the maximum discriminant
function, and add the contribution of the error

www.manaraa.com



KUNCHEVA, HOARE, & COCKCRAFT 531

for x based on the class labdl decision. The fact
that the features are treated as independent does
not make the task any easier. The complexity of
SFS will depend heavily on the number of
features in the evaluated subsets.

Complexity of feature selection
algorithms for probabilistic data can be
evaluated by the total number of X's visited in
the process of selecting d out of the n features.
The complexity for the single-best method is
Cs& = 2n, ad for the SFS

d- T\ i+
Cas =D (n-i)2".

Class-Pairs Feature Sdection (CP)

J and Bang (2000) proposed the
following feature selection method. A single
featureis selected for each pair of classes.

Table 3 shows the data structure used by
the algorithm, where Cj; = class pairs, (i #] ), X
= k-th feature, (k= 1,..,n), P;(k) = discriminatory
power of feature k for C;; Using (4), the values
of Pjy(k) are calculated as the probability of
correct classification between classes @ and @
for feature .

Table 3. Thetablefor the class-pairs method for
feature selection (Ji and Bang, 2000).

Cij

Xk P”(k) T

Thefollowing values are then calculated

e Ei=) P k), therdative ease of
classifying the pair C;; , and

e T, :Zij P, (k), the relative
discriminatory power of feature .

The algorithm begins with an empty set
of features. The class pair that is the hardest to
discriminate (has the smallest E;j) is identified
from the table. The feature with the highest
discriminatory power for this pair is added to the
subset, if not already selected. If more than one
feature has the highest P;(k) in the chosen
column, then the feature with the highest value
of Ty is sdlected. The hardest pair is removed
from the table and the process continues with the
next hardest pair of classes (Note that the classes
are not removed altogether, only the column of
the table is removed.). The process stops once
all class pairs have been covered.

The maximum number of features this
method will sdect is max{(c(c-1)/2, n}.
However, J and Bang (2000) claim that the
number selected will be much less than either of
these. This method may also be restricted at any
point to pick only d features. The complexity of
the class-pair method (measured again by the
total number of x's visited) is Ccp = € (c-1) n.
This calculation reflects only the preparation
phase (setting up Table 3), and does not take
into account the actual procedure which
constructs the feature subset.

Feature-Pairs Feature Sdection (FP)

The selection methods considered above
are either overly simplistic but scale well with n,
¢, and d (singlebest) or they are
computationally demanding but more accurate
(SFS). Optimality of the selected feature subset
is not guaranteed in any case. The class-pairs
method is one possible method that scales well
and may be accurate. Here, another method is
proposed for feature selection from probabilities,
called feature-pairs method.

The process is started with an empty set
of features. All pairs of features are evaluated
and the best pair is added to the set. While the
desired number of features is not reached, add
the features from the next best pair which are not
aready among the sdected features. Suppose
that d-1 features are already in the set, and there
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is a pair of features such that neither of the two
members of the pair is in the set. One may either
take both features and exit with d+1 features or
randomly select one member of the pair to make
up the total of d features in the set. The
complexity of the feature-pairs method (using
the number of visited X’'s) is Cgp = n (N-1).

All four methods are based on a true
calculation of the classification error plus some
heuristic about how one forms the feature
subset. The experimental results in the next
section help to evaluate the assets and
drawbacks of the four methods.

Results

A Small-Scale Simulation Study

To include SFS in the comparisons, a
reatively small example with n = 20 features
was chosen and the number classes, ¢, was
varied from 3 to 10. The number of selected
features, d, was varied from 2 to 10.

For each ¢, 50 random matrices of size
20xc were generated from uniform random
distribution. Each matrix represented the
probabilities for the features and classes as
shown in Table 1. For each such matrix and each
d, the four feature selection algorithms were
applied and the best subset of size d was found.

To evaluate the selected subsets, a
traditional data set was generated randomly for
every pair (c,d). One hundred data points were
generated from the distribution of each class and
the Naive Bayes classifier was used to label
these points. The eror was estimated as the
percent mismatch with the true class label.

An example of the simulation algorithm
is given below. Consider the problem presented
in Table 2. Suppose that Method X picked
features (x;, X3). Set a misclassification counter
to 0. The steps below are repeated 100 times for
each class.

(Step 1) Generate a data point from class
@. To do this, pick a vector of 3 random
numbers, one for each feature, eg. [0.2736,
0.9241, 0.7102]". Compare this vector with the
first column of Table 2 (corresponding to a). If
the generated number for x is smaller than the
corresponding probability in thetable, set x to 1;
else set x to 0. For this example, the generated
data point isx =[O, O, 1].

(Step 2) Classify the data point using
Naive Bayes and only the chosen features. For
this example (X ;=0, x s=1), the two
discriminant functions for x are

1, (X) =1/2(0.9x0.8) = 0.36
U,(X)=1/2(0.5x0.4) =0.10

(Step 3) Choose a class labe by the
maximum discriminant function and note
whether there is a mismatch with the class label
whose distribution is currently being used. In the
example, label @ is chosen so the
misclassification counter remains unchanged.

Figure 1 shows the probability of error
versus the number of selected features, d, for
¢ = 10 classes. Each point on the figure is the
average error over the 50 random matrices.

As expected, SFS gives the lowest error.
The single-best and the feature-pairs methods
are approximatey the same with a dight
preference to feature-pairs, and the class-pairs
method is the worst. For d=2 sdected features,
SFS is the second best method because feature
pairs sel ects the true best pair features.

Figure 1. Probability of error versus the number
of selected features (n=20, c=10).
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Table 4 gives the classification error
averaged across the 50 random matrices of
probabilities for 2 and 10 selected features (out
of 20), for c = 3,..., 10 classes.
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Table 4. Classification error (in %) with 2 and
10 features for ¢ = 3,..., 10 classes. CP stands
for class-pairs method, SB for the single-best
method and FP for the feature-pairs method.

@
d = 2 sdected features

c CP SFS SB FP
3 21.2 17.9 22.7 16.8
4 40.1 31.7 36.1 30.3
5 49.6 42.9 47.2 411
6 57.9 51.0 54.2 49.4
7 62.6 56.2 60.3 54.3
8 67.5 61.3 64.3 50.4
9 70.2 65.1 67.8 63.8
10 72.8 67.8 70.6 66.8
(b)
d = 10 sdected features
c CP SFS SB FP
3 14.4 4.2 4.4 4.5
4 16.8 7.3 7.9 8.0
5 16.1 9.8 10.8 11.2
6 21.2 13.7 15.0 15.1
7 25.0 15.5 17.2 17.3
8 29.1 18.4 20.4 19.8
9 31.2 20.8 23.0 22.8
10 33.6 22.3 24.3 23.9

The results in Table 4 confirm the
superiority of SFS for more than 2 features and
it also shows that the class-pairs method gives
the largest error. There is an interesting turn
about the single-best and feature-pairs methods.
For small number of classes (3 to 7) SB was
dightly better whereas for larger number of
classes (8 to 10) FP was the better of the two
methods. This behavior is an indication that for
larger scale problems FP may be the more
accurate method.

A Larger-Scale Simulation Study

SFS was excluded from this experiment
because of its large computational time. The
same experiments, as in the previous section,
were run with a total number of features n = 100
and number of classes ¢ = 50. The number of
selected features was d € {5, 10, 15,..., 50}.
Figure 2 shows the error versus the number of
selected features for SB, CP and FP. The curves
are close together but the errorsfor al d are

rdlated as Ep < Esg < Ecp. The differences
between Erp and Esg are not statistically
significant.

Figure 2. Probability of error versus the number
of selected features (n = 100, ¢ = 50).
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Figure 3 shows the histogram of the 50
differences Esg — Ep for 50 and 25 selected
features. For 50 features, Esg — Erp Was positive
in 64% of the runs, the same in 6% of the runs
and negative in 30% of the runs. For 25 selected
features, Esg — Erp Was positive in 94% of the
runs and negative in 6% of the runs. This
suggests that there may be optimal ratios c.d:n
for which FP is distinctly better than SB.

Figure 3. Histograms of the 50 differences Esg —
Erp for d = 50 sdected features (a) and d = 25
selected features (b).
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The computational time ratio for the
three methods was approximately Csg:Ccp:Crp =
1:8:23.

The above simulations do not assume
any reationship between the classes. The
matrices are generated uniformly which means
that the corréations between the columns will be
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close to 0, as will be the correlations between
therows. In real problems, the class profiles will
racdly be uncorrelated. Below, the four
methods are explored on two real diagnostic
problems where only probabilistic data is
available.

An Application to Diagnosis of BSE in cattle
and Scrapiein Sheep

The above feature selection methods
were applied for selecting diagnostic signs in
two problems coming from veterinary medicine.

BSE and Scrapie are fatal neurodegene-
rative diseases. Both are notifiable diseases
which have no known cure. Thereis currently no
ante-mortem test for the diseases that can be
used routingly in the field. Notifiable diseases
have a major impact on human health, welfare
and economics. There was a BSE epidemic in
Britain in the 90's and with the first ever BSE
case diagnosed in the USA at the end of 2003,
the problem of these diseases is global.
Therefore, the recognition of the clinical
presentations of the two diseases and the need to
differentiate them from other diseases is
important. In veterinary medicine, prevalence of
disease, the conditional dependencies of clinical
signs, and the sign frequencies within diseases
are rardy, if ever available; demonstrating the
need to work with probability data.

Table 5 shows the results from the
feature selection experiments with the BSE data.
SFS was applied to select 10 of the 242 features
and simulated data from the distributions of the
57 classes. The three selection methods SB, CP,
and FP, which have lower capacity than SFS
wererun for d = 10 features too. Thefirst 4 rows
in Table 4 show the classification error for d =
10.

Next, the class-pairs method was run
letting it stop when all class pairs have been
accounted for. CP sdlected a total of 58 features.
Leaving SFS aside, the other two low-
complexity methods were run for 58 features.
The classification error is displayed in rows 5-8
in Table 5. Finaly, the error with using all
features was estimated as a tight lower bound on
the classification error.

Table 5. Results from feature selection on the
BSE probabilities.

Method (d) Error
SFS (10) 0.4258
SB (10) 0.6432
CP (10) 0.5865
FP (10) 0.5482
CP (58) 0.0172
SB (58) 0.0309
FP (58) 0.0256
ALL (242) 0.0049

The results show that the closest rival to
SFS for small number of features is the FP
method proposed here. Contrary to the results in
the previous section though, CP is better than
SB. This shows that in real-life problems when
there is dependency between the classes, CP
may be a better solution than SB. When run all
the way, CP provides the smallest classification
eror of the three low complexity methods
followed by FP and then SB.

Note the large differences between the
error probabilities for small humber of features.
These differences strongly suggest that SFS
should be applied as long as the computation
time is acceptable. To illustrate the differences
between the selected sets of features, Table 6
shows the signs selected by SFS (a) and SB (b)
in the order they entered the set.

The same pattern of experiments was
repeated for the data containing the probabilities
for Scrapie and 62 alternative diseases. Twelve
features were selected by SFS. The 3 lower-
complexity methods were run for d = 12. The
erors are shown in Table 7. The class-pairs
method (CP) was run again until al class pairs
were covered. The number of sdected features
was 77. SB and FP were then run for the same
number of features. Table 7 ranks the feature
selection methods exactly in the same way as
Table 5. Again, the discrepancies with the
simulation study in the previous sub-section can
be attributed to the fact that the classes here are
not independent. The CP method manages to
capture some dependency between the classes
and, if run all the way, it seects better subsets of
features than SB and FP. Table 8 mirrors table 6
by showing the signs selected for diagnosing
Scrapie and the 63 aternative diseases.
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Table 6. Signs selected by SFS and SB for
diagnosing BSE and 56 other diseasesin cattle

(a) Signs selected by SFS

Gait abnormal, unspecified

Circling in one direction
Hypo-responsive to external stimuli
Milk yield less than normad (individual)
Rumen rate nil, (O per 2min)

Eye menace response absent
Hyper-responsive to external stimuli
Dyspoena, unspecified

Posture recumbency

Temperature >39.5 degrees Celsius

Table 8. Signs selected by SFS and SB for
diagnosing Scrapie and 63 other diseases in
sheep

(a) Signs selected by SFS

(b) Signs selected by SB

Foul odour skin
Mastitis
Exerciseintolerance
Paraparesis

Weight Loss
Generalized weakness
Anorexia

Generalized lameness or stiffness
Ataxia

Underweight, thin etc
Dullness

Reluctant to move

Gait abnormal, unspecified
Dyspoena, unspecified
Dyspoena, rate increased shallow
Diarrhoea, unspecified

Gait uncoordinated\exaggerated
Rumen rate dow (1 per 2min)
Diarrhoea, acute, profuse
Circling in one direction

Gait stiff

Head rotated, tilted or deviated

(b) Signs selected by SB

Table 7. Results from feature selection on the
Scrapie probabilities.

Foul odour skin
Mastitis

Matted \ dirty wool \ hair
Moist skin\wool \hair
Skin necrosis
Exerciseintolerance
Hyperkeratosis
Lymphadenopathy
Alopecia

Pruritus

Weight loss

Dullness

Method (d) Error
SFS(12) 0.5975
SB (12) 0.7635
CP(12) 0.6930
FP (12) 0.6610
CP (77) 0.0625
SB (77) 0.0992
FP (77) 0.0649
ALL (285) 0.0252

Conclusion

The problem of selecting a subset of n binary
features to discriminate between ¢ mutualy
exclusive classes was explored. The information
available here is in the form of an nxc table
with class-conditional probabilities for  the
nbinary features, i.e, P(x=1|@), i =1,...,n, ]
= 1,...,c. Sdecting the best subset of features
seems easy because al the probabilistic
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information is available and the features are
assumed to be independent. The difficulty comes
from the complexity of the evaluation of the
theoretical classification error for a subset of
features.

An easy way out would be to generate a
sample and run it through the Naive Bayes
classifier using only the features in the subset.
Three methods were applied from the literature
(SFS, SB and CP) and a method was proposed
based on features pairs (FP) for feature selection
using probabilities. It was found that SFS was
the most accurate but also the most
computationally demanding of the four methods.
The simulation experiments with generated
random distributions suggested that CP was
inferior to SB and FP, but did not favor strongly
any of SB or FP. The experiments with two real
data matrices from veterinary medicine
demonstrated that CP is also a valuable method
when larger subsets of features are acceptable.
FP was found to be the best alternative to SFS
for small and medium subsets.

There are at least two caveats that need
to be mentioned. First, features are rardy
independent in real life problems. By assuming
independence, one runs the risk of missing an
important feature which does not have a
reasonable predictive value on its own, but is
highly important in combination with others.
However, in the absence of any further
information, the independence assumption is the
only option. Second, the estimates of the
probabilities given as the information to work
upon (Table 1) might not be very close to the
true probabilities. A sensitivity study can be run
by perturbing the probability estimates and
observing how the sdected feature subset
changes.

The acid test for the quality of the
selected subset of features would be the error on
real data. However, the aim of this study is a
preliminary feature selection so that a real data
st can be collected using these features.
Therefore, at this stage, a reasonably large
feature set should be provided. The hope is that
highly discriminative combinations of features
will be discovered within using systematically
collected data.
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Kim And Warde' s Mixed Randomized Response Technique For Complex Surveys
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The randomized response (RR) technique introduced by Warner (1965) was found to be an effective
method for reducing answer bias and ensuring better respondent cooperation in estimating the proportion
of people in a community bearing a sensitive attribute. Chaudhuri (2001a, 2001b, 2002, 2003) extended
Warner's method and several other well-known RR devices to complex surveys adopting a varying
probability sampling design. Kim and Warde (2004) proposed an RR mode assuming that the sample is
selected with simple random sampling (SRS) with replacement (SRSWR). Here, the method of estimation
is presented when sample is chosen with varying selection probabilities and Kim and Warde's RR
procedure is applied for estimating a sensitive proportion. Also illustrated is a humerical example that
unequal probability sampling performs better than SRS.

Key words: Answer bias;, randomized response; sensitive attribute; simple random sampling; varying
probability sampling

Introduction
sampling. Thus, to meet the demand of the

Warner (1965) proposed a method called social surveys, Chaudhuri (2001a, 2001b, 2002,
randomized response (RR) to ensure better 2004) extended some of the RR procedures to
respondent cooperation and honest responses in complex survey situations.
surveys involving collection of information on Most of the works cited here have been
certain sensitive attributes. It has been found that done assuming that the sample is selected with
Warner’s technique is capable of reducing simple random sampling (SRS) with
answer bias and refusals considerably in surveys replacement (SRSWR). But in practice, in the
where a question of sensitive nature is involved. socio-economic surveys, the respondents are
This method has been studied extensively and as usually selected with varying probability
a conseguence, humerous modifications of it as sampling. Thus, to meet the demand of the
well as several other methods have emerged in social surveys, Chaudhuri (2001a, 2001b, 2002,
the literature of RR. Among many others, 2004) extended some of the RR procedures to
Horvitz et al. (1967), Greenberg et a. (1969), complex survey situations.
Kuk (1990), Christofides (2003), Mangat and Kim and Warde (2005) proposed a
Singh (1990) made notabl e contributions. mixed RR modd in an attempt to improve
Most of the works cited here have been Moors (1971) mode after taking due
done assuming that the sample is selected with consideration of the inherent privacy problem of
simple random sampling (SRS) with Moors (1971) RR device They have also
replacement (SRSWR). But in practice, in the discussed how their method may be applied
socio-economic surveys, the respondents are when stratified sampling design is used. But the
usually selected with varying probability entire development of Kim and Warde (2005) is

based on the assumption that the sample is

sdected with SRSWR. Since in large-scale

Contact information for Amitava Saha is sample surveys equal probability sampling is
Dhanbad, Jharkhand — 826001, India. E-Mail: rarely used, necessary modifications need to be
saha_amitava@hotmail.com developed for adopting this method to complex

sample surveys where varying probability
sampling designs are often used. Here, Kim and
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Warde's (2005) procedure is presented when a
varying probability sampling design is adopted
rather than SRSWR. As well, a numerical
illustration of the performance of the extended
procedure under varying and equal probability
sampling is presented.

Kim and Warde's (2005) Device in Complex
Surveys

Kim and Warde's (2005) method for
complex surveys is described in section 2. A
numerical study for comparing the relative
performances is reported in section 3.

Lee U=(---i,----N) be a finite

population of N individuals and y; be the value
of a variable of interest, say, y on the ith
individual such that y; = 1 if i bears a sensitive
attribute A = 0 if i bears the complementary
attribute A°. The problem is to estimate the
proportion of people in U bearing the character

N
A e, zAz{Zyij/NzY/N where
i=1

N
Y = Zyi on choosing a sample, say, s of sizen
i=1
from U according to any arbitrary sampling
design p.
It is also assumed that X be the value of
a variable x on the ith individual in U such that
x = 1if | bears a non-sensitive attribute
B = 0if i bears B, the complement of B. Kim
and Warde (2004) proposed a method for
estimating 7, when a sample of size n is drawn

from U by SRSWR. However, in this articleit is
assumed that instead of selecting the individuals
by SRSWR only, they are chosen following any
arbitrary sampling design p.

In Kim and Wardes (2005) device
every sampled person is requested to answer a
direct question about hisher possession of a
non-stigmatizing or innocuous character, say, B
and on receiving a ‘yes reply to this non-
sensitive question the individual is instructed to
use an RR device R; where a pack of cards
marked A and B in  proportions
p:(1- p),0< p, <1 is kept. The respondent is
then requested to draw a card at random from
this pack, unnoticed by the interviewer and to
report the true value of y or x according as A-

marked or B-marked card is drawn. If a
respondent answers ‘no’ to the initial direct
guestion, he/she is requested to go to another RR
device, R, in which there is another pack of
cards marked A and A° in proportions
P, (1-p,),0< p,<Lp, #1/2. The respondent
is then instructed to choose a card randomly
from this pack and to report the true value of v,
i.e, dthe ‘1 or ‘O, if there is a match
(mismatch) between hig’her true y character and
the card type drawn. Here, it is assumed that the
sensitive and the innocuous questions are
unrelated and also that the RR devices R; and R,
are independent.

Suppose that out of the n selected
persons n; reply ‘yes to the direct question and
the remaining n, =n—n persons provided a ‘no’
answer to it. Now, the following are defined:

I, = 1 if the ith selected individual bears the
sensitive character and draws an A —
marked card or if the individual bears the
non-sensitive character and chooses a B —
marked card

=0dseonusing Ry.
Then P(l;=y)=p, and P(l;=x)=1-p, and
writing Eg, Vg as the expectation and variance

operators with respect to any arbitraay RR
deviceit is easy to check that,

Er(l})=poy; +(@- p)X
=py +(1-py).

This is because a respondent using the
device R; has already responded ‘yes to the
initial direct innocuous question. Thus, it
follows that for

f=[li - @-p)l/ P, 0< P <1, Eg()=y, VieU
and
V()= Yell) _ @=pa-y)*

2

) P

It may be seen that r; is an unbiased
estimator for y; and also an unbiased estimator

_(@-p@a-n)
P

for Vy is given by v; = . Further,
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let J = 1 if ith sdected individual bears the
sensitive attribute A and draws an A-marked card
= 0 ese, on applying R,. Then,

PUi=y)=p, and P(J =1-y)=1-p,

and

E:(J)=py +01-p)A-Y)=p,-Dy +1-p,),
VR(‘]i): p,(1—-p,) .

For u =[J - (1- p))/(2p,-1), p, %12,
there  is Eg(u,)=vy,,Vie U and

p.(1- p,) i
Vip(uj)= —=———2-=V,,, say. Thus, u; isalso
R( I) (2 p2 _ 1)2 2 $’y
unbiased for y; and an unbiased estimator of Vy
isgivenby v, =V, .

Let s and s, be respectively the sets of
sampled individuals offering ‘yes and ‘no’
responses to theinitial direct innocuous question
such that S US, =S and write

Ep. V, respectively to denote the operators for

expectation and variance with respect to the

probability  design p.  Suppose that
N

tk = Z bSkiISkiyi Whae |Ski=l(0) , |f
i=1

ie s (2 s), k=12 and bg;'s are constants
free of Y =(yp,reeeeeeee ,Yn) Such that
E,lbs 1s,i)=1 VieU be a homogeneous

N
linear unbiased estimator for Y = >" y; . The
i=1
following is written as:

Vp(tk): ZN: yizcki + Z ViV jCu
i-1 i*
where
Cy = Ep(bskizlski)_l
and
Cuwj = Ep(bskilski —1)(bskj|skj ‘1)

and an unbiased estimator of V,(t, ). k=1,2 as

N
v, (t) = Z yizcskilski +Z Yi¥YiCsij ! s,ii
i1

i# ]

sii =lsils; and cg,

constants satisfying E,(cs!s)=cq and

where | Csj e Y -free

ED(CSkijISkij)zckij , k=12.

Because y/’'s are unascertainable, two unbiased
estimators for Y based on s, and s, are obtained

€ = Z bs,ils,ifi
ie sq
and
€, = Z bs,ils,il
ie s;
and accordingly, two unbiased estimators for
zA=Y/N aregiven by
e, = e /N ade, = e, /N

Now, following Ra (1968) and Rao
(1975), two unbiased estimators for V(e) and

V(e,) are obtained as:

vy (e)= Vp(tl)|Y:R + Z bg il s,iVai

N

v,(e)= Vp(t2)|!:B + Z (bsliz — Cgj )' i Vii

N
vi(e, )= Vp(t2)|Y:R + Z b,ils,iVai

- = i=1

N

\P) (e2)= Vo (tz )|X:B + Z (bsziz — Cs,i )' s,iV2i -

i=1

Since both e; and e are unbiased
estimators for Y, an unbiased estimator of Y
based on e; and e, is given by

and
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Also, an unbiased estimator of 7,is
given by ﬁAzﬁél+&éz. Again, as the two
n n
RR devices are independent, unbiased variance
estimators for V(e) are derived as

and similarly, the unbiased estimators for V(z,)
aregiven by

A Numerical Example

Artificial data rdating to a community
of N = 129 individuals is considered. As wdll,
the problem of estimating the proportion of
individuals evading income tax during the last
financial year in the said community on
choosing a sample of n = 37 individuals is
considered. Theindividuals from this population
were sdected according to three different
sampling schemes, namely, simple random
sampling with replacement (SRSWR), simple
random  sampling  without  replacement
(SRSWOR) and Rao-Hartley-Cochran (RHC,
1962) sampling scheme as a representative of
varying probability sampling.

Here, yi = 1(0) is defined if the ith
individual evades (does not evade) income tax
during the last financial year and x, = 1(0) if the
ith individual prefers (does not prefer) football
to basketball. The amount of expenditure
incurred in a particular month in the household
to which an individual belongs to is considered
as the sizemeasure for sdection of the
individuals by RHC sampling strategy.

In the RHC scheme, first the population
of N units is randomly divided into n random
groups, theith group having N; units such that

D> N;=N, where > denotes the sum over
n n

the n random groups. Then, denoting
A=a +-oeta as the sum of the

normed sizemeasures a's for the units
belonging to the ith group, one unit is chosen
from the ith group with a probability
proportional to A divided by it's a-value. This
process is repeated for all the n groups. Now,
writing for simplicity (y;,a) as the (y,a)-value
for the unit selected from the ith group, an
unbiased estimator for Y is given by

t=> (A/a)y,

along with an unbiased variance estimator for
V(t) as

2
v(t)=BY A{ﬁ—tj
N
where

B= (ZnNiz— N)/(NZ—ZHNE).

Here, y’'s are unknown and so are to be
estimated. Suppose that w be an unbiased
estimator for y; and v; be an unbiased estimator
for Vg(w) . Then, one may employ the unbiased

estimator
t=> (A/a)w

for estimating Y and an unbiased variance
estimator of V(e), following Chaudhuri,

Adhikary and Dihidar (2000) is given by
N
V(©)=V(t),_,, + > bslsV
o i=1

where W={wg,-oeeee Wy ). Let e be any point
estimator for the parameter ¢ and v(e) be an
unbiased estimator of V(e). Then, assuming
5=(e-6)/Jve) to be a standard normal

deviate, the following two criteria are
considered:
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Table 1: Comparative performances of alternative procedures
RHC SRSWOR SRSWR

> |z A | v L;”gtlh Aa | cv L;”gtlh Aa | cv L;”gtlh

n; =30
0.98 047 065 114 0366 040 169 0264 059 185  0.265
0.92 048 074 150 0397 037 174 0281 046 189 0313
0.93 076 068 149 0475 032 173 0276 040 181 0315
0.81 08 08 179 0466 034 216 0319 034 249 0362
0.89 068 065 164 0491 032 194 0290 042 221 0327

n,=25
0.98 047 044 139 0362 048 158 022 043 187 0264
0.92 048 043 171 0351 041 197 0253 044 208 0273
0.93 076 041 175 0345 047 197 023 041 231 0278
0.81 08 049 197 0375 039 239 0294 038 268 0332
0.89 068 043 182 0379 037 201 0267 036 222 0297

n, =20
0.98 047 033 151 0282 035 189 0217 032 203 0242
0.92 048 039 186 0229 039 212 0210 032 237 0258
0.93 076 032 194 0260 031 226 0235 030 246 0.260
0.81 08 029 217 0206 024 241 0275 024 276 0297
0.89 068 027 216 0257 036 242 0230 030 268 0267

n, =15
0.98 047 027 178 0193 027 207 0192 027 234 0204
0.92 048 028 207 0237 020 247 0217 026 274 0217
0.93 076 025 219 0178 032 251 0172 024 277 0227
0.81 08 020 232 0162 017 275 0246 017 297  0.261
0.89 068 023 236 0240 028 262 0198 028 284 0210
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0) the coefficient of variation (CV)
defined as CV = (/v(e) /e)x100;

and
(i) the length of the confidence
intervals (Cl's)

(e—1.96 v(e) ,e+1.96,/v(e) )given
by 2x1.96,/v(e)

for comparing the relative performances of the
alternative sampling procedures.

For the artificial population
75 =0.6202. Table 1 outlines the performances

of the alternative estimators for different choices
of ng, p. and po.

Conclusion

Irrespective of the values of n;, SRSWOR
performs better than SRSWR in terms of the two
criteria for comparison considered here and the
RHC scheme turns out to be the best sampling
scheme in terms of the criterion CV. As the
values of nmy, i.e. the number of individuals
replying ‘yes’ to the initial direct question
increases, improvement in the efficiency level of
the estimator is observed for all three sampling
designs.

This implies that for producing efficient
estimators by applying the method discussed
above, one has to choose the direct innocuous
question judiciously so that more numbers of
interviewees answer ‘yes to the initial direct
question. Thus, the extended method of
estimation as discussed here may be effectively
used in complex sample surveys for collection of
information on sensitive attributes.
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Nonparametric Pooling And Testing Of Preference Ratings For
Full-Profile Conjoint Analysis Experiments
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The prablem of pooling customer preference ratings within a conjoint analysis experiment has been
addressed. A method based on the honparametric combination of rankings has been proposed to compete
with the usual method based on the arithmetic mean. This method is honparametric with respect to the
underlying dependence structure and so no dependence model must be assumed. The two methods have
been compared using Spearman’s rank correlation coefficient and related test. Moreover, a further
nonparametric testing method has been considered and proposed; this method takes both correlation and
distance between ranks into account. By means of a simulation study it has been shown that the NPC
Ranking method performs better than the arithmetic mean.

Key words: conjoint analysis, nonparametric inference, nonparametric combination, ranking.

Introduction

In recent years, there has been a growing level
of competitiveness in the offer of products.
From a company point of view, one of the
conditions of competitive success is a product’s
high level of correspondence to the varying
requirements of the customer (Porter, 1998).
Indeed, successful companies invest
considerable resources and skills into planning
and designing their products in order to
incorporate the various requirements of
customers into the product itself. The most
competitive companies are currently those which
use approaches and instruments designed to
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capture the so-called voice of customer (VOC).
In order to do so, companies describe the
product idea in terms which the customer can
actually perceive. After its definition, the newly
developed concept is tested by means of surveys
in the field which aim to highlight which
characteristics are most important to the
customer and what his/her true intentions are in
terms of purchasing/fruition. In this way, it is
possible to modify the product concept before
fully implementing it, in order to maximize
adherence to the needs and expectations of
potential customers by identifying specific
segments of customers. The methods used are
generally based on Conjoint Analysis (Dolan,
1993; Gustafsson, Herrmann, & Huber, 2001).
The term Conjoint Analysis refers to a
set of predominantly statistical methodologies
which aim to study customer choice models
starting with opinions and preferences expressed
by customers on various profiles of a product
which is going to be developed. Even recent
literature on such methodologies is rather
fragmented and presents some critical e ements,
both in terms of the procedure for the definition
of the survey design and in terms of the
subsequent statistical analysis of gathered data
(Gustafsson et al., 2001; Green, Krieger, &
Wind, 2001). In particular, it should be noted
that the arithmetic mean (whether weighted or
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not) is mainly used for pooling preference
ratings.

One problem that may arise when
customer preference ratings are averaged is the
so-called majority fallacy (Moore, 1980). This
problem occurs when the item chosen by the
average customer is not the item chosen most
often. For example, if half of the people like
large cars and the other half like small ones, the
average person would like medium-sized cars,
even if no real person wants one. In this article,
the problem of pooling preference ratings is
addressed. In particular, the Nonparametric
Combination of Rankings method (NPC
Ranking; Lago & Pesarin, 2000; Arboretti,
2003) is used and extended. A simulation study
is performed to show that the NPC Ranking
method performs generaly better than the
arithmetic mean. To this end, Spearman’s rank
correlation coefficient is considered and a new
nonparametric test T, for ranking comparison is
proposed. Furthermore, to study the power of
Spearman’'s Ts and T, test in detecting ranking
shifts, afurther simulation study is performed.

The pooling of preference ratings using the NPC
Ranking methodol ogy

In developing a new product/service a
company may take K>2 attributes (factors) with
P.,P,, ...,P« values (levels) into consideration.

K
Lee M =]]R be the number of possible
k=1
combinations of levels (treatments). For each
treatment (product/service profile) a
hypothetical dummy variable is defined as
dmp=1, if the level of factor k is p for treatment
m, otherwise dmne=0. It is assumed that
customers assess the overall utility (worth) of a
product/service by combining the separate utility
value of each attribute. The additive model for
total worth of profilemistherefore:

K Px
Yo =2 D Vel + &q, MFL ., M,

k=1 p=1
where the coefficient v, denotes the part-worth
for level p of factor k and &, ..., &, ae iid
random residuals with 0 mean and ¢ variance.
The full-profile method of trestment
presentation is considered. Each treatment is
described on a profile card. Let us consider n

customers who are asked to rate each of M
profiles on a scale of 1 to 10. The problem of
how to obtain this ranking, i.e. how to pool
customer preferences, is addressed in the article.
Let X be the rate of profile m given by
customer i (i=1, ..., n). Of coursg, if X ;> X,
then customer i rates profile m better than profile
m'. In the literature this problem is solved by

. . - 1
averaging customer ratings X, ==> X,
n i=1

m=1, .. M, and profile m such that
Xm=max(X1,...,XM) is then the best profile
AR =M (first rank position), profile m such
that Xm= max ~(Yl,...,YM) is the profile
{i=1,...M ,mzm}

with the second rank position ,R. =M -1, and
so on. For simplicity’s sake, it is assumed that
there are no ties in ranking positions.

An alternative way to pool preferences
is based on the NPC ranking method (Lago &
Pesarin, 2000). The procedure consists of three
steps. In the first step, a score for profile m is
computed as follows:

#(X,; = X,;,)+05

Fn = M +1

where  #(X,>X_.) indicates the rank
transformation of X;. This step is repeated for
each customer i and profile m. With respect to
rdative rank transformation #(X_, > X_.)/M
of Xmi, 0.5 and 1 have been added respectively to
the numerator and the denominator to obtain A,
varying in the open interval (0, 1). The reason
for such corrections is merely computational, in
order to avoid numerical problems with
logarithmic transformations later on. Note that
the scores Ani
are oneto-one increasingly reated with the
ranks #(X_, > X_.). By considering Ans after
the first step, it is straightforward to obtain a
(partial) ranking of the M profiles for each
customer, but it is the global profile rank that is
of interest.

In the second step, the scores that
customers have assigned to profile m are
combined as follows:
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C,= —Zn: In-A4,,).

i=1

This step is repeated for the remaining M-1
profiles and it performs a nonparametric
combination of customers scores. In the last
step, the (global) ranking for profile m is

computed as R, =#(C,>C). Of course
profile m with ;R.=M is the first rank
position profile, m with ;R, =M -1 is the
second one, and so on.

It should be noted that Fisher’s omnibus

combining function is used in the second step.
Other possible combining functions are Liptak’'s

> ®*(4,), where @ is the cumulative
i=1

distribution function of a standard normal
distribution, Tippett's _rHax}(ﬂmi), the logistic

function Zln[l/ﬁtr;itj and the additive
i=1

function > 4, (Lago & Pesarin, 2000). These
i=1

combining functions (say ) satisfy three
properties:

0 wiscontinuousin al A, arguments;
(i) v is non-decreasing in each Any
argument: 174 O/ O D= 772 (R K| if
0<A'; <A, <1for whateverie{1, ..., n};

(iii) v is symmetric with respect to
permutations of the arguments: if u, ..., Uu,isa
permutation of 1, n then

W Arereson) 2 W Ao e B ).

It should also be noted that a central
feature of NPC Ranking is the possibility of
assigning different degrees of importance to
different types of customers. If the company
developing the new product/service is more
interested in a certain group of customers, it can
assign them a weight of 0.5<w<1 (and weight 1-
w to the remaining ones). This weighted
approach is taken into account in step two of the

procedure by computing —> w In(l-4,)
i=1

instead of —anln(l—ﬂmi), where wi=w if
i=1

customer i belongs to the group of interest and
wi=1-w if he does not. It is straightforward to
consider more than two weights.

A comparison of preference pooling methods:
Spearman’s |s and |, indicators

To show that NPC Ranking generally
performs better than the arithmetic mean in
pooling preference ratings, a new indicator 1, is
presented and Spearman's rank corrdation
coefficient is also considered. Spearman’s well-
known correlation coefficient is defined as:

35 (R, - 7, )

| =1
° M(M2-1)

’

where Ry, is the observed rank for profile m and
T IS the reference rank. I takes values in [0, 1]
and small values of | are associated with similar
vaues of R, and m, Another indicator is
considered:

1= D Ko @ Ly + )],

m<m’

where K =1 when (z, -z )R -R.)<0
otherwise K _.=0, I, =|

o =|Ry—Ry|—1. K, takes into account
whether or not the observed and reference
rankings are coherent (i.e. positive correlated),
l.w (h,;) and it takes into account how far
observed (reference) ranks are from each other.
Values of I, closeto O indicate that the observed
ranking is very similar to the reference ranking.
It is straightforward to show that

T —7y| -1 and

0<l1,< EM (M -1)(2™m —1)}

and so

6> (Ko L+ |y + D )]

o takes valuesin [0, 1].
M(M —1)(2M 1) esvaluesin [0, 1]
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A simulation study has been performed.
More precisely, a conjoint analysis experiment
with three factors (I, 1l and Il1) each with two
levels (+ and -) is considered. There are 2°=8
different profiles. It is assumed that the true
profile ranking (reference ranking) is known.
Consider table 1, where profile 8 is the best and
profile 1 is the worst. Assume the eight profiles
are presented to five customers.

Table 1 Referenceranking of profiles

. Preference
Profile Factors Rating
1l
1 - - - 1
2 - -+ 2
3 -+ - 3
4 -+ o+ 4
5 + - - 5
6 + - 4+ 6
7 + + - 7
8 + + 8

Customer profile ratings are simulated
by adding to the reference ranking a random
error taken from continuous distributions such as
normal N(0,1), exponential exp(l), uniform
U(0,1) and Cauchy Cau(0,1), and from discrete
distributions such as binomial Bi(8,0.5) and
Poisson P(1): Yyi=7nt&vi, Where Yy isthe rate of
profile m for customer i, un is the reference
rank/rate of profile m (m=m) and &, is the
random error denoting the distance between Yy,
and the reference value [Yy], m=1,...,8 and
i=1,...,5 is a 8x5 matrix of real numbers. By
computing the arithmetic mean or applying the
NPC Ranking, two 8x1 vectors of ranks ,R or
g R are obtained. 1000 matrixes are randomly
generated and 1000 pairs of vectors are then
computed. Let ,R® and R indicate the
vector of ranks obtained by using the arithmetic

mean and the NPC Ranking for simulation
c(c=1,...,1000). Let z'=(12,...8). In order to
establish which of the two methods is better,
Spearman’s |s and |, indicators are computed.
More precisdly, the two methods are
compared using the |, indicator by computing

ABQD‘:#(I p(BB(C)J_Z')S I p(AB(C) ,7_1'))/1000,

the proportion of simulations in  which
| (4R, z) isless than or equal to 1 (,R®, 7).

p\p2
If this proportion is greater  than

ABQp”:#(I p(AB(C)J_Z')S | p(BB(C),Z))/].OOO, then

the NPC Ranking method is preferable because
rankings obtained using this method are more
similar to the reference ranking than those
obtained using the arithmetic mean. It is worth
noting that ,5Q,+,Q,">1 because the

equalities are counted bothin ,zQ," and ,5Q," .
A similar comparison is peformed by
considering the Is indicator and computing
ABQS‘:#(I 'S(BEQ(C)J_Z-)S IS(AB(C)J_Z-))/:I'OOO and
Q0 =#(.(,RY, 7)< 1, (RO, z))1000. 1t is
also of some interest to compare I, and I
indicators themselves. To this end, Q. ,

ps XA
follows:

Q' and Q;" are computed as

#Qu=#(1,(.R.2)<1,(,R?.z))/1000,
Q" =#(1,(,R? z)<1,(,R®, z))/1000 and
#Qs'=#(1,(,R. 7)< 1,(,R?.z))/1000,
»Qs"=#(1.(.R? . z)<1,(,R®.z))/1000.

If sQa>,sQa" then |y is better than Is when the
average method is used. If Qg Qg™ then |,

is better than 15 when the NPC Ranking method
is used.
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Table 2 Simulation results

Distribution ABQp' ABQp” ABCQSI ABQSH ps(gAI ps(gAII ps(gBI ps(gBII
Normal 0531 0771 0526 0.772 1000 0.076 1.000 0.125
Exponential 0.650 0.447 0592 0461 0996 0015 0.991 0.021
Uniform 0441 0.757 0439 0.758 1.000 0.109 1.000 0.017
Cauchy 0649 0378 0655 038 0771 0296 0.662 0.412
Binomial 0559 0487 0600 0436 0844 0196 0.906 0.112
Poisson 0534 0528 0592 0461 0936 0111 0.961 0.005

As reported in table 2, NPC Ranking is
better than the arithmetic mean for Exponential,
Cauchy, Binomial and Poisson distributions,
using both I, and I indicators. Only for normal
and uniform distributions the arithmetic mean
(as can be expected) is better than NPC Ranking.
As regards indicator comparisons, |, is clearly
better than |5 when the arithmetic mean is used
as well as when NPC Ranking is used, because
sQa and Q' are greater than Q" and

psQB” reSpeCtiver, for al

distributions.

In order to obtain further insight into I,
and | indicator comparison, instead of reference
ranking 7'=(123456,78), ranking
y'=02364578) has been considered in
Monte Carlo simulations. The reference ranking
is still 7z, but now random errors &, are added

to y and not to z . The power simulation study

is set out as follows: indicators Is and I, are
considered as test statistics within a permutation
framework, i.e.:

considered

T,=#(1,>1°)/B

p

and

T =#(1.>1%)B,

S S ™ 'S

where |, and | are obtained by a random
permutation of the observed ranking, 1™ and

1% are the values of indicators Is and I,
calculated by comparing the observed ranking

with the reference ranking, and B is the number
of all possible permutations in a 2° factorial
design (i.e. 8'=40320 permutations).

Tables 3-5 report the results of the
simulation study when errors are normal N(0,1),
uniform U(0,1), exponential exp(l), Cauchy
Cau(0,1), binomial Bi(8,0.5) and Poisson P(1).
T and T (Tpa and Tyg) indicate that the tes